Basic Computer Organization & Design 1

G. PULLA REDDY ENGINEERING COLLEGE
(AUTONOMOUS): KURNOOL

II-11l SEM CSB & CSM
Computer Architecture and Organization

Mrs. S.Shabana Begum
Assistant Professor
Dept. of ECS.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

Syllabus

COMPUTER ARCHITECTURE & ORGANIZATHON ¢CAO)

11 Semester : Common for CSE(AIML) & Scheme : 2020
CSE(DS)
(['.:‘;:r Category HoursWeek Credits Maximum Marks
Continsous End
L T | C Internal E TOTAL
CM203 PCC Asdess nsenl —

3 1] L] 3 0 il 100

Sewsional Exam Duration 1 1% Hrs End Exam Duration: 3 Hrs

Course Outcomes : At the end of the course the student will be able to

C01: Understand the design of a basic compuser.

C02: Acquire the concepts of basse programming. design of Micro Programemed control unit.
C03: Understand the Internal working of CPU, Pipelining and Vector Processing.

CO4: Mustrate the basic Computer Anthmetsc operations, Input Quepat Organizstion.

C0S: Understand the concepts of Memory system and Secondary Smrnge devices,

UNIT -1

Basic Computer Organization and Design

Instruction Codes, Computer Registers, Computer Instructions, Teming and Coatrol, Instruction Cycle,
Memory Reference Instructions, Inpat‘output and [ntermupt, Complese Computer Description, Design of
Basac Computer.

UNIT -1

Pregramming The Basic Computer

Introduction, Machine Language, Assembly Language, The Assembler, Programming Arithmetic and
Logse Operations.

Micro Programmed Control

Control Memory, Address Seguencing, Micro program Example, Design of Control Unit

UNIT -1

Central Processing Unit

Introduction, General Register Organization, Stack Organization, Instruction Formats, Addressing
Modes, Data Transfer and Manipulation, Program Control, RISC and CISC.

Pipeline and Vector Processing

Parallel Processang, Pipelmmg, Arith ic and Instruction Pipelme, RISC Pipeline, VectorProcessing,
Amay Processors.

UNIT =1V
Computer Arithmetic
Introduction, Addition and Subtraction, Multiplication, Division algocithms.
Input/cutput Organization
Peripheral Devices, Inputioutput Interface, Asynchromous Data Transfer, Modes of Transfer, Prority
Interrupt. DMA.
UNIT -V
he Memory System

Concepts, Semiconductor RAM memories, Read-Only memories, Speed, Sioe and Cost, Cache
monies -Mapping Functions, Virtual Memones, Secondary Stornge.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

UNIT-1

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design 4

Boolean Algebra Explained part-1

INTRODUCTION

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design 5

INTRODUCTION

AComputer: |1t came from t
Ale Processing of numbers.
AProcessors-Memory-1/O:

AProcessor is essential for processing

AMemory is essential to store numbers.

AWe also require Input Output (1/O)

Ale Processor i Memory- 1/O are required in a
computer.

AProcessor is called as CPU.

A Computer Organization is mainly based on
CPU and Memory.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design 6

INTRODUCTION
A Difference between
A Organization and Architecture:
A 1. Users Point of View 1. Designers Point of View.
A Ex. Car Driver Ex. Car Mechanic

A Ex. Suppose computing system Ex. How Multiplexer is
has a multiplexer. One need not Implemented should be

know how it is designed. Known

A 2. Programmers 2. Designers

A 3. Study of System at 3. Study of system at
Software point of view Hardware point of view

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design 7

INTRODUCTION

AComputer architecture is concerned with the
structure and behavior of the various functional
modules of the computer and how they interact
to provide the processing needs of the user.

AComputer organization is concerned with the
way the hardware components are connected
together to form a computer system.

AComputer design is concerned with the
development of the hardware for the computer
taking Into consideration a dgiven set of
specifications.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design 8

INTRODUCTION

A Computer Architecture:

A It refers to those attributes of a system visible to a
programmer, or, put another way, those attributes that have
direct impact on the logical execution of a program.

A Ex: of architectural attributes are the instruction set, the
number of bits used to represent various data types (ex
numbers, Characters), I/O mechanism and techniques for
addressing memory.

A Computer Organization:

A It refers to the operational units and their interconnections
that realize the architectural specifications.

A The organizational attributes include those hardware details
transparent to the programmers, such as control signals,
Interfaces between the computer and peripherals and the
memory technology used.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design 9

UNIT-1 BASIC COMPUTER ORGANIZATION & DESIGN
A Instruction Codes
A Computer Registers
A Computer I nstructions
A Timing and Contr ol
A Ilnstruction Cycl e
A Memory Reference Instruct
A | eQutput and Interrupt
A Complete Computer Descrip
A Design of Basic Computer

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A Here we see a basic computer and also observe how its operation
can be specified with register transfer statements.

A The organization of the computer is defined by its

A internal registers, the timing and control structure, and the set of
Instructions that it uses.

A The internal organization of a digital system is defined by the
sequence of microoperations it performs on data stored in its
registers.

A The general purpose digital computer is capable of executing
various microoperations and , in addition, can be instructed as to
what specific sequence of operations it must perform.

A The user of a computer can control the process by means of a
program.

A A program is a set of instructions that specify the operations,
operands, and the sequence by which processing has to occur.

A The data processing task may be altered by specifying a new
program with different instructions or specifying the same
Instructions with different data.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A A computer instruction is a binary code that specifies a
sequence of micro operations for the computer.

A Instruction codes (group of bits) together with data are
stored in memory.

A The computer reads each instruction from memory and
places it in a control register. The control then
Interprets the binary code of the instruction and
proceeds to execute it by issuing a sequence of micro
operations.

A Every computer has its own unique instruction set.

A The ability to store and execute instructions, the stored
program concept, is the most important property of a
general purpose computer.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A An instruction code is a group of bits that instruct the
computer to perform a specific operation.

A It is usually divided into parts, each having its own
particular interpretation.

A The most basic part of an instruction code is its
operation part.

A The operation code of an instruction is a group of bits
that define such operations as add, subtract, multiply,
shift and complement.

A The number of bits required for the operation code of an
Instruction depends on the total number of operations
available in the computer.

A The operation code must consist of atleast n bits for a
given 2 power n (or less) distinct operations.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES
A Ex. Consider a computer with 64 distinct operations, one of them

being an ADD operation. The operation code consists of six bits,
with a bit configuration 110010 assigned to the ADD operation.

A When this operation code is decoded in the control unit, the
computer issues control signals to read an operand from memory
and add the operand to a process register.

A At this point we recognize the relationship between a computer
operation and a macro operation.

A An operation is part of an instruction stored in computer memory. It
IS a binary code that tells the computer to perform a specific
operation.

A The control unit receives the instruction from memory and interprets
the operation code bits.

A It then issues a sequence of control signals to initiate micro
operations in internal computer registers.

A For every operation code, the control issues a sequence of micro
operations needed for the hardware implementation of the specified
operation. For this reason, an operation code is sometimes called a
macro operation because it specifies a set of micro operations.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A The operation part of an instruction code specifies the operation to
be performed.

A This operation must be performed on some data stored in processor
registers or in memaory.

A An instruction code must therefore specify not only the operation
but also the registers or the memory words where the operands are
to be found, as well as the register or memory where the result is to
be stored.

A Memory words can be specified in instruction codes by their
address.

A Processor registers can be specified by assigning to the instruction
another binary code of k bits that specifies one of 2 power k
registers.

A There are many variations for arranging the binary code of
Instructions, and each computer has its own particular instruction
code format.

A Instruction code formats are conceived by computer designers who
specify the architecture of the computer.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

ASTORED PROGRAM ORGANIZATION:

AThe Simplest way to recognize a computer is to
have one processor register and an instruction
code format with two parts.

AThe first part specifies the operation to be
performed and the second specifies an address.

AThe memory address tells the control where to
find an operand in memory.

AThis operand is read from memory and used as
the data to be operated on together with the data
stored in the processor register.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1INSTRUCTKNJCODES

A STORED PROGRAM ORGANIZATION:

A Ex. Instructions are stored in one section of memory and
data in another. For a memory unit with 4096 words we
need 12 bits to specify an address since 2 power 12 =
4096.

A If we store each instruction code in one 16-bit memory
word, we have available four bits for the operation code
(opcode) to specify one out of 16 possible operations,
and 12 bits to specify the address of an operand.

A The control reads a 16-bit instruction from the program
portion of memory. It uses 12-bit address part of the
Instruction to read a 16-bit operand from the data portion
of memory.

A It then executes the operation specified by the operation
code.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A The Basic Computer has two components, a processor and
memory

A The memory has 4096 words in it
i 4096 = 212 so it takes 12 bits to select a word in memory

A Each word is 16 bits long

CPU RAM

15 0

4095

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES
Figure 51 Stored program ongamization.
Memory
4 = 16
15 12 11 0
' Opende Address | Instractions
. [Program)
[msection format
15) 0
Binary apemand I I:Il:hl.ﬂ:l
Processor register
(EccummulaT ar AC)

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A Computers that have a single processor register usually
assign to it the name accumulator and label it as AC.

A The operation is performed with the memory operand
and the content of AC.

A If an operation in an instruction code does not need an
operand from memory, the rest of the Dbits in the
Instruction can be used for other purposes.

A Ex. Operations such as Clear AC, Complement AC, and
iIncrement AC operate on data stored in the AC register.
They do not need an operand from memory.

A For these types of operations, the second part of the
Instruction code (bits 0 through 11) is not needed for
specifying a memory address and can be used to specify
other operations for the computer.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A INDIRECT ADDRESS:

A It is sometimes convenient to use the address bits of an
Instruction code not as an address but as the actual
opernad. When the second part of an instruction code
specifies an operand, the instruction is said to have an
Immediate operand.

A When the second part specifies the address of an
operand, the instruction is said to have a direct address.

A This is in contrast to a third possibility called indirect
address, where the bits in the second part of the
Instruction designate an address of a memory word In
which the address of the operand is found.

A One bit of the instruction code can be used to
distinguish between a direct and an indirect address.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

format

15 14 12 11

1. INSTRUCTION CODES

A As an illustration of this configuration, consider the instruction code

Instruction Format

| |Opcode

Address

N

Addressing
mode

instruction.

the binary equivalent of 457.

to the content of AC.

A It consists of a 3-bit operation code, a 12-bit address, and an indirect
address mode bit designated by |I.

A The mode bit is 0 for a Direct address and 1 for an Indirect access.
A A Direct address instruction is shown in figure (a).

A 1t is placed in address 22 in memory.
A The | bit is 0, so the instruction is recognized as a direct address

A The opcode specifies an ADD instruction, and the address part is

A The control finds the operand in memory at address 457 and adds it

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES
Direct addressing- Figure-a Indirect addressing-Figure-b
5o [0 [ADD 457 35 [T [ADD 300
300 1350
457 Operand
1350 Operand
G D
NS NS
ol AT

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

1. INSTRUCTION CODES

A The instruction in address 35 shown in figure(b) has a mode bit | = 1.
Therefore, it is recognized as an indirect address instruction.

A The address part is the binary equivalent of 300. The control goes to
address 300 to find the address of the operand. The address of the
operand in this case is 1350. The operand found in address 1350 is
then added to the content of AC.

A The indirect address instruction needs two references to memory to
fetch an operand. The first reference is needed to read the address
of the operand; the second is for the operand itself.

A We define the EFFECTIVE ADDRESS to be the address of the
operand in a computation-type instruction or the target address in a
branch-type instruction.

A Thus the effective address in the instruction of above figure (a)is
457 and in the instruction of figure (b) is 1350.

A The memory word that holds the address of the operand in an
Indirect address instruction is used as a pointer to an array of data.

A The pointer could be placed in a processor register instead of
memory as done in commercial computers.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A Computer instructions are normally stored in consecutive memory
locations and are executed sequentially one at a time.

A The control reads an instruction from a specific address in memory
and executes it.

A It then continues by reading the next instruction in sequence and
executes it, and so on.

A This type of instruction sequencing needs a counter to calculate
the address of the next instruction after execution of the current
Instruction is completed.

A 1t is also necessary to provide a register in the control unit for
storing the instruction code after it is read from memory.

A The computer needs processor registers for manipulating data and
a register for holding a memory address.

A These requirements dictate the register configuration shown in Fig.
5-3.

A The registers are also listed in Table 5-1 together with a brief
description of their function and the number of bits that they
contain.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

11 0
PC
11 0
AR
15 0
IR
15 0
TR
7 0 7 0
OUTR INPR

Memory
4096 words
16 bits per word
15 0
DR
15 0
AC

Figure 5-3 Basic computer registers and memory.

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

TABLE 5-1 List of Registers for the Basic Computer

Register Number

symbol of bits Register name Function

DR 16 Data register Holds memory operand

AR 12 Address register ~ Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter ~ Holds address of instruction
TR 16 Temporary register Holds temporary data
INPR 8§ Input register Holds input character
OUTR § Output register Holds output character

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A The memory unit has a capacity of 4096 words and
each word contains 16 bits.

A Twelve bits of an instruction word are needed to
specify the address of an operand.

A This leaves three bits for the operation part of the
Instruction and a bit to specify a direct or indirect
address.

A The data register (DR) holds the operand read from
memory.

A The accumulator (AC) register is a general purpose
processing register.

A The instruction read from memory is placed in the
Instruction register (IR).

A The temporary register (TR) is used for holding temA
porary data during the processing.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A The memory address register (AR) has 12 bits since this is the
width of a memory address.

A The program counter (PC) also has 12 bits and it holds the address
of the next instruction to be read from memory after the
current instruction is executed.

A The PC goes through a counting sequence and causes the
computer to read sequential instructions previously stored In
memory.

A Instruction words are read and executed in sequence unless a
branch instruction is encountered.

A A branch instruction calls for a transfer to a nonconsecutive
Instruction in the program.

A The address part of a branch instruction is transferred to PC to
become the address of the next instruction.

A To read an instruction, the content of PC is taken as the address
for memory and a memory read cycle is initiated.

A PC is then incremented by one, so it holds the address of the next
Instruction in sequence.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A Two registers are used for input and output.

A The input register (INPR)receives an 8-bit character from an input
device.

A The output register (OUTR) holds an 8-bit character for an output
device.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

ACommon Bus System:

A The basic computer has eight registers, a memory unit,
and a control unit (to be presented in Sec. 5-4).

A Paths must be provided to transfer information from

one register to another and between memory and
registers.

A The number of wires will be excessive if connections
are made between the outputs of each register and the
iInputs of the other registers.

A A more efficient scheme for transferring information in
a system with many registers is to use acommon bus.

A The connection of the registers and memory of the

basic computer to a common bus system is shown In
Fig. 5-4.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

Fgure 54 DBasic cormputes regisecss cOonmectes oo

s

Computer Organization

Computer Architectures Lab

32

Registers

Basic Computer Organization & Design

COMMON BUS SYSTEM

%%:: Bus
0 —b

Yy
~

Memory unit
4096 x 16

Write Read

»l

| —
Address

4
=

AR
LD INR CLR

PC_ A

| I | | I
LD INR CLR

DR 41

LD INR CLR

ALU |

AC A

XX

[I | | I
LD INR CLR

INPR

g/

TR P

.

| | |
LD INR CLR

ouT

Clock

LD

[—

16-bit common bus <*——

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A The outputs of seven registers and memory are connected to the
common bus.

A The specific output that is selected for the bus lines at any given
time is determined from the binary value of the selection variables
S2, S1 and SO0.

A The number along each output shows the decimal equivalent of the
required binary selection.

A For example, the number along the output of DR is 3.

A The 16-bit outputs of DR are placed on the bus lines when S2S1S0
= 011 since this is the binary value of decimal 3.

A The lines from the common bus are connected to the inputs of
each register and the data inputs of the memory.

A The particular register whose LD (load) input is enabled receives the
data from the bus during the next clock pulse transition.

A The memory receives the contents of the bus when its write input
IS activated.

A The memory places its 16-bit output onto the bus when the read
Input is activated and S2S1S0=111.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A Four registers, DR, AC, IR, and TR, have 16 bits each.

A Two registers, AR and PC, have 12 bits each since they hold a
memory address.

A When the contents of AR or PC are applied to the 16-bit common
bus, the four most significant bits are set to 0's.

A When AR or PC receive information from the bus, only the 12 least
significant bits are transferred into the register.

A The input register INPR and the output register OUTR have 8 bits
each and communicate with the eight least significant bits in the
bus.

A INPR is connected to provide information to the bus but OUTR can
only receive information from the bus.

A This is because INPR receives a character from an input device
which is then transferred to AC.

A OUTR receives a character from AC and delivers it to an output
device.

A Thereis no transfer from OUTR to any of the other registers.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A The 16 lines of the common bus receive information
from six registers and the memory unit.

A The bus lines are connected to the inputs of six
registers and the memory.

A Five registers have three control inputs: LD (load), INR
(increment), and CLR (clear).

A This type of register is equivalent to a binary counter
with parallel load and synchronous clear similar to the
one shown in Fig. 2-11.

A The increment operation is achieved by enabling the
count input of the counter.

A Two registers have only a LD input. This type of
register is shown in Fig. 2-7.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

2. COI\/IPUTER REGISTERS

A The input data and output data of the memory are
connected to the common bus, but the memory address
IS connected to AR.

A Therefore, AR must always be used to specify a memory
address.

A By using a single register for the address, we eliminate
the need for an address bus that would have been
needed otherwise.

A The content of any register can be specified for the
memory data input during a write operation.

A Similarly, any register can receive the data from memory
after aread operation except AC.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A The basic computer has three instruction code formats,
as shown in Fig. 5-5.

A Each format has 16 bits.

A The operation code (opcode) part of the instruction
contains three bits and the meaning of the remaining
13 bits depends on the operation code encountered.

A A memory-reference instruction uses 12 bits to specify

an address and one bit to specify the addressing mode
.

Al is equal to O for direct address and to 1 for indirect
address (see Fig. 5-2).

A The registerAreference instructions are recognized by
the operation code 111 with a O in the leftmost bit (bit
15) of the instruction.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

Figare 5-5% Basic computer imstruction formats,

15 14 12 1

0
'I‘ Opcode ‘ Address I {Ompeode = 000 through 110

(&) Mémory = referénce instruction

12 11

‘ I REH:uIEr-u I (Opoade =111, =0

[b) Regrdler — reference mitmaction

IS X 11 L1
A T LMD eperation (Opcode = 111, F=1)

[} Ingail — culpid imsStrucizan

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A A register-reference instruction specifies an operation
on or atest of the AC register.

A An operand from memory is not needed; therefore, the

other 12 bits are used to specify the operation or test to
be executed.

A Similarly, an input-output instruction does not need a
reference to memory and is recognized by the operation
code 111 with a 1 in the leftmost bit of the instruction.

A The remaining 12 bits are used to specify the type of
Input-output operation or test performed.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

A
A

o o

A

3. COI\/IPUTER INSTRUCTIONS

The type of instruction is recognized by the computer control from the four
bits in positions 12 through 15 of the instruction.

If the three opcode bits in positions 12 though 14 are not equal to 111, the
Instruction is a memory-reference type and the bit in position 15 is taken as
the addressing mode I.

If the 3-bit opcode is equal to 111, control then inspects the bit in position
15.

If this bit is O, the instruction is aregister-reference type. If the bitis 1, the
instruction is an input-output type.

Note that the bit in position 15 of the instruction code is designated by the
symbol | but is not used as a mode bit when the operation code is equal to
111.

Only three bits of the instruction are used for the operation code.

It may seem that the computer is restricted to a maximum of eight distinct
operations.

However, since register-reference and input-output instructions use the
remaining 12 bits as part of the operation code, the total number of
instructions can exceed eight.

In fact, the total number of instructions chosen for the basic computer
'Is equal to 25.

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

A The instructions for the computer are listed in Table 5-2.
TABLE 5-Z2 Hasic (Compurer Inssmoceiomns
FHexadecimal oode
Symbol £ =1k f — 1 Drescriprion
e T] i oo Hexx ANMLDD rmermory esaord bee A
ADD Txxx o Acdd memeory wosd o A
s Pl S N Lol mEmeonry woerdd fo AT
ST & I B Store conbent of A in ey
B LI g L Branch wancondssiomally
BS A i | Bramvch and sases retuermn adddyress
15 o E= oo Increment amnd skip §if TeTo
A FEOO Clear Al
CILLE T2HE iClear &
L T2ER Complememt A0
A E T Complemenn 5
L 8 2 T Chirculaie mght AT @anad &
L TR Chirculale left AL and £
I O Imcrerment AL
5F & T 1A Skip mext instraction if A peosibvee
5 A TS S5kip mexi instmecihon if AT megative
5F 4 T Skip nexst instrocticos b AT e
52 E T Skip mext inscructbdon 5 & ds b
HLT TR Halr oomputer
INPF &0 Impat chaaracter o AT
OLT <00 Oaipart character froem A
SKI1 200 Skip on input flag
SKO Fi1ioO Skip on ourpus flag
L] B inteErmapt oo
IO O Imtermapt off

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

44

Instructions

INSTRUCTIONS

BASIC COMPUTER
Hex Code

Symbol | =0 =1 Description
AND OXXX 8XXX AND memory word to AC
ADD IXXX 9XXX Add memory word to AC
LDA 2xxxX Axxx | Load AC from memory
STA 3xxx Bxxx | Store content of AC into memory
BUN 4xxx CXxx Branch unconditionally
BSA 5xxx Dxxx | Branch and save return address
ISZ 6xxx Exxx | Increment and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer
INP F800 Input character to AC
ouT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION FO80 Interrupt on
IOF F040 Interrupt off

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A The symbol designation is a three-letter word and represents an
abbreviation intended for programmers and users.

A The hexadecimal code is equal to the equivalent hexadecimal
number of the binary code used for the instruction.

A By using the hexadecimal equivalent we reduced the 16 bits of an
Instruction code to four digits with each hexadecimal digit being
equivalent to four bits.

A A memory-reference instruction has an address part of 12 bits.

A The address part is denoted by three x's and stand for the three
hexadecimal digits corresponding to the 12-bit address.

A The last bit of the instruction is designated by the symbol I.

A When | = 0, the last four bits of an instruction have a hexadecimal
digit equivalent from O to 6 since the last bitis O.

A When | = 1, the hexadecimal digit equivalent of the last four bits of
the instruction ranges from 8 to E since the last bit is I.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS
A Register-reference instructions use 16 bits to specify
an operation.

A The leftmost four bits are always 0111, which is
equivalent to hexadecimal 7.

A The other three hexadecimal digits give the binary
equivalent of the remaining 12 bits.

A The input-output instructions also use all 16 bits to
specify an operation.

A The last four bits are always 1111, equivalent to
hexadecimal F.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

Alnstruction Set Completeness:

A Before investigating the operations performed by the instructions,
let us discuss the type of instructions that must be included in a
computer.

A A computer should have a set of instructions so that the user
can construct machine language programs to evaluate any
function that is known to be computable.

A The set of instructions are said to be complete if the computer
Includes a sufficient number of instructions in each of the
following categories:

1. Arithmetic, logical, and shift instructions

2. Instructions for moving information to and from memory and
processor registers

3. Program control instructions together with instructions that
check status conditions

4. Input and output instructions

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A Arithmetic, logical, and shift instructions provide computational
capabilities for processing the type of data that the user may wish to
employ.

A The bulk of the binary information in a digital computer is stored in
memory, but all computations are done in processor registers.

A Therefore, the user must have the capability of moving
Information between these two units.

A Decision making capabilities are an important aspect of digital
computers.

A For example, two numbers can be compared, and if the first is
greater than the second, it may be necessary to proceed
differently than if the second is greater than the first.

A Program control instructions such as branch instructions are
used to change the sequence in which the program is executed.

A Input and output instructions are needed for communication
between the computer and the user.

A Programs and data must be transferred into memory and results
of computations must be transferred back to the user.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A The instructions listed in Table 5-2 constitute a minimum
set that provides all the capabilities mentioned above.

A There is one arithmetic instruction, ADD, and two related

Instructions, complement AC(CMA) and increment
AC(INC).

A With these three instructions we can add and subtract
binary numbers when negative numbers are in signed-
2's complement representation.

A The circulate instructions, CIR and CIL, can be used for

arithmetic shifts as well as any other type of shifts
desired.

A Multiplication and division can be performed using
addition, subtraction, and shifting.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

3. COI\/IPUTER INSTRUCTIONS

A There are three logic operations: AND, complement AC(CMA),
and clear AC(CLA).

A The AND and complement provide a NAND operation.

A It can be shown that with the NAND operation it is possible to
Implement all the other logic operations with two variables (listed
In Table 4-6).

A Moving information from memory to AC is accomplished with the
load AC(LDA) instruction.

A Storing information from AC into memory is done with the store
AC(STA) instruction.

A The branch instructions BUN, BSA, and ISZ, together with the
four skip instructions, provide capabilities for program control
and checking of status conditions.

A The input (INP) and output (OUT) instructions cause information to
be transferred between the computer and external devices.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

A
A

A
A

A

Do o P I

A

3. COI\/IPUTER INSTRUCTIONS

Although the set of instructions for the basic computer is complete, it is
not efficient because frequently used operations are not performed rapidly.

An efficient set of instructions will include such instructions as subtract,
multiply, OR, and exclusive-OR.

These operations must be programmed in the basic computer.

The programs are presented in Chap. 6 together with other
programming examples for the basic computer.

By using a limited number of instructions it is possible to show the
detailed logic design of the computer.

A more complete set of instructions would have made the design too
complex.

In this way we can demonstrate the basic principles of computer
organization and design without going into excessive complex details.

In Chap. 8 we present a complete list of computer instructions that are
included in most commercial computers.

The function of each instruction listed in Table 5-2 and the
microoperations needed for their execution are presented in Secs. 5-5
through 5-7.

We delay this discussion because we must first consider the control
unit and understand its internal organization.

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A The timing for all registers in the basic computer is
controlled by a master clock generator.

A The clock pulses are applied to all flip-flops and
registers in the system, including the flip-flops and
registers in the control unit.

A The clock pulses do not change the state of a register
unless the register is enabled by a control signal.

A The control signals are generated in the control unit
and provide control inputs for the multiplexers in the
common bus, control inputs in processor registers, and
microoperations for the accumulator.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A There are two major types of control organization:
a) hardwired control and b) microprogrammed control.

A In the hardwired organization, the control logic is implemented with
gates, flip-flops, decoders, and other digital circuits. It has the
advantage that it can be optimized to produce a fast mode of
operation.

A In the microprogrammed organization, the control information is
stored in a control memory. The control memory is programmed to
Initiate the required sequence of microoperations.

A A hardwired control, as the name implies, requires changes in the
wiring among the various components if the design has to be
modified or changed.

A In the microprogrammed control, any required changes or
modifications can be done by updating the microprogram in control
memory.

A A hardwired control for the basic computer is presented in this
section. A microprogrammed control unit for a similar computer is
presented in Chap. 7

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A The block diagram of the control unit is shown in Fig. 5-6.
A It consists of two decoders, a sequence counter, and anumber of control
logic gates.

A An instruction read from memory is placed in the instruction register
(IR). The position of this register in the common bus system is indicated in
Fig. 5-4.

A The instruction register is shown again in Fig. 5-6, where it is divided into
three parts: the | bit, the operation code, and bits 0 through 11.

A The operation code in bits 12 through 14 are decoded with a 3 x 8
decoder. The eight outputs of the decoder are designated by the symbols
DO through D7.

A The subscripted decimal number is equivalent to the binary value of the
corresponding operation code.

A Bit 15 of the instruction is transferred to a flip-flop designated by the
symbol I. Bits 0 through 11 are applied to the control logic gates.

A The 4-bit sequence counter can count in binary from O through 15.

A The outputs of the counter are decoded into 16 timing signals TO through
T15.

A The internal logic of the control gates will be derived later when we
consider the design of the computer in detail.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A The sequence counter SC can be incremented or
cleared synchronously (see the counter of Fig. 2-11).

A Most of the time, the counter is incremented to provide
the sequence of timing signals out ofthe4 x 16
decoder.

A Once in awhile, the counter is cleared to 0, causing the
next active timing signal to be TO.

A As an example, consider the case where SC is
Incremented to provide timing signals To, T1, T2,T3, and
T4 in sequence.

A At time T4, SC is cleared to 0 if decoder output D3 is
active.

A This is expressed symbolically by the statement

D3T4I SC «< 0

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

I

- Figare 5-6 Control unit of basic compuver.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design 57 Timing and control

Control unit of Basic Computer
Instruction register (IR)
L15 | 114 113 T I 11-0 | Other inputs
3x8 l
. decoder > :
. 76543210 .
: IIIII D :
. |_!E| ‘ s *1 Combinational .
: D7 . Control . Control
. logic signals
. > .
: LN :
10 -
: t tt :
: 15 14210 :
. 4x16 .
decoder .
4-bit <«—— Increment (INR)
. sequence |e——— Clear (CLR) :
: counter .
. (SC) <]<e— Clock :

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A The timing diagram of Fig. 5-7 shows the time relationship
of the control signals.

A The sequence counter SC responds to the positive
transition of the clock. Initially, the CLR input of SC is active.

A The first positive transition of the clock clean SC to 0, which
In turn activates the timing signal TO out of the decoder.

A TO is active during one clock cycle. The positive clock
transition labeled TO in the diagram will trigger only those
registers whose control inputs are connected to timing
signal TO.

A SC is incremented with every positive clock transition,
unless its CLR input is active.

A This produces the sequence of timing signals T0,T1,T2,T3,T4
and so on, as shown in the diagram. (Note the relationship
between the timing signal and its corresponding positive
clock transition). If SC is not cleared, the timing signals will
continue with T5,T6, upto T15 and back to TO.

Computer Organization A Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

To T\ T> T T To

cex | 41 1

T,

%tz T\ J

—

Figure 5-7 Example of control timing signals.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A The last three waveforms in Fig. 5-7 show how SC is
cleared when D3T4 = 1.

A Output D3 from the operation decoder becomes active
at the end of timing signal T2.

A When timing signal T4 becomes active, the output of the
AND gate that implements the control function D3T4
becomes active.

A This signal is applied to the CLR input of SC.

A On the next positive clock transition (the one marked T4
In the diagram) the counter is cleared to O.

A This causes the timing signal TO to become active
Instead of T5 that would have been active if SC were
Incremented instead of cleared.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A A memory read or write cycle will be initiated with the rising edge
of a timing signal.

A It will be assumed that a memory cycle time is less than the clock
cycle time.

A According to this assumption, a memory read or write cycle
Initiated by a timing signal will be completed by the time the next
clock goes through its positive transition.

A The clock transition will then be used to load the memory word
INto a register.

A This timing relationship is not valid in many computers because the
memory cycle time is usually longer than the processor clock cycle.

A In such a case it is necessary to provide wait cycles in the
processor until the memory word is available.

A To facilitate the presentation, we will assume that a wait period is
not necessary in the basic computer.

A To fully comprehend the operation of the computer, it is crucial
that one understands the timing relationship between the clock
transition and the timing signals.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

4. TIMING AND CONTROL

A For example, the register transfer statement

A T.. AR « PC

A specifies a transfer of the content of PC into AR if timing
signal To is active.

A TO is active during an entire clock cycle interval.

A During this time the content of PC is placed onto the bus
(with S2S51S0 = 010) and the LD (load) input of AR is
enabled.

A The actual transfer does not occur until the end of the clock
cycle when the clock goes through a positive transition.

A This same positive clock transition increments the
sequence counter SC from 0000 to 0001.

A The next clock cycle has T1 active and TO inactive.

A

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A A program residing in the memory unit of the computer consists of a
seguence of instructions.

A The program is executed in the computer by going through a
cycle for each instruction.

A Each instruction cycle in turn is subdivided into a sequence of
subcycles or phases.

A In the basic computer each instruction cycle consists of the
following phases:

A 1. Fetch an instruction from memory.
A 2. Decode the instruction.

A 3. Read the effective address from memory if the instruction has
an indirect address.

A 4. Execute the instruction.

A Upon the completion of step 4, the control goes back to step 1 to
fetch, decode, and execute the next instruction.

A This process continues indefinitely unless a HALT instruction is
encountered.

A

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A Fetch and Decode:

A Initially, the program counter PC is loaded with the address of the
first instruction in the program.

A The sequence counter SC is cleared to 0, providing a decoded
timing signal To.

A After each clock pulse, SC is incremented by one, so that the
timing signals go through asequence TO, T1, T2, and so on.

A The microoperations for the fetch and decode phases can be
specified by the following register transfer statements.

Ty, AR« PC
T: IR<MJ]AR], PC«PC +1
Ty: Dy, ..., D;«<Decode IR(12-14), AR «<IR(0-11), 1< IR(15)

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A Since only AR is connected to the address inputs of
memory, It is necessary to transfer the address from
PC to AR during the clock transition associated with
timing signal TO.

A The instruction read from memory is then placed in the
Instruction register IR with the clock transition
associated with timing signal T1.

A At the same time, PCis incremented by one to prepare
It for the address of the next instruction in the program.

A At time T2, the operation code in IR is decoded, the
Indirect bit is transferred to flip-flop I, and the address
part of the instruction is transferred to AR.

A Note that SC is incremented after each clock pulse to
produce the sequence TO0, T1l, and T2.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

D. INSTRUCTION CYCLE

L

F\-— — Memory unit - 7
- Address
= > oo
<
— AR 1 1
PN
D LD
- —t 2
rC A
L= >— ——
S IR — 5
+ FaN
LD

Clock

Common bus

Figure 5-8 Register transfers for the fetch phase.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A Figure 5-8 shows how the first two register transfer statements are
Implemented in the bus system.

A To provide the data path for the transfer of PC to AR we must
apply timing signal TO to achieve the following connection:

A 1. Place the content of PC onto the bus by making the bus
selection inputs S251S0 equal to 010.

A 2. Transfer the content of the bus to AR by enabling the LD input
of AR.

A The next clock transition initiates the transfer from PC to AR since
TO =1.In order to implement the second statement

T;: IR<M[AR], PC<«PC +1

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

It is necessary to use timing signal T1 to provide the following
Aconnections in the bus system.

1. Enable the read input of memory.

2. Place the content of memory onto the bus by making
ASZSlSO = 111.

3. Transfer the content of the bus to IR by enabling the LD
Ainput of IR.
A4. Increment PC by enabling the INR input of PC.

The next clock transition initiates the read and increment
Aoperations since T1 =1.

Figure 5-8 duplicates a portion of the bus system and shows
how TO and T1 are connected to the control inputs of the
Aregisters, the memory, and the bus selection inputs.

Multiple input OR gates are included in the diagram because
there are other control functions that will initiate similar
operations.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

ADetermine the Type of Instruction :

A The timing signal that is active after the decoding is T3.

A During time T3, the control unit determines the type of
Instruction that was just read from memory.

A The flowchart of Fig. 5-9 presents an initial configuration
for the instruction cycle and shows how the control
determines the instruction type after the decoding.

A The three possible instruction types available in the
basic computer are specified in Fig. 5-5.

A Decoder output D7 is equal to 1 if the operation code is
equal to binary 111.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A

A From Fig. 5-5we determine that if D7 =1, the instruction must be
a register-reference or input-output type.

A If D7 = 0, the operation code must be one of the other seven
values 000 through 110, specifying a memory-reference instruction.

A Control then inspects the value of the first bit of the instruction,
which is now available in flip-flop I.

A If D7 =0and | = 1, we have a memory reference instruction with an
indirect address.

A ltis then necessary to read the effective address from memory.

A The microoperation for the indirect address condition can be
symbolized by the register transfer statement

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

Start
SC «— 0

To

IR «— M [AR], PC «— PC + 1

5. INSTRUCTION CYCLE

T2

Decode operation code in /R (12 — 14)
AR «— IR (O —11), I «— IR (15)

(Register or I/0) =1

D

= 0 (Memory-reference)

~_

A

4 T3 A 4 T3
Execute Execute AR «— MI[AR]
input-output register-reference
instruction instruction
SC «— O SC «— O : 4

= 0 (register) (indirect) =1

= 0 (direct)

memory-reference

Execute

instruction
SC «— 0O

A 4

¥

Figure 5-9

Flowchart for instruction cycle (initial configuration).

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A Initially, AR holds the address part of the instruction.
A This address is used during the memory read operation.

A The word at the address given by AR is read from memory and placed on
the common bus.

A The LD input of AR is then enabled to receive the indirect address that
resided in the 12 |least significant bits of the memory word.

A The three instruction types are subdivided into four separate paths.

A The selected operation is activated with the clock transition associated
with timing signal T3.

A This can be symbolized as follows:

D;IT;. AR «M[AR]
D;I'Ty; Nothing
D;I'Ty. Execute a register-reference instruction
D,IT;: Execute an input-output mstruction

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A When a memory-reference instruction with 1= 0is encountered, itis not
necessary to do anything since the effective address is already in AR.

A However, the sequence counter SC must be incremented when
D76 3 = 1, so that the execution of the memory-reference instruction can
be continued with timing variable T4.

A A register-reference or input-output instruction can be executed with the
clock associated with timing signal T3.

A After the instruction is executed, SC is cleared to 0 and control returns to
the fetch phase with TO = 1.

A Note that the sequence counter SC is either incremented or cleared to 0
with every positive clock transition.

A We will adopt the convention that if SC is incremented, we will not write
the statement , SC <— SC + 1. put it will be implied that the control goes
to the next timing signal in sequence. When SC is to be cleared, we will
include the statement SC «0.

A The register transfers needed for the execution of the register-reference
instructions are presented in this section.

A The memory-reference instructions are explained in the next section.
A The input-output instructions are included in Sec. 5-7.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

ARegister-Reference Instructions

A Register-reference instructions are recognized by the control when
D7 = 1land | = 0.

A These instructions use bits 0 through 11 of the instruction code to
specify one of 12 instructions.

A These 12 bits are available in IR(0-11). They were also transferred to
AR during time T2.

A The control functions and microoperations for the register-
reference instructions are listed in Table 5-3.

A These instructions are executed with the clock transition
associated with timing variable T3.

A Each control function needs the Boolean relation D7I'T3, which we
designate for convenience by the symbolr.

A The control function is distinguished by one of the bits in IR(0-11).

A By assigning the symbol Bi to bit i of IR, all control functions can be
simply denoted by rBi.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A For example, the instruction CLA has the hexadecimal
code 7800 (see Table 5-2), which gives the binary
equivalent 0111 1000 0000 0000.

A The first bit is a zero and is equivalent to I'.

A The next three bits constitute the operation code and
are recognized from decoder output D7.

A Bit 11in IR is 1 and is recognized from B11.

A The control function that initiates the microoperation
for this instruction is D7I'T3B11 = rB11.

A The execution of a register-reference instruction is
completed attime T3.

A The sequence counter SC is cleared to 0 and the control
goes back to fetch the next instruction with timing
signal TO.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

A The first seven register-reference instructions perform clear,
complement, circular shift, and increment microoperations on the
AC or E registers.

A The next four instructions cause a skip of the next instruction in
sequence when a stated condition is satisfied.

A The skipping of the instruction is achieved by incrementing PC
once again (in addition, it is being incremented during the fetch
phase at time T1).

A The condition control statements must be recognized as part of the
control conditions.

A The AC is positive when the sign bit in AC(I5) = 0; it is negative
when AC(I5) = 1. The content of AC is zero (AC = 0) if all the flip-
flops of the register are zero.

A The HLT instruction clears a start-stop flip-flop S and stops the
sequence counter from counting.

A To restore the operation of the computer, the start-stop flip-flop
must be set manually.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

5. INSTRUCTION CYCLE

TABLE 5-3 Execution of Register-Reference Instructions

Y.
CLA 1By 11-
CLE 1B 10-
CMA TBg.
CME rB 8
CIR rB;:
CIL TBGZ
INC rB 5.
SPA rB,:
SNA 1By
SZA rB:
SZE rB;.
HLT rB()Z

D,I'T; = r (common to all register-reference instructions)
IR(i) = B; [bit in IR(0-11) that specifies the operation]

SC <0

AC <0
E<0
AC<AC
E<E
AC «shr AC, AC(15) < E, E< AC(0)
AC<«shl AC, AC(0)«<—E, E < AC(15)
AC<AC + 1
If (AC(15) = 0) then (PC < PC + 1)
If (AC(15) = 1) then (PC«<PC + 1)
If (AC = 0) then PC«<—PC + 1)
If (E = 0) then (PC «PC + 1)
S <0 (S is a start-stop flip-flop)

Clear SC

Clear AC
Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

Computer Organization

Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

AIn order to specify the microoperations needed for
the execution of each instruction, it is necessary that
the function that they are intended to perform be defined
precisely.

A Looking back to Table 5-2, where the instructions are
listed, we find that some instructions have an ambiguous
description.

A This is because the explanation of an instruction in
words is usually lengthy, and not enough space is
available in the table for such a lengthy explanation.

A We will now show that the function of the memory-
reference instructions can be defined precisely by
means of register transfer notation.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A Table 5-4 lists the seven memory-reference instructions.

A The decoded output Difori= 0,1, 2,3, 4,5, and 6 from the operation
decoder that belongs to each instruction is included in the table.

A The effective address of the instruction is in the address register AR
and was placed there during timing signal T2 when | = 0, or during
timing signal T3 when = 1.

A The execution of the memory-reference instructions starts with timing
signal T4.

A The symbolic description of each instruction is specified in the table in
terms of register transfer notation.

A The actual execution of the instruction in the bus system will require a
sequence of microoperations.

A This is because data stored in memory cannot be processed directly.

A The data must be read from memory to a register where they can be
operated on with logic circuits.

A We now explain the operation of each instruction and list the control
functions and microoperations needed for their execution.

A A flowchart that summarizes all the microoperations is presented at
the end of this section.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

TABLE 5-4 Memory-Reference Instructions

Operation
Symbol decoder Symbolic description
AND Dy AC<AC N\ MI[AR]
ADD D, AC<AC + M[AR], E«Cyy
LDA D, AC «M[AR]
STA D, M[AR] < AC
BUN D, PC<AR
BSA D; M[AR]«<PC, PC<AR +1
ISZ Ds M[AR]) < MIAR] + 1,

If M{AR] + 1 = 0 then PC<PC + 1

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A AND to AC

A This is an instruction that performs the AND logic operation on pairs
of bits in AC and the memory word specified by the effective address.

A Theresult of the operation is transferred to AC.
A The microoperations that execute this instruction are:

DI DR <—M]I[AR]
A D, AC<—ACADR, SC<«0

A The control function for this instruction uses the operation decoder
DO since this output of the decoder is active when the instruction has
an AND operation whose binary code value is 000.

A Two timing signals are needed to execute the instruction. The clock
transition associated with timing signal T4 transfers the operand from
memory into DR.

A The clock transition associated with the next timing signal T4 transfers
to AC the result of the AND logic operation between the contents of DR
and AC.

A The same clock transition clears SC to 0, transferring control to
timing signal TO to start a new instruction cycle.
A

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A ADD to AC

A This instruction adds the content of the memory word specified by
the effective address to the value of AC.

A The sum is transferred into AC and the output carry Cout, is
transferred to the E (extended accumulator) flip-flop.

A The microoperations needed to execute this instruction are

D,T; DR <« MIAR]
D1T5: AC « AC + DR, E « COl.ltl SC « 0

A The same two timing signals, T4 and T5, are used again but
with operation decoder D1 instead of DO, which was used for the
AND instruction.

A After the instruction is fetched from memory and decoded, only
one output of the operation decoder will be active, and that output
determines the sequence of microoperations that the control
follows during the execution of a memory-reference instruction.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A LDA: Loadto AC

A This instruction transfers the memory word specified by the effective
address to AC. The microoperations needed to execute this
instruction are

D,Ty: DR <« MJ[AR]
D,Ts: AC «< DR, SC «< 0

A Looking back at the bus system shown in Fig. 5-4 we note that there is
no direct path from the bus into AC.

A The adder and logic circuit receive information from DR which can be
transferred into AC.

A Therefore, it is necessary to read the memory word into DR first and
then transfer the content of DR into AC.

A The reason for not connecting the bus to the inputs of AC is the delay
encountered in the adder and logic circuit.

A It is assumed that the time it takes to read from memory and transfer
the word through the bus as well as the adder and logic circuit is more
than the time of one clock cycle.

A By not connecting the bus to the inputs of AC we can maintain one
clock cycle per microoperation.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A STA: Store AC

A This instruction stores the content of AC into the memory word
specified by the effective address.

A Since the output of AC is applied to the bus and the data input of
memory Is connected to the bus, we can execute this instruction
with one microoperation:

D;Ty: MIAR] « AC, SC «< 0

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A BUN: Branch Unconditionally

A This instruction transfers the program to the instruction
specified by the effective address.

A Remember that PC holds the address of the instruction to be read
from memory in the next instruction cycle.

A PC is incremented at time T1 to prepare it for the address of the
next instruction in the program sequence.

A The BUN instruction allows the programmer to specify an
Instruction out of sequence and we say that the program branches
(or jumps) unconditionally. The instruction is executed with one

microoperation:
DyT;. PC « AR, SC «< 0

A The effective address from AR is transferred through the common
bus to PC.

A Resetting SC to O transfers control to TO.

A The next instruction is then fetched and executed from the
memory address given by the new value in PC.

A

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A BSA: Branch and Save Return Address

A This instruction is useful for branching to a portion of the
program called a subroutine or procedure.

A When executed, the BSA instruction stores the adAdress of the
next instruction Iin sequence (which is available in PC) into a
memory location specified by the effective address.

A The effective address plus one is then transferred to PC to serve as
the address of the first instruction in the subroutine.

A This operation was specified in Table 5-4 with the following register
transfer:

M[AR] « PC, PC « AR +1

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A A numerical example that demonstrates how this instruction is used
with a subroutine is shown in Fig. 5-10.

A The BSA instruction is assumed to be in memory at address 20.

A The | bitis 0 and the address part of the instruction has the binary
equivalent of 135.

A After the fetch and decode phases, PC contains 21, which is the
address of the next instruction in the program (referred to as the
return address).

A AR holds the effective address 135.
A This is shown in part (a) of the figure.
A The BSA instruction performs the following numerical operation:

M[135] « 21, PC « 135+ 1 =136

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A The result of this operation is shown in part (b) of the figure.

A The return address 21 is stored in memory location 135 and control
continues with the subroutine program starting from address 136.

A The return to the original program (at address 21) is accomplished by
means of an indirect BUN instruction placed at the end of the subroutine.

A When this instruction is executed, control goes to the indirect phase to
read the effective address at location 135, where it finds the previously
saved address 21.

A When the BUN instruction is executed, the effective address 21 s
transferred to PC.

A The next instruction cycle finds PC with the value 21, so control continues
to execute the instruction at the return address.

A The BSA instruction performs the function usually referred to as a
subroutine call.

A The indirect BUN instruction at the end of the subroutine performs the
function referred to as a subroutine return.

A In most commercial computers, the return address associated with a
subroutine is stored in either a processor register or in a portion of memory
called a stack.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS
Figure 5-10 Example of BSA instruction execution.
Memory Memory

20 0 BSA 135 20 0 BSA 135

PC =21 Next instruction 21 Next instruction
=135 135 21
136 Subroutine PC =136 Subroutine
1 BUN 135 1 BUN 135
(a) Memory, PC, and AR attime T, (b) Memory and PC after execution

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A This is discussed in more detail in Sec. 8-7.

A It is not possible to perform the operation of the BSA instruction in
one clock cycle when we use the bus system of the basic
computer.

A To use the memory and the bus properly, the BSA instruction
must be executed with a sequence of two microoperations:

DT MIAR] < PC, AR « AR +1
D5T5: PC « AR, SC « 0

A Timing signal T4 initiates a memory write operation, places the
content of PC onto the bus, and enables the INR input of AR.

A The memory write operation is completed and AR is incremented
by the time the next clock transition occurs.

A The busis used at T5 to transfer the content of AR to PC.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A ISZ: Increment and Skip if Zero

A This instruction increments the word specified by the effective
address, and if the incremented value is equal to 0, PC is
iIncremented by 1.

A The programmer usually stores a negative number (in 2's
complement) in the memory word.

A As this negative number is repeatedly incremented by one, it
eventually reaches the value of zero.

A At that time PC is incremented by one in order to skip the next
Instruction in the program.

A Since it is not possible to increment a word inside the memory, it
IS necessary to read the word into DR, increment DR, and store the
word back into memory.

A This is done with the following sequence of microoperations:
D¢Ty: DR <« M[AR]

D¢Ts: DR «— DR +1
DsTs: M[AR] <« DR, if (DR =0) then (PC « PC + 1), SC « 0

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

A Control Flowchart

A A flowchart showing all microoperations for the execution of the seven
memory-reference instructions is shown in Fig. 5-11.

A The control functions are indicated on top of each box.

A The microoperations that are performed during time T4, T5, or T6 depend on
the operation code value.

A This is indicated in the flowchart by six different paths, one of which the
control takes after the instruction is decoded.

A The sequence counter SCis cleared to 0 with the last timing signal in each
case.

A This causes a transfer of control to timing signal TO to start the next
instruction cycle.

A Note that we need only seven timing signals to execute the longest
instruction (1S2).

A The computer can be designed with a 3-bit sequence counter.

A The reason for using a 4-bit counter for SCis to provide additional timing
signals for other instructions that are presented in the problems section.

Computer Organization Computer Architectures Lab

Basic Computer Organization & Design

6. MEMORY REFERENCE INSTRUCTIONS

Computer Organization Computer Architectures Lab

