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INTRODUCTION

ÅComputer: It came from the word ñComputeò.

ÅIe Processing of numbers.

ÅProcessors-Memory-I/O:

ÅProcessor is essential for processing

ÅMemory is essential to store numbers.

ÅWe also require Input Output (I/O)

ÅIe Processor ïMemory- I/O are required in a 
computer.

ÅProcessor is called as CPU.

ÅComputer Organization is mainly based on 
CPU and Memory.
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INTRODUCTION

ÅDifference between 

ÅOrganization and Architecture:

Å1. Users Point of View 1. Designers Point of View.

ÅEx. Car Driver Ex. Car Mechanic

ÅEx. Suppose computing system Ex. How Multiplexer is 
has a multiplexer. One need not implemented should be 
know how it is designed. Known

Å2. Programmers 2. Designers

Å3. Study of System at 3. Study of system at 
Software point of view Hardware point of view 
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INTRODUCTION

ÅComputer architecture is concerned with the
structure and behavior of the various functional
modules of the computer and how they interact
to provide the processing needs of the user.

ÅComputer organization is concerned with the
way the hardware components are connected
together to form a computer system.

ÅComputer design is concerned with the
development of the hardware for the computer
taking into consideration a given set of
specifications.
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INTRODUCTION

ÅComputer Architecture:

ÅIt refers to those attributes of a system visible to a
programmer, or, put another way, those attributes that have
direct impact on the logical execution of a program.

ÅEx: of architectural attributes are the instruction set, the
number of bits used to represent various data types ( ex
numbers, Characters), I/O mechanism and techniques for
addressing memory.

ÅComputer Organization:

ÅIt refers to the operational units and their interconnections
that realize the architectural specifications.

ÅThe organizational attributes include those hardware details
transparent to the programmers, such as control signals,
interfaces between the computer and peripherals and the
memory technology used.
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UNIT-1 BASIC COMPUTER ORGANIZATION & DESIGN

Å Instruction Codes

Å Computer Registers

Å Computer Instructions

Å Timing and Control

Å Instruction Cycle

Å Memory Reference Instructions

Å Input-Output and Interrupt

Å Complete Computer Description

Å Design of Basic Computer
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ÅHere we see a basic computer and also observe how its operation
can be specified with register transfer statements.

ÅThe organization of the computer is defined by its

Å internal registers, the timing and control structure, and the set of
instructions that it uses.

ÅThe internal organization of a digital system is defined by the
sequence of microoperations it performs on data stored in its
registers.

ÅThe general purpose digital computer is capable of executing
various microoperations and , in addition, can be instructed as to
what specific sequence of operations it must perform.

ÅThe user of a computer can control the process by means of a
program.

ÅA program is a set of instructions that specify the operations,
operands, and the sequence by which processing has to occur.

ÅThe data processing task may be altered by specifying a new
program with different instructions or specifying the same
instructions with different data.

1. INSTRUCTION CODES
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ÅA computer instruction is a binary code that specifies a
sequence of micro operations for the computer.

ÅInstruction codes ( group of bits) together with data are
stored in memory.

ÅThe computer reads each instruction from memory and
places it in a control register. The control then
interprets the binary code of the instruction and
proceeds to execute it by issuing a sequence of micro
operations.

ÅEvery computer has its own unique instruction set.

ÅThe ability to store and execute instructions, the stored
program concept, is the most important property of a
general purpose computer.

1. INSTRUCTION CODES
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ÅAn instruction code is a group of bits that instruct the
computer to perform a specific operation.

ÅIt is usually divided into parts, each having its own
particular interpretation.

Å The most basic part of an instruction code is its
operation part.

ÅThe operation code of an instruction is a group of bits
that define such operations as add, subtract, multiply,
shift and complement.

ÅThe number of bits required for the operation code of an
instruction depends on the total number of operations
available in the computer.

ÅThe operation code must consist of atleast n bits for a
given 2 power n (or less) distinct operations.

1. INSTRUCTION CODES
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ÅEx. Consider a computer with 64 distinct operations, one of them
being an ADD operation. The operation code consists of six bits,
with a bit configuration 110010 assigned to the ADD operation.

ÅWhen this operation code is decoded in the control unit, the
computer issues control signals to read an operand from memory
and add the operand to a process register.

ÅAt this point we recognize the relationship between a computer
operation and a macro operation.

ÅAn operation is part of an instruction stored in computer memory. It
is a binary code that tells the computer to perform a specific
operation.

ÅThe control unit receives the instruction from memory and interprets
the operation code bits.

Å It then issues a sequence of control signals to initiate micro
operations in internal computer registers.

ÅFor every operation code, the control issues a sequence of micro
operations needed for the hardware implementation of the specified
operation. For this reason, an operation code is sometimes called a
macro operation because it specifies a set of micro operations.

1. INSTRUCTION CODES
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ÅThe operation part of an instruction code specifies the operation to
be performed.

ÅThis operation must be performed on some data stored in processor
registers or in memory.

ÅAn instruction code must therefore specify not only the operation
but also the registers or the memory words where the operands are
to be found, as well as the register or memory where the result is to
be stored.

ÅMemory words can be specified in instruction codes by their
address.

ÅProcessor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2 power k
registers.

ÅThere are many variations for arranging the binary code of
instructions, and each computer has its own particular instruction
code format.

Å Instruction code formats are conceived by computer designers who
specify the architecture of the computer.

1. INSTRUCTION CODES
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ÅSTORED PROGRAM ORGANIZATION:

ÅThe Simplest way to recognize a computer is to
have one processor register and an instruction
code format with two parts.

ÅThe first part specifies the operation to be
performed and the second specifies an address.

ÅThe memory address tells the control where to
find an operand in memory.

ÅThis operand is read from memory and used as
the data to be operated on together with the data
stored in the processor register.

1. INSTRUCTION CODES
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ÅSTORED PROGRAM ORGANIZATION:

ÅEx. Instructions are stored in one section of memory and
data in another. For a memory unit with 4096 words we
need 12 bits to specify an address since 2 power 12 =
4096.

ÅIf we store each instruction code in one 16-bit memory
word, we have available four bits for the operation code
(opcode) to specify one out of 16 possible operations,
and 12 bits to specify the address of an operand.

ÅThe control reads a 16-bit instruction from the program
portion of memory. It uses 12-bit address part of the
instruction to read a 16-bit operand from the data portion
of memory.

ÅIt then executes the operation specified by the operation
code.

1. INSTRUCTION CODES
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1. INSTRUCTION CODES

ÅThe Basic Computer has two components, a processor and 
memory

ÅThe memory has 4096 words in it

ï4096 = 212, so it takes 12 bits to select a word in memory

ÅEach word is 16 bits long

CPU RAM
0

4095

015
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1. INSTRUCTION CODES
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ÅComputers that have a single processor register usually
assign to it the name accumulator and label it as AC.

ÅThe operation is performed with the memory operand
and the content of AC.

ÅIf an operation in an instruction code does not need an
operand from memory, the rest of the bits in the
instruction can be used for other purposes.

ÅEx. Operations such as Clear AC, Complement AC, and
increment AC operate on data stored in the AC register.
They do not need an operand from memory.

ÅFor these types of operations, the second part of the
instruction code ( bits 0 through 11) is not needed for
specifying a memory address and can be used to specify
other operations for the computer.

1. INSTRUCTION CODES
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ÅINDIRECT ADDRESS:

ÅIt is sometimes convenient to use the address bits of an
instruction code not as an address but as the actual
opernad. When the second part of an instruction code
specifies an operand, the instruction is said to have an
immediate operand.

ÅWhen the second part specifies the address of an
operand, the instruction is said to have a direct address.

ÅThis is in contrast to a third possibility called indirect
address, where the bits in the second part of the
instruction designate an address of a memory word in
which the address of the operand is found.

ÅOne bit of the instruction code can be used to
distinguish between a direct and an indirect address.

1. INSTRUCTION CODES
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ÅAs an illustration of this configuration, consider the instruction code
format

Å It consists of a 3-bit operation code, a 12-bit address, and an indirect
address mode bit designated by I.

ÅThe mode bit is 0 for a Direct address and 1 for an Indirect access.

ÅA Direct address instruction is shown in figure (a).

Å It is placed in address 22 in memory.

ÅThe I bit is 0, so the instruction is recognized as a direct address
instruction.

ÅThe opcode specifies an ADD instruction, and the address part is
the binary equivalent of 457.

ÅThe control finds the operand in memory at address 457 and adds it
to the content of AC.

1. INSTRUCTION CODES

Opcode Address

Instruction Format

15 14 12 0

I

11

Addressing 
mode
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1. INSTRUCTION CODES

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+

AC

+

AC

Direct addressing- Figure-a Indirect addressing-Figure-b
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ÅThe instruction in address 35 shown in figure(b) has a mode bit I = 1.
Therefore, it is recognized as an indirect address instruction.

ÅThe address part is the binary equivalent of 300. The control goes to
address 300 to find the address of the operand. The address of the
operand in this case is 1350. The operand found in address 1350 is
then added to the content of AC.

ÅThe indirect address instruction needs two references to memory to
fetch an operand. The first reference is needed to read the address
of the operand; the second is for the operand itself.

ÅWe define the EFFECTIVE ADDRESS to be the address of the
operand in a computation-type instruction or the target address in a
branch-type instruction.

ÅThus the effective address in the instruction of above figure (a)is
457 and in the instruction of figure (b) is 1350.

ÅThe memory word that holds the address of the operand in an
Indirect address instruction is used as a pointer to an array of data.

ÅThe pointer could be placed in a processor register instead of
memory as done in commercial computers.

1. INSTRUCTION CODES
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ÅComputer instructions are normally stored in consecutive memory
locations and are executed sequentially one at a time.

ÅThe control reads an instruction from a specific address in memory
and executes it.

Å It then continues by reading the next instruction in sequence and
executes it, and so on.

ÅThis type of instruction sequencing needs a counter to calculate
the address of the next instruction after execution of the current
instruction is completed.

Å It is also necessary to provide a register in the control unit for
storing the instruction code after it is read from memory.

ÅThe computer needs processor registers for manipulating data and
a register for holding a memory address.

ÅThese requirements dictate the register configuration shown in Fig.
5-3.

ÅThe registers are also listed in Table 5-1 together with a brief
description of their function and the number of bits that they
contain.

2. COMPUTER REGISTERS
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2. COMPUTER REGISTERS
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2. COMPUTER REGISTERS
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ÅThe memory unit has a capacity of 4096 words and
each word contains 16 bits.

ÅTwelve bits of an instruction word are needed to
specify the address of an operand.

ÅThis leaves three bits for the operation part of the
instruction and a bit to specify a direct or indirect
address.

ÅThe data register (DR) holds the operand read from
memory.

ÅThe accumulator (AC) register is a general purpose
processing register.

ÅThe instruction read from memory is placed in the
instruction register (IR).

ÅThe temporary register (TR) is used for holding temÅ
porary data during the processing.

2. COMPUTER REGISTERS
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ÅThe memory address register (AR) has 12 bits since this is the
width of a memory address.

ÅThe program counter (PC) also has 12 bits and it holds the address
of the next instruction to be read from memory after the
current instruction is executed.

ÅThe PC goes through a counting sequence and causes the
computer to read sequential instructions previously stored in
memory.

Å Instruction words are read and executed in sequence unless a
branch instruction is encountered.

ÅA branch instruction calls for a transfer to a nonconsecutive
instruction in the program.

ÅThe address part of a branch instruction is transferred to PC to
become the address of the next instruction.

ÅTo read an instruction, the content of PC is taken as the address
for memory and a memory read cycle is initiated.

ÅPC is then incremented by one, so it holds the address of the next
instruction in sequence.

2. COMPUTER REGISTERS
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ÅTwo registers  are used for input  and output.  

ÅThe input  register  (INPR) receives an 8-bit character  from an input  
device. 

ÅThe output  register (OUTR) holds an 8-bit character  for an output  
device.

2. COMPUTER REGISTERS
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ÅCommon Bus System:

ÅThe basic computer has eight registers, a memory unit,
and a control unit (to be presented in Sec. 5-4).

ÅPaths must be provided to transfer information from
one register to another and between memory and
registers.

ÅThe number of wires will be excessive if connections
are made between the outputs of each register and the
inputs of the other registers.

ÅA more efficient scheme for transferring information in
a system with many registers is to use a common bus.

ÅThe connection of the registers and memory of the
basic computer to a common bus system is shown in
Fig. 5-4.

2. COMPUTER REGISTERS
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2. COMPUTER REGISTERS
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COMMON  BUS  SYSTEM
Registers

S2
S1
S0

Bus

Memory unit
4096 x 16

LD  INR  CLR

Address

ReadWrite

AR

LD  INR  CLR

PC

LD   INR   CLR

DR

LD   INR   CLR

ACALU
E

INPR

IR

LD

LD   INR   CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6
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ÅThe outputs of seven registers and memory are connected to the
common bus.

ÅThe specific output that is selected for the bus lines at any given
time is determined from the binary value of the selection variables
S2, S1 and S0.

ÅThe number along each output shows the decimal equivalent of the
required binary selection.

ÅFor example, the number along the output of DR is 3.

ÅThe 16-bit outputs of DR are placed on the bus lines when S2S1S0
= 011 since this is the binary value of decimal 3.

ÅThe lines from the common bus are connected to the inputs of
each register and the data inputs of the memory.

ÅThe particular register whose LD (load) input is enabled receives the
data from the bus during the next clock pulse transition.

ÅThe memory receives the contents of the bus when its write input
is activated.

ÅThe memory places its 16-bit output onto the bus when the read
input is activated and S2S1S0=111.

2. COMPUTER REGISTERS
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ÅFour registers, DR, AC, IR, and TR, have 16 bits each.

ÅTwo registers, AR and PC, have 12 bits each since they hold a
memory address.

ÅWhen the contents of AR or PC are applied to the 16-bit common
bus, the four most significant bits are set to 0's.

ÅWhen AR or PC receive information from the bus, only the 12 least
significant bits are transferred into the register.

ÅThe input register INPR and the output register OUTR have 8 bits
each and communicate with the eight least significant bits in the
bus.

Å INPR is connected to provide information to the bus but OUTR can
only receive information from the bus.

ÅThis is because INPR receives a character from an input device
which is then transferred to AC.

ÅOUTR receives a character from AC and delivers it to an output
device.

ÅThere is no transfer from OUTR to any of the other registers.

2. COMPUTER REGISTERS
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ÅThe 16 lines of the common bus receive information
from six registers and the memory unit.

ÅThe bus lines are connected to the inputs of six
registers and the memory.

ÅFive registers have three control inputs: LD (load), INR
(increment), and CLR (clear).

ÅThis type of register is equivalent to a binary counter
with parallel load and synchronous clear similar to the
one shown in Fig. 2-11.

ÅThe increment operation is achieved by enabling the
count input of the counter.

ÅTwo registers have only a LD input. This type of
register is shown in Fig. 2-7.

2. COMPUTER REGISTERS
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ÅThe input data and output data of the memory are
connected to the common bus, but the memory address
is connected to AR.

ÅTherefore, AR must always be used to specify a memory
address.

ÅBy using a single register for the address, we eliminate
the need for an address bus that would have been
needed otherwise.

ÅThe content of any register can be specified for the
memory data input during a write operation.

ÅSimilarly, any register can receive the data from memory
after a read operation except AC.

2. COMPUTER REGISTERS
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ÅThe basic computer has three instruction code formats,
as shown in Fig. 5-5.

ÅEach format has 16 bits.

ÅThe operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining
13 bits depends on the operation code encountered.

ÅA memory-reference instruction uses 12 bits to specify
an address and one bit to specify the addressing mode
I.

ÅI is equal to 0 for direct address and to 1 for indirect
address (see Fig. 5-2).

ÅThe registerÅreference instructions are recognized by
the operation code 111 with a 0 in the leftmost bit (bit
15) of the instruction.

3. COMPUTER INSTRUCTIONS
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3. COMPUTER INSTRUCTIONS
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ÅA register-reference instruction specifies an operation
on or a test of the AC register.

ÅAn operand from memory is not needed; therefore, the
other 12 bits are used to specify the operation or test to
be executed.

ÅSimilarly, an input-output instruction does not need a
reference to memory and is recognized by the operation
code 111 with a 1 in the leftmost bit of the instruction.

ÅThe remaining 12 bits are used to specify the type of
input-output operation or test performed.

3. COMPUTER INSTRUCTIONS
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Å The type of instruction is recognized by the computer control from the four
bits in positions 12 through 15 of the instruction.

Å If the three opcode bits in positions 12 though 14 are not equal to 111, the
instruction is a memory-reference type and the bit in position 15 is taken as
the addressing mode I.

Å If the 3-bit opcode is equal to 111, control then inspects the bit in position
15.

Å If this bit is 0, the instruction is a register-reference type. If the bit is 1, the
instruction is an input-output type.

Å Note that the bit in position 15 of the instruction code is designated by the
symbol I but is not used as a mode bit when the operation code is equal to
111.

Å Only three bits of the instruction are used for the operation code.

Å It may seem that the computer is restricted to a maximum of eight distinct
operations.

Å However, since register-reference and input-output instructions use the
remaining 12 bits as part of the operation code, the total number of
instructions can exceed eight.

Å In fact, the total number of instructions chosen for the basic computer
'is equal to 25.

3. COMPUTER INSTRUCTIONS
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ÅThe  instructions  for the  computer  are  listed  in  Table 5-2. 

3. COMPUTER INSTRUCTIONS
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BASIC  COMPUTER  INSTRUCTIONS
Hex Code

Symbol    I = 0       I = 1                  Description

AND        0xxx     8xxx       AND memory word to AC
ADD        1xxx     9xxx       Add memory word to AC
LDA         2xxx     Axxx      Load AC from memory
STA         3xxx     Bxxx      Store content of AC into memory
BUN        4xxx     Cxxx       Branch unconditionally
BSA        5xxx      Dxxx      Branch and save return address
ISZ          6xxx      Exxx      Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200              Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI                F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

Instructions
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ÅThe symbol designation is a three-letter word and represents an
abbreviation intended for programmers and users.

ÅThe hexadecimal code is equal to the equivalent hexadecimal
number of the binary code used for the instruction.

Å By using the hexadecimal equivalent we reduced the 16 bits of an
instruction code to four digits with each hexadecimal digit being
equivalent to four bits.

ÅA memory-reference instruction has an address part of 12 bits.

ÅThe address part is denoted by three x's and stand for the three
hexadecimal digits corresponding to the 12-bit address.

ÅThe last bit of the instruction is designated by the symbol I.

ÅWhen I = 0, the last four bits of an instruction have a hexadecimal
digit equivalent from 0 to 6 since the last bit is 0.

ÅWhen I = 1, the hexadecimal digit equivalent of the last four bits of
the instruction ranges from 8 to E since the last bit is I.

3. COMPUTER INSTRUCTIONS
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ÅRegister-reference instructions use 16 bits to specify
an operation.

ÅThe leftmost four bits are always 0111, which is
equivalent to hexadecimal 7.

ÅThe other three hexadecimal digits give the binary
equivalent of the remaining 12 bits.

ÅThe input-output instructions also use all 16 bits to
specify an operation.

ÅThe last four bits are always 1111, equivalent to
hexadecimal F.

3. COMPUTER INSTRUCTIONS
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ÅInstruction Set Completeness:
ÅBefore investigating the operations performed by the instructions,

let us discuss the type of instructions that must be included in a
computer.

ÅA computer should have a set of instructions so that the user
can construct machine language programs to evaluate any
function that is known to be computable.

ÅThe set of instructions are said to be complete if the computer
includes a sufficient number of instructions in each of the
following categories:

1. Arithmetic, logical, and shift instructions

2. Instructions for moving information to and from memory and
processor registers

3. Program control instructions together with instructions that
check status conditions

4. Input and output instructions

3. COMPUTER INSTRUCTIONS
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ÅArithmetic, logical, and shift instructions provide computational
capabilities for processing the type of data that the user may wish to
employ.

ÅThe bulk of the binary information in a digital computer is stored in
memory, but all computations are done in processor registers.

ÅTherefore, the user must have the capability of moving
information between these two units.

ÅDecision making capabilities are an important aspect of digital
computers.

ÅFor example, two numbers can be compared, and if the first is
greater than the second, it may be necessary to proceed
differently than if the second is greater than the first.

ÅProgram control instructions such as branch instructions are
used to change the sequence in which the program is executed.

Å Input and output instructions are needed for communication
between the computer and the user.

ÅPrograms and data must be transferred into memory and results
of computations must be transferred back to the user.

3. COMPUTER INSTRUCTIONS
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ÅThe instructions listed in Table 5-2 constitute a minimum
set that provides all the capabilities mentioned above.

ÅThere is one arithmetic instruction, ADD, and two related
instructions, complement AC(CMA) and increment
AC(INC).

ÅWith these three instructions we can add and subtract
binary numbers when negative numbers are in signed-
2's complement representation.

ÅThe circulate instructions, CIR and CIL, can be used for
arithmetic shifts as well as any other type of shifts
desired.

ÅMultiplication and division can be performed using
addition, subtraction, and shifting.

3. COMPUTER INSTRUCTIONS
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ÅThere are three logic operations: AND, complement AC(CMA),
and clear AC(CLA).

ÅThe AND and complement provide a NAND operation.

Å It can be shown that with the NAND operation it is possible to
implement all the other logic operations with two variables (listed
in Table 4-6).

ÅMoving information from memory to AC is accomplished with the
load AC(LDA) instruction.

ÅStoring information from AC into memory is done with the store
AC(STA) instruction.

ÅThe branch instructions BUN, BSA, and ISZ, together with the
four skip instructions, provide capabilities for program control
and checking of status conditions.

ÅThe input (INP) and output (OUT) instructions cause information to
be transferred between the computer and external devices.

3. COMPUTER INSTRUCTIONS
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Å Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly.

Å An efficient set of instructions will include such instructions as subtract,
multiply, OR, and exclusive-OR.

Å These operations must be programmed in the basic computer.

Å The programs are presented in Chap. 6 together with other
programming examples for the basic computer.

Å By using a limited number of instructions it is possible to show the
detailed logic design of the computer.

Å A more complete set of instructions would have made the design too
complex.

Å In this way we can demonstrate the basic principles of computer
organization and design without going into excessive complex details.

Å In Chap. 8 we present a complete list of computer instructions that are
included in most commercial computers.

Å The function of each instruction listed in Table 5-2 and the
microoperations needed for their execution are presented in Secs. 5-5
through 5-7.

ÅWe delay this discussion because we must first consider the control
unit and understand its internal organization.

3. COMPUTER INSTRUCTIONS
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ÅThe timing for all registers in the basic computer is
controlled by a master clock generator.

ÅThe clock pulses are applied to all flip-flops and
registers in the system, including the flip-flops and
registers in the control unit.

ÅThe clock pulses do not change the state of a register
unless the register is enabled by a control signal.

Å The control signals are generated in the control unit
and provide control inputs for the multiplexers in the
common bus, control inputs in processor registers, and
microoperations for the accumulator.

4. TIMING AND CONTROL
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ÅThere are two major types of control organization:

a) hardwired control and b) microprogrammed control.

Å In the hardwired organization, the control logic is implemented with
gates, flip-flops, decoders, and other digital circuits. It has the
advantage that it can be optimized to produce a fast mode of
operation.

Å In the microprogrammed organization, the control information is
stored in a control memory. The control memory is programmed to
initiate the required sequence of microoperations.

Å A hardwired control, as the name implies, requires changes in the
wiring among the various components if the design has to be
modified or changed.

Å In the microprogrammed control, any required changes or
modifications can be done by updating the microprogram in control
memory.

ÅA hardwired control for the basic computer is presented in this
section. A microprogrammed control unit for a similar computer is
presented in Chap. 7.

4. TIMING AND CONTROL
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Å The block diagram of the control unit is shown in Fig. 5-6.

Å It consists of two decoders, a sequence counter, and a number of control
logic gates.

Å An instruction read from memory is placed in the instruction register
(IR). The position of this register in the common bus system is indicated in
Fig. 5-4.

Å The instruction register is shown again in Fig. 5-6, where it is divided into
three parts: the I bit, the operation code, and bits 0 through 11.

Å The operation code in bits 12 through 14 are decoded with a 3 x 8
decoder. The eight outputs of the decoder are designated by the symbols
D0 through D7.

Å The subscripted decimal number is equivalent to the binary value of the
corresponding operation code.

Å Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol I. Bits 0 through 11 are applied to the control logic gates.

Å The 4-bit sequence counter can count in binary from 0 through 15.

Å The outputs of the counter are decoded into 16 timing signals T0 through
T15.

Å The internal logic of the control gates will be derived later when we
consider the design of the computer in detail.
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ÅThe sequence  counter  SC can be incremented or 
cleared synchronously (see the counter  of Fig. 2-11). 

ÅMost of the time, the counter  is incremented to provide  
the  sequence  of timing  signals  out  of the 4 x  16 
decoder. 

ÅOnce  in awhile, the counter  is cleared to 0, causing  the 
next active timing signal to be T0.

ÅAs an example, consider the case where SC is 
incremented to provide timing signals To, T1, T2,T3, and 
T4 in sequence.  

ÅAt time T4, SC is cleared to 0 if decoder output  D3  is 
active. 

ÅThis is expressed  symbolically by the statement
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ÅThe timing diagram of Fig. 5-7 shows the time relationship
of the control signals.

ÅThe sequence counter SC responds to the positive
transition of the clock. Initially, the CLR input of SC is active.

ÅThe first positive transition of the clock clean SC to 0, which
in turn activates the timing signal T0 out of the decoder.

ÅT0 is active during one clock cycle. The positive clock
transition labeled T0 in the diagram will trigger only those
registers whose control inputs are connected to timing
signal T0.

ÅSC is incremented with every positive clock transition,
unless its CLR input is active.

ÅThis produces the sequence of timing signals T0,T1,T2,T3,T4
and so on, as shown in the diagram. (Note the relationship
between the timing signal and its corresponding positive
clock transition). lf SC is not cleared, the timing signals will
continue with T5,T6, upto T15 and back to T0.

Å

4. TIMING AND CONTROL



59Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

4. TIMING AND CONTROL



60Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

ÅThe last three waveforms in Fig. 5-7 show how SC is
cleared when D3T4 = 1.

ÅOutput D3 from the operation decoder becomes active
at the end of timing signal T2.

ÅWhen timing signal T4 becomes active, the output of the
AND gate that implements the control function D3T4
becomes active.

ÅThis signal is applied to the CLR input of SC.

ÅOn the next positive clock transition (the one marked T4
in the diagram) the counter is cleared to 0.

ÅThis causes the timing signal T0 to become active
instead of T5 that would have been active if SC were
incremented instead of cleared.
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ÅA memory read or write cycle will be initiated with the rising edge
of a timing signal.

Å It will be assumed that a memory cycle time is less than the clock
cycle time.

ÅAccording to this assumption, a memory read or write cycle
initiated by a timing signal will be completed by the time the next
clock goes through its positive transition.

ÅThe clock transition will then be used to load the memory word
into a register.

ÅThis timing relationship is not valid in many computers because the
memory cycle time is usually longer than the processor clock cycle.

Å In such a case it is necessary to provide wait cycles in the
processor until the memory word is available.

ÅTo facilitate the presentation, we will assume that a wait period is
not necessary in the basic computer.

ÅTo fully comprehend the operation of the computer, it is crucial
that one understands the timing relationship between the clock
transition and the timing signals.
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ÅFor example,  the register  transfer  statement

Å

Åspecifies a transfer of the content  of PC into AR if timing 
signal To is active. 

ÅT0 is active during  an entire clock cycle interval. 

Å During this time the content  of PC is placed onto  the bus 
(with  S2S1S0  =  010) and the LD (load)  input of AR is 
enabled.  

ÅThe actual transfer  does not occur until the end of the clock 
cycle when  the clock goes through  a positive  transition.

ÅThis same positive  clock transition  increments  the  
sequence  counter  SC from 0000 to 0001. 

ÅThe next clock cycle has T1   active and  T0  inactive.

Å
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ÅA program residing in the memory unit of the computer consists of a
sequence of instructions.

ÅThe program is executed in the computer by going through a
cycle for each instruction.

ÅEach instruction cycle in turn is subdivided into a sequence of
subcycles or phases.

Å In the basic computer each instruction cycle consists of the
following phases:

Å1. Fetch an instruction from memory.

Å2. Decode the instruction.

Å3. Read the effective address from memory if the instruction has
an indirect address.

Å4. Execute the instruction.

ÅUpon the completion of step 4, the control goes back to step 1 to
fetch, decode, and execute the next instruction.

ÅThis process continues indefinitely unless a HALT instruction is
encountered.

Å
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ÅFetch and Decode :

Å Initially, the program counter PC is loaded with the address of the
first instruction in the program.

ÅThe sequence counter SC is cleared to 0, providing a decoded
timing signal To.

Å After each clock pulse, SC is incremented by one, so that the
timing signals go through a sequence T0, T1, T2, and so on.

ÅThe microoperations for the fetch and decode phases can be
specified by the following register transfer statements.
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ÅSince only AR is connected to the address inputs of
memory, it is necessary to transfer the address from
PC to AR during the clock transition associated with
timing signal T0.

ÅThe instruction read from memory is then placed in the
instruction register IR with the clock transition
associated with timing signal T1.

Å At the same time, PC is incremented by one to prepare
it for the address of the next instruction in the program.

ÅAt time T2, the operation code in IR is decoded, the
indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR.

ÅNote that SC is incremented after each clock pulse to
produce the sequence T0, T1, and T2.
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ÅFigure 5-8 shows how the first two register transfer statements are
implemented in the bus system.

ÅTo provide the data path for the transfer of PC to AR we must
apply timing signal T0 to achieve the following connection:

Å1. Place the content of PC onto the bus by making the bus
selection inputs S2S1S0 equal to 010.

Å2. Transfer the content of the bus to AR by enabling the LD input
of AR.

ÅThe next clock transition initiates the transfer from PC to AR since
T0 = 1. In order to implement the second statement
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Åit is necessary  to use timing signal T1  to provide  the following 
connections in the bus  system.
Å1.  Enable the read input  of memory.
Å2.  Place the content  of memory  onto the bus by making  

S2S1S0  =  111.
Å3.  Transfer the content  of the bus to IR by enabling  the LD  

input of IR.
Å4.  Increment PC by enabling  the INR input of PC.
ÅThe next clock transition  initiates  the  read  and  increment 

operations since T1  = 1.
ÅFigure 5-8 duplicates a portion  of the bus system and shows 

how T0 and T1  are connected  to the control inputs of the 
registers,  the memory,  and the bus  selection  inputs.
ÅMultiple  input OR gates  are included  in the  diagram because  

there are other control functions  that will initiate similar 
operations.
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ÅDetermine the Type of Instruction :
ÅThe timing signal that is active after the decoding is T3.

Å During time T3, the control unit determines the type of
instruction that was just read from memory.

ÅThe flowchart of Fig. 5-9 presents an initial configuration
for the instruction cycle and shows how the control
determines the instruction type after the decoding.

ÅThe three possible instruction types available in the
basic computer are specified in Fig. 5-5.

ÅDecoder output D7 is equal to 1 if the operation code is
equal to binary 111.
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Å

ÅFrom Fig. 5-5 we determine that if D7 = 1, the instruction must be
a register-reference or input-output type.

Å If D7 = 0, the operation code must be one of the other seven
values 000 through 110, specifying a memory-reference instruction.

Å Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I.

Å If D7 = 0 and I = 1, we have a memory reference instruction with an
indirect address.

Å It is then necessary to read the effective address from memory.

ÅThe microoperation for the indirect address condition can be
symbolized by the register transfer statement
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Å Initially, AR holds  the address  part  of the instruction.  

Å This address  is used during  the memory  read operation. 

Å The word  at the address  given by AR is read from memory and placed on 
the common bus. 

Å The LD input of AR is then enabled  to receive  the indirect address  that 
resided  in the 12 least significant bits of the memory  word.

Å The three instruction  types are subdivided into four separate  paths. 

Å The selected operation  is activated with the clock transition  associated 
with timing signal T3.

Å This can be symbolized  as follows:
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ÅWhen a memory-reference instruction with I = 0 is encountered, it is not
necessary to do anything since the effective address is already in AR.

Å However, the sequence counter SC must be incremented when
D7ôT3 = 1, so that the execution of the memory-reference instruction can
be continued with timing variable T4.

Å A register-reference or input-output instruction can be executed with the
clock associated with timing signal T3.

Å After the instruction is executed, SC is cleared to 0 and control returns to
the fetch phase with T0 = 1.

Å Note that the sequence counter SC is either incremented or cleared to 0
with every positive clock transition.

ÅWe will adopt the convention that if SC is incremented, we will not write
the statement , but it will be implied that the control goes
to the next timing signal in sequence. When SC is to be cleared, we will
include the statement

Å The register transfers needed for the execution of the register-reference
instructions are presented in this section.

Å The memory-reference instructions are explained in the next section.

Å The input-output instructions are included in Sec. 5-7.

5. INSTRUCTION CYCLE



74Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

ÅRegister-Reference Instructions
ÅRegister-reference instructions are recognized by the control when

D7 = 1 and I = 0.

ÅThese instructions use bits 0 through 11 of the instruction code to
specify one of 12 instructions.

ÅThese 12 bits are available in IR(0-11). They were also transferred to
AR during time T2.

ÅThe control functions and microoperations for the register-
reference instructions are listed in Table 5-3.

ÅThese instructions are executed with the clock transition
associated with timing variable T3.

ÅEach control function needs the Boolean relation D7I'T3, which we
designate for convenience by the symbol r.

ÅThe control function is distinguished by one of the bits in IR(0-11 ).

ÅBy assigning the symbol Bi to bit i of IR, all control functions can be
simply denoted by rBi.
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ÅFor example, the instruction CLA has the hexadecimal
code 7800 (see Table 5-2), which gives the binary
equivalent 0111 1000 0000 0000.

ÅThe first bit is a zero and is equivalent to I'.

ÅThe next three bits constitute the operation code and
are recognized from decoder output D7.

ÅBit 11 in IR is 1 and is recognized from B11.

ÅThe control function that initiates the microoperation
for this instruction is D7I'T3B11 = rB11.

ÅThe execution of a register-reference instruction is
completed at time T3.

ÅThe sequence counter SC is cleared to 0 and the control
goes back to fetch the next instruction with timing
signal T0.
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ÅThe first seven register-reference instructions perform clear,
complement, circular shift, and increment microoperations on the
AC or E registers.

ÅThe next four instructions cause a skip of the next instruction in
sequence when a stated condition is satisfied.

ÅThe skipping of the instruction is achieved by incrementing PC
once again (in addition, it is being incremented during the fetch
phase at time T1).

ÅThe condition control statements must be recognized as part of the
control conditions.

ÅThe AC is positive when the sign bit in AC(l5) = 0; it is negative
when AC(l5) = 1. The content of AC is zero (AC = 0) if all the flip-
flops of the register are zero.

ÅThe HLT instruction clears a start-stop flip-flop S and stops the
sequence counter from counting.

ÅTo restore the operation of the computer, the start-stop flip-flop
must be set manually.
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ÅIn order to specify the microoperations needed for
the execution of each instruction, it is necessary that
the function that they are intended to perform be defined
precisely.

ÅLooking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous
description.

ÅThis is because the explanation of an instruction in
words is usually lengthy, and not enough space is
available in the table for such a lengthy explanation.

ÅWe will now show that the function of the memory-
reference instructions can be defined precisely by
means of register transfer notation.

6. MEMORY REFERENCE INSTRUCTIONS
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Å Table 5-4 lists the seven memory-reference instructions.

Å The decoded output Di for i = 0, 1, 2, 3, 4, 5, and 6 from the operation
decoder that belongs to each instruction is included in the table.

Å The effective address of the instruction is in the address register AR
and was placed there during timing signal T2 when I = 0, or during
timing signal T3 when I = 1.

Å The execution of the memory-reference instructions starts with timing
signal T4.

Å The symbolic description of each instruction is specified in the table in
terms of register transfer notation.

Å The actual execution of the instruction in the bus system will require a
sequence of microoperations.

Å This is because data stored in memory cannot be processed directly.

Å The data must be read from memory to a register where they can be
operated on with logic circuits.

ÅWe now explain the operation of each instruction and list the control
functions and microoperations needed for their execution.

Å A flowchart that summarizes all the microoperations is presented at
the end of this section.
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ÅAND to AC

Å This is an instruction that performs the AND logic operation on pairs
of bits in AC and the memory word specified by the effective address.

Å The result of the operation is transferred to AC.

Å The microoperations that execute this instruction are:

Å

Å The control function for this instruction uses the operation decoder
D0 since this output of the decoder is active when the instruction has
an AND operation whose binary code value is 000.

Å Two timing signals are needed to execute the instruction. The clock
transition associated with timing signal T4 transfers the operand from
memory into DR.

Å The clock transition associated with the next timing signal T4 transfers
to AC the result of the AND logic operation between the contents of DR
and AC.

Å The same clock transition clears SC to 0, transferring control to
timing signal T0 to start a new instruction cycle.

Å
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ÅADD  to AC

ÅThis instruction adds the content of the memory word specified by
the effective address to the value of AC.

ÅThe sum is transferred into AC and the output carry Cout, is
transferred to the E (extended accumulator) flip-flop.

ÅThe microoperations needed to execute this instruction are

ÅThe same two timing signals, T4 and T5, are used again but
with operation decoder D1 instead of D0, which was used for the
AND instruction.

ÅAfter the instruction is fetched from memory and decoded, only
one output of the operation decoder will be active, and that output
determines the sequence of microoperations that the control
follows during the execution of a memory-reference instruction.
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Å LDA: Load to AC

Å This instruction transfers the memory word specified by the effective
address to AC. The microoperations needed to execute this
instruction are

Å Looking back at the bus system shown in Fig. 5-4 we note that there is
no direct path from the bus into AC.

Å The adder and logic circuit receive information from DR which can be
transferred into AC.

Å Therefore, it is necessary to read the memory word into DR first and
then transfer the content of DR into AC.

Å The reason for not connecting the bus to the inputs of AC is the delay
encountered in the adder and logic circuit.

Å It is assumed that the time it takes to read from memory and transfer
the word through the bus as well as the adder and logic circuit is more
than the time of one clock cycle.

ÅBy not connecting the bus to the inputs of AC we can maintain one
clock cycle per microoperation.
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ÅSTA:  Store  AC

ÅThis instruction stores the content  of AC into the memory  word  
specified by the effective address.  

ÅSince the output  of AC is applied  to the bus and the data input of 
memory is connected  to the bus, we can execute this instruction 
with one microoperation:
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ÅBUN: Branch Unconditionally

ÅThis instruction transfers the program to the instruction
specified by the effective address.

ÅRemember that PC holds the address of the instruction to be read
from memory in the next instruction cycle.

ÅPC is incremented at time T1 to prepare it for the address of the
next instruction in the program sequence.

ÅThe BUN instruction allows the programmer to specify an
instruction out of sequence and we say that the program branches
(or jumps) unconditionally. The instruction is executed with one
microoperation:

ÅThe effective address from AR is transferred through the common
bus to PC.

ÅResetting SC to O transfers control to T0.

ÅThe next instruction is then fetched and executed from the
memory address given by the new value in PC.

Å
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ÅBSA: Branch and Save Return Address

ÅThis instruction is useful for branching to a portion of the
program called a subroutine or procedure.

ÅWhen executed, the BSA instruction stores the adÅdress of the
next instruction in sequence (which is available in PC) into a
memory location specified by the effective address.

ÅThe effective address plus one is then transferred to PC to serve as
the address of the first instruction in the subroutine.

ÅThis operation was specified in Table 5-4 with the following register
transfer:

6. MEMORY REFERENCE INSTRUCTIONS



87Basic Computer Organization & Design

Computer Organization Computer Architectures Lab

ÅA numerical example that demonstrates how this instruction is used
with a subroutine is shown in Fig. 5-10.

Å The BSA instruction is assumed to be in memory at address 20.

Å The I bit is 0 and the address part of the instruction has the binary
equivalent of 135.

ÅAfter the fetch and decode phases, PC contains 21, which is the
address of the next instruction in the program (referred to as the
return address).

ÅAR holds the effective address 135.

ÅThis is shown in part (a) of the figure.

ÅThe BSA instruction performs the following numerical operation:
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Å The result of this operation is shown in part (b) of the figure.

Å The return address 21 is stored in memory location 135 and control
continues with the subroutine program starting from address 136.

Å The return to the original program (at address 21) is accomplished by
means of an indirect BUN instruction placed at the end of the subroutine.

Å When this instruction is executed, control goes to the indirect phase to
read the effective address at location 135, where it finds the previously
saved address 21.

ÅWhen the BUN instruction is executed, the effective address 21 is
transferred to PC.

Å The next instruction cycle finds PC with the value 21, so control continues
to execute the instruction at the return address.

Å The BSA instruction performs the function usually referred to as a
subroutine call.

Å The indirect BUN instruction at the end of the subroutine performs the
function referred to as a subroutine return.

Å In most commercial computers, the return address associated with a
subroutine is stored in either a processor register or in a portion of memory
called a stack.
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ÅThis is discussed in more detail in Sec. 8-7.

Å It is not possible to perform the operation of the BSA instruction in
one clock cycle when we use the bus system of the basic
computer.

ÅTo use the memory and the bus properly, the BSA instruction
must be executed with a sequence of two microoperations:

ÅTiming signal T4 initiates a memory write operation, places the
content of PC onto the bus, and enables the INR input of AR.

ÅThe memory write operation is completed and AR is incremented
by the time the next clock transition occurs.

ÅThe bus is used at T5 to transfer the content of AR to PC.
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ÅISZ: Increment and Skip if Zero

ÅThis instruction increments the word specified by the effective
address, and if the incremented value is equal to 0, PC is
incremented by 1.

ÅThe programmer usually stores a negative number (in 2's
complement) in the memory word.

ÅAs this negative number is repeatedly incremented by one, it
eventually reaches the value of zero.

ÅAt that time PC is incremented by one in order to skip the next
instruction in the program.

ÅSince it is not possible to increment a word inside the memory, it
is necessary to read the word into DR, increment DR, and store the
word back into memory.

ÅThis is done with the following sequence of microoperations:
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ÅControl Flowchart
Å A flowchart showing all microoperations for the execution of the seven

memory-reference instructions is shown in Fig. 5-11.

Å The control functions are indicated on top of each box.

Å The microoperations that are performed during time T4, T5, or T6 depend on
the operation code value.

Å This is indicated in the flowchart by six different paths, one of which the
control takes after the instruction is decoded.

Å The sequence counter SC is cleared to 0 with the last timing signal in each
case.

Å This causes a transfer of control to timing signal T0 to start the next
instruction cycle.

Å Note that we need only seven timing signals to execute the longest
instruction (ISZ).

Å The computer can be designed with a 3-bit sequence counter.

Å The reason for using a 4-bit counter for SC is to provide additional timing
signals for other instructions that are presented in the problems section.
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