
Introduction to
Artificial Intelligence

Text Book and reference

Artificial Intelligence: A Modern Approach

Stuart J. Russell and Peter Norvig

Introduction

• Intelligence:

The ability to acquire and apply

knowledge and skills.

• Knowledge:

The facts, information, and skills acquired

through experience or education

Awareness or familiarity gained by

experience of a fact or situation.

Introduction

• Wisdom:

The quality of having experience,
knowledge, and good judgment; the quality of
being wise.

The body of knowledge and experience
that develops within a specified society or
period.

The fact of being based on sensible or wise
thinking.

What is AI?

• Build intelligent artifacts vs. understanding
human behavior.

• Does it matter how I built it as long as it does
the job well?

• Should the system behave like a human or
behave intelligently?

Definitions of AI

Systems that think like humans

Decision making system,

Problem solving , learning

(Bellman,1978)

Systems that think rationally

Study of the computations that

make it possible to perceive,

reason and act (Winston, 1992)

Systems that act like humans

Study of how to make

computers do things at the

moment people are better (Rich

and Knight,1991)

Systems that act rationally

AI is concerned with intelligent

behaviour in artifacts.

(Nilson,1998)

if our system can be more
rational than humans in
some cases, why not?

.

Acting humanly: Turing Test

Acting humanly: Turing Test

• Natural language processing

• Knowledge Representation

• Automated reasoning.

• Machine Learning

• Computer vision, speech recognition,
finding data on the web, robotics, and
much more.

• 1960s "cognitive revolution": information-processing
psychology

• Requires scientific theories of internal activities of the
brain

• -- How to validate? Requires
1) Predicting and testing behavior of human subjects (top-
down)

or 2) Direct identification from neurological data (bottom-
up)

Both approaches (roughly, Cognitive Science and
Cognitive Neuroscience) are now distinct from AI

• Aristotle: what are correct arguments/thought processes?

• Several Greek schools developed various forms of logic:
notation and rules of derivation for thoughts; may or may
not have proceeded to the idea of mechanization

• Direct line through mathematics and philosophy to modern
AI

• Problems:
1. Not all intelligent behavior is mediated by logical deliberation

2. What is the purpose of thinking? What thoughts should I have?

• Rational behavior: doing the right thing.

• An agent is an entity that perceives and acts.
• Abstractly, an agent is a function from percept histories to actions:
•

[f: P*A]

• For any given class of environments and tasks, we seek the agent (or
class of agents) with the best performance.
 design best program for given machine resources

• The right thing: that which is expected to maximize goal
achievement, given the available information

• Doesn't necessarily involve thinking – e.g., blinking reflex – but
thinking should be in the service of rational action

Acting rationally: rational agent

• Rational behavior: Doing that was is expected
to maximize

one’s “utility function” in this world.

• An agent is an entity that perceives and acts.

• A rational agent acts rationally.

FOUNDATIONS of AI

FOUNDATIONS of AI
.

• Philosophy: Logic, methods of reasoning, mind as
physical system, foundations of learning, language,
rationality.

• Mathematics: Formal representation and proof,
algorithms, computation,(un)decidability,
(in)tractability, probability.

• Economics: utility, decision theory, rational
economic agents.

• Neuroscience: neurons as information processing
units. physical substrate for mental activity

• Psychology: how do people behave, perceive, process

information, represent knowledge. phenomena of

perception and motor control, experimental techniques.

• Computer engineering :building fast computers

• Control theory Cybernetics : design systems that
maximize an function over time

• Linguistics: knowledge representation, grammar

FOUNDATIONS of AI
.

Philosophy (428 B.C.-present)

• Can formal rules be used to draw valid
conclusions?

• How does the mind arise from a physical
brain?

• Where does knowledge come from?

• How does knowledge lead to action?

Can formal rules be used to draw valid conclusions?

• Aristotle(384-322 B.C.): informal system of syllogisms

for proper reasoning.

Try to formulate laws of rational part of the mind.

Believed in another part, intuitive reason.

• Ramon Lull (d. 1315) had the idea that useful reasoning

could actually be carried out by a mechanical artifact

• Thomas Hobbes (1588-1679) proposed that reasoning

was like numerical computation, that "we add and

subtract in our silent thoughts." The automation of

computation itself was already well under way

• Leonardo (La Vinci (l452-1519) designed but
did not build a mechanical calculator

The first known calculating machine was
constructed around 1623 by the German scientist
Wilhelm Schickard (1592-1635).

• Blaise Pascal (1623-1662), whereas the
Pascaline could only add and sub-tract. Some
speculated that machines might not just do
calculations but actually be able to think and act
on their own is more famous.

• Pascal wrote that "the arithmetical machine
produces effects which appear nearer to
thought than all the actions of animals."

• Gottfried Wilhelm Leibniz (1646-1716) built a
mechanical device intended to carry out
operations on concepts rather than numbers,
but its scope was rather limited.

How does knowledge lead to action?

• Rene Descartes (1596-1650) gave the first
clear discussion of the distinction between
mind and matter and of the problems that
arise.

• Descartes was a strong advocate of the power
of reasoning in understanding the world, a
philosophy now called rationalism.

Philosophy: Dualism vs. materialism

• Rene Descartes (1596-1650): dualism (part of
mind that is outside of nature)

• An alternative to dualism is materialism, which

holds that the brain's operation according to the

laws of physics constitutes the mind.

• Animals did not possess the dual quality.

• Materialism. Wilhelm Leibniz (1646-1716) built a
mechanical device to carry out mental
operations; could not produce interesting results.

Philosophy: Source of knowledge

• Empiricism (Francis Bacon 1561-1626)
– John Locke (1632-1704): “Nothing is in the

understanding which was not first in the senses”

– David Hume (1711-1776): Principle of induction:
General rules from repeated associations between
their elements
• Bertrand Russell (1872-1970): Logical positivism: All

knowledge can be characterized by logical theories
connected, ultimately, to observation sentences that
correspond to sensory inputs.

• the famous Vienna Circle, led by Rudolf Carnap

(1891-1970), developed the doctrine of logical

positivism. This doctrine holds that all knowledge

can be characterized by logical theories connected

to observation sentences that correspond to

sensory inputs.

• Camap's book The Logical Structure of the World

(1928) defined an explicit computational

procedure for extracting knowledge from

elementary experiences. It was probably the first

theory of mind as a computational process.

Mathematics

• What are the formal rules to draw valid

conclusions?

• What can be computed?

• How do we reason with uncertain information?

• Logic

– George Boole (1815-1864): formal language for making
logical inference

– Gottlob Frege (1848-1925): First-order logic (FOL)

– Computability

• David Hilbert (1862-1943): He presented a list of 23
problems that he correctly predicted.

• Kurt Godel (1906-1978): There exists an effective
procedure to prove any true statement in the FOL but that
FOL could not capture the principle of mathematical
induction needed to characterize the natural number.

• Alan Turing (1912-1954): which functions are computable?

–Church-Turing thesis: any computable function is
computable via a Turing machine

–No machine can tell in general whether a given program
will return an answer on a given input, or run forever

Mathematics

ALGORITHM: The first nontrivial algorithm is
thought to be Euclid's algorithm for computing
greatest common divisors.

Boole and others discussed algorithms for
logical deduction and efforts were under way
to formalize general mathematical reasoning
as logical deduction.

• In 1931, Godel showed that limits on deduc

tion, INCOMPLETENESS do exist.

• Alan Turing (1912-1954) try to characterize

exactly which functions are COMPUTABLE

• COMPUTABLE—capable of being

computed

• Although decidability and computability are

important to an understanding of computation.

• How can one recognize an intractable

problem? The theory of NP-completeness,

pioneered by Steven Cook (1971) and Richard

Karp (1972).

• Cook and Karp showed the existence of large

classes of canonical combinatorial search and

reasoning problems that are NP-complete

• Besides logic and computation, the third great
contribution of mathematics to AI is the
theory of probability

Mathematics…

• Probability
– Gerolamo Cardano (1501-1576): probability in gambling

– Pierre Fermat (1601-1665), Blaise Pascal (1623-1662),
James Bernoulli (1654-1705), Pierre Laplace (1749-1827):
new methods

– Bernoulli: subjective beliefs->updating

– Thomas Bayes (1702-1761): updating rule

Economics

• How should we make decisions so as to
maximize payoff?

• How should we do this when others may not
go along?

• How should we do this when the payoff may
be far in the future?

• Economics can be thought of as consisting of individual
agents maximizing their own economic well-being.

• Most people think of economics as being about money,
but economist will say that they are really studying how
people make choices that lead to preferred outcomes.

• The mathematical treatment of "preferred outcomes" or
utility was first formalized by Leon Walras
(pronounced "Valrasse") (1834-1910) and was
improved by Frank Ramsey (1931).

• Decision theory = probability theory + utility theory

• Game theory includes a rational agent that act in
a random fashion.

• Economist make rational decisions when payoffs

from actions are not immediate but instead result

from several actions taken in sequence. This topic

was pursued in the field of operation research.

• The work of Richard Gellman (l957) formalized

a class of sequential decision problems called

Marko decision processes.

Neuroscience

How do brains process information?

Can we build hardware as complex
as the brain?

• How complicated is our brain?

– a neuron, or nerve cell, is the basic information processing unit

– estimated to be on the order of 10 11 neurons in a human brain

– many more synapses (10 14) connecting these neurons

– cycle time: 10 -3 seconds (1 millisecond)

• How complex can we make computers?

– 106 or more transistors per CPU

– supercomputer: hundreds of CPUs, 10 9 bits of RAM

– cycle times: order of 10 - 8 seconds

• Conclusion

– YES: in the near future we can have computers with as many basic processing

elements as our brain, but with

• far fewer interconnections (wires or synapses) than the brain

• much faster updates than the brain

– but building hardware is very different from making a computer behave like a brain!

Psychology

• How do humans and animals think and act?

• In 1879, Wundt opened the first laboratory of
experimental psychology at the university of Leipzig.

• Wundt insisted on carefully controlled experiments in
which his workers would perform a perceptual task
while introspecting on their thought processes.

• The behaviorism movement, led by John Watson(1878-
1958), rejected any theory involving mental processes
on the grounds that introspection could not provide
reliable evidence.

Psychology

• Cognitive psychology

– Brain posesses and processes information

– Kenneth Craik 1943: knowledge-based agent:
• Stimulus -> representation

• Representation is manipulated to derive new representations

• These are translated back into actions

– Widely accepted now

– Anderson 1980: “A cognitive theory should be like a
computer program”

Computer engineering

• How can we build an efficient computer

Computer engineering

• Abacus (7000 years old)

• Pascaline: mechanical adder & substractor
(Pascal; mid 1600’s)
– Leibniz added multiplication, 1694

• Analytic Engine: universal computation; never
completed (ideas: addressable memory,
stored programs, conditional jumps)
– Charles Babbage (1792-1871), Ada Lovelace

Computer engineering…
[See Wired magazine late Fall 1999]

• Heath Robinson: digital electronic computer for
cracking codes
– Alan Turing 1940, England

• Z-3: first programmable computer
– Konrad Zuse 1941, Germany

• ABC: first electronic computer
– John Atanasoff 1940-42, US

• ENIAC: first general-purpose, electronic, digital
computer
– John Mauchy & John Eckert

ENIAC-Electronic Numerical Integrator
And Computer

Control theory and cybernetics

How can artifacts operate under their own
control?

• Ktesibios of Alexandria (c. 250 B.C.) built the first

self-controlling machine. Before this only living things

could modify their behavior in response to changes in

the environment.

• In the late 1940s, Wiener, along with Warren

McCulloch, Walter Pitts, and John von Neumann,

explored the new mathematical and computational

models of cognition.

• Wiener's book Cybernetics (1948) be-came a

bestseller and awoke the public to the possibility of

artificially intelligent machines.

• Modern control theory, especially the branch known as

stochastic optimal control, has as its goal the design of systems

that maximize an objective function over time.

• Why, they are AI and control theory two different fields,

despite the close connections among their founders?

• Calculus and matrix algebra, the tools of control

theory, lend themselves to systems that are

describable by fixed sets of continuous variables,

whereas AI was founded in part as a way to escape

from the these perceived limitations.

• The tools of logical inference and computation

allowed Al researchers to consider problems such as

language, vision, and planning that fell completely

outside the control theorist's purview.

Linguistics

How does language relate to thought?

How does language relate to thought

• Noam Chomsky pointed out that the

behaviorist theory did not address the notion of

creativity in language—it did not explain how

a child could understand and make up

sentences that he or she had never heard

before. Chomsky's theory—based on syntactic

models

• Modem linguistics and AI then, were "born" at

about the same time, and grew up together,

intersecting in a hybrid field called

computational linguistics or natural language

processing.

• Understanding language requires an

understanding of the subject matter and

context, not just an understanding of the

structure of sentences.

History of AI

History of AI

• The gestation of artificial intelligence (1943-

1955)

• The birth of artificial intelligence (1956)

• Early enthusiasm, great expectations (1952-1969)

• A dose of reality (1966-1973)

• Knowledge-based systems: The key to power?
(1969-1979)

• AI becomes an industry (1980—present)

• The return of neural networks (1986—present)

• AI becomes a science (1987–present)

• The emergence of intelligent agents (1995—
present)

The gestation of artificial intelligence
(1943-1955)

• The first AI work was done by Warren McCulloch
and Walter Pitts (1943)

• They drew on three socurces:

1. knowledge of the basic physiology and function
of neurons in the brain

2. A formal analysis of propositional logic

3. Turing theory of computation

• They proposed a model of artificial neurons in
which each neuron is characterized as being “on”
or “off”

• They showed that any computable function could be
computed by network of neurons and all the logical
connectives could be implemented by simple net
structures.

• Donald Hebb (1949) demostrated a simple updating
rule for modifying the connection strengths between
neurons. It is know as Hebbian learning.

• Alan Turing first articulated a complete vision of AI in
his 1950 article “Computing Machinery and
Intelligence”

The birth of artificial intelligence (1956)

• Dartmouth workshop (1955) we can see why it was
necessary for AI to become a separate field.

• First answer is that AI from the start embraced the idea
of duplicating human faculties like creativity, self-
improvement and language use.

• Second answer is methodology. AI is the only one
these fields that is clearly a branch of computer science
and AI is the only field to attempt to build machines
that will function autonomously in complex, changing
environment.

Early enthusiasm (1952-69)

• claim: computers can do X

• General Problem Solver, Newell & Simon

– Intentionally solved puzzles in a similar way as humans
do (order of subgoals, etc)

• Geometry Theorem Prover, Herbert Gelernter, 1959

• Arthur Samuel’s learning checkers program 1952.

Along the way, he disproved the idea that computers
can do only what they are told to: his program quickly
learned to play a better game than its creator.

• LISP, time sharing, Advice taker: John
McCarthy 1958

• Blocks world: vision, learning, NLP, planning

• Adalines [Widrow & Hoff 1960]

• Perceptron convergence theorem [Rosenblatt
1962]

A dose of reality (1966-74)
• Herbert Simon(1957): It is not may aim to surprise,

that there are machines that think, learn and
create.

• Simon over confident on early AI systems.

• Early systems turned out to off, when tried out on
more difficult problems.

– Early programs contained little or no knowledge
of their subject matter.

– Intractability of the problems

– Fundamental limitations on the basic structures
being used to generate intelligent behavior.

Knowledge-based systems (1969-79)

• DENDRAL(Buchanam et al., 1969): molecule
structure identification

– It was the first successful Knowledge Intensive system

• MYCIN (Feigenbaum, Buchanan, Dr. Edward)
:medical diagnosis

– 450 rules; knowledge from experts

– Better than junior doctors

– Certainty factors

• PROSPECTOR: For mineral exploration

• Domain knowledge in NLP

• Knowledge representation: logic, frames...

AI becomes an industry (1980-present)

• R1(McDermott,1982)

first successful commercial expert system

configured order for new computer systems at
DEC;

saved 40M$/year

• 1988: DEC had 40 expert systems

• 1981: Japanese announced 5th generation project, a
10 year plan to build intelligent computer running
Prolog.

Return of ANNs (1986-present)
• John Hopfield (1982) used techniques from statistical

mechanics to analyze the storage and optimization
properties of networks.

• David Rumelhart and Geoff Hinton continued the
study of neural net model of memory.

• Back-propagation learning algorithm first found
in1969 by Bryson and Ho. It is applied to many
learning problems caused great excitement.

AI becomes a science (1987–present)

• AI was founded the limitations of existing fields like
control theory and statistics, but now it is embracing
those fields.

• David McAllester(1988), stated as in the early period
of AI it seemed that new forms of symbolic
computation e.g. frames and semantic networks
made much of classical theory obsolete. This led to a
form of isolation in which AI became largely
seperated from the rest o f computer science.

• In terms of methodology, AI has use scientific
method. To be accepted, hypotheses must be
subjected to empirical experiments and results
must be analyzed statistically.

• E.g. speech recognition

• Hidden Markov Models: Two aspects are relevant

– Mathematical theory

– Training on large real speech data

• Neural Network: Improved methodology and
theoretical framework.

• As a result data mining technology has spawned.

• Bayesian network: It allow efficient representation
and reasoning uncertain knowledge.

• It dominates AI research on uncertain reasoning
and expert systems.

• It allows learning from experience and combines
the best classical and neural nets.

• Similar revolutions have occurred in robotics,
computer vision and knowledge representation.

The emergence of intelligent agents (1995-present)

• The work of Allen Newell, John Laird. and Paul

Rosenbloom on SOAR (Newell, 1990; Laird et al.,

1987) is the best-known example of a complete agent

architecture.

• One of the most important environments for intelligent

agents is the Internet.

• Al systems have become so common in Web-based

applications that the "-hot" suffix has entered everyday

language.

• AI technologies underlie many internet tools, such as

search engines, recommender systems and web site

construction system.

Applications of AI

• Autonomous planning and scheduling

Autonomous planning program to control the
scheduling of operations for a spacecraft.

• Game playing

IBM’s Deep Blue become the first program to
defeat the world champion Garry Kasparov in a chess
match.

• Autonomous control

The ALVINN computer vision system was trained
to steer a car to keep it following a lane.

Applications of AI
• Diagnosis

Medical diagnosis programs based on probabilistic
analysis have been able to perform at the level of an
expert physician in the area of medicine.

• Logistics planning

In 1991, U.S. forces deployed a Dynamic Analysis
and Replacement Tool, DART to do automated
logistics planning and scheduling for transportation.

Applications of AI

• Robotics

Many surgeons use robot assistant in microsurgery.

HipNav is a system that uses computer vision
techniques to create a three dimensional model of a
patient’s internal anatomy and then uses robotics
control to guide the insertion of a hip replacement
prosthesis.

• Language understanding and problem solving

PROVERB is a computer program that solves
crossword puzzles better than most human.

PEAS

• Example: Agent = taxi driver

– Performance measure:

– Environment:

– Actuators:

– Sensors:

PEAS

• Example: Agent = taxi driver

– Performance measure: Safe, fast, legal, comfortable trip,
maximize profits

– Environment: Roads, other traffic, pedestrians, customers

– Actuators: Steering wheel, accelerator, brake, signal, horn

– Sensors: Cameras, sonar, speedometer, GPS, odometer,
engine sensors, keyboard

PEAS

• Example: Agent = Medical diagnosis system

Performance measure:

Environment:

Actuators:

Sensors:

PEAS

• Example: Agent = Medical diagnosis system

Performance measure: Healthy patient, minimize costs, lawsuits

Environment: Patient, hospital, staff

Actuators: Screen display (questions, tests, diagnoses, treatments,
referrals)

Sensors: Keyboard (entry of symptoms, findings, patient's answers)

PEAS

• Example: Agent = Part-picking robot

• Performance measure:

• Environment:

• Actuators:

• Sensors:

PEAS
• Example: Agent = Part-picking robot

• Performance measure: Percentage of parts in correct bins

• Environment: Conveyor belt with parts, bins

• Actuators: Jointed arm and hand

• Sensors: Camera, joint angle sensors

PEAS

• Agent: Interactive English tutor

• Performance measure:

• Environment:

• Actuators:

• Sensors:

PEAS

• Agent: Interactive English tutor

• Performance measure: Maximize student's
score on test

• Environment: Set of students

• Actuators: Screen display (exercises,
suggestions, corrections)

• Sensors: Keyboard

Agent type Percepts Actions Goals Environment

Medical diagnosis
system

Symptoms,

findings,
patient's answers

Questions, tests,
treatments

Healthy patients,
minimize costs Patient, hospital

Satellite image
analysis system

Pixels of varying
intensity, color

Print a categorization of
scene

Correct
categorization

Images from
orbiting satellite

Part-picking robot Pixels of varying
intensity

Pick up parts and sort
into bins

Place parts in
correct bins

Conveyor belts
with parts

Refinery controller

Temperature,

pressure

readings

Open, close valves;
adjust temperature

Maximize purity,
yield, safety

Refinery

Interactive English
tutor Typed words

Print exercises,

suggestions,
corrections

Maximize

student's score
on test

Set of students

Examples of agents in different types of applications

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

chess with

clock

poker

back

gammon

taxi

driving

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

poker

back

gammon

taxi

driving

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker

back

gammon

taxi

driving

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

taxi

driving

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

partial stochastic sequential dynamic continuous single

image

analysis

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

partial stochastic sequential dynamic continuous single

image

analysis

fully determ. episodic semi continuous single

partpicking

robot

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

partial stochastic sequential dynamic continuous single

image

analysis

fully determ. episodic semi continuous single

partpicking

robot

partial stochastic episodic dynamic continuous single

refinery

controller

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

partial stochastic sequential dynamic continuous single

image

analysis

fully determ. episodic semi continuous single

partpicking

robot

partial stochastic episodic dynamic continuous single

refinery

controller

partial stochastic sequential dynamic continuous single

interact.

Eng. tutor

task

environm.

observable determ./

stochastic

episodic/

sequential

static/

dynamic

discrete/

continuous

agents

crossword

puzzle

fully determ. sequential static discrete single

chess with

clock

fully strategic sequential semi discrete multi

poker partial stochastic sequential static discrete multi

back

gammon

fully stochastic sequential static discrete multi

taxi

driving

partial stochastic sequential dynamic continuous multi

medical

diagnosis

partial stochastic sequential dynamic continuous single

image

analysis

fully determ. episodic semi continuous single

partpicking

robot

partial stochastic episodic dynamic continuous single

refinery

controller

partial stochastic sequential dynamic continuous single

interact.

Eng. tutor

partial stochastic sequential dynamic discrete multi

Rutgers CS440, Fall 2003

Properties of task environments
Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Deterministic

(stochastic)

Episodic

(sequential)

Static

(Dynamic)

Discrete

(Continuous)

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Episodic

(sequential)

Static

(Dynamic)

Discrete

(Continuous)

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Yes No Partly No

Episodic

(sequential)

Static

(Dynamic)

Discrete

(Continuous)

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Yes No Partly No

Episodic

(sequential)

No No No No

Static

(Dynamic)

Discrete

(Continuous)

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Yes No Partly No

Episodic

(sequential)

No No No No

Static

(Dynamic)

Yes Semi Semi No

Discrete

(Continuous)

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Yes No Partly No

Episodic

(sequential)

No No No No

Static

(Dynamic)

Yes Semi Semi No

Discrete

(Continuous)

Yes Yes Yes No

Single-agent

(multi-agent)

Rutgers CS440, Fall 2003

Properties of task environments
(cont’d)Solitaire Backgammon Internet

shopping

Taxi

Observable

(hidden)

Yes Yes No No

Deterministic

(stochastic)

Yes No Partly No

Episodic

(sequential)

No No No No

Static

(Dynamic)

Yes Semi Semi No

Discrete

(Continuous)

Yes Yes Yes No

Single-agent

(multi-agent)

Yes No No No

Intelligent Agents

What is an agent ?

 An agent is anything that perceiving its

environment through sensors and acting

upon that environment through actuators

 Example:

 Human is an agent

 A robot is also an agent with cameras and motors

 A thermostat detecting room temperature.

Intelligent Agents

Diagram of an agent

What AI should fill

Simple Terms

Percept

 Agent’s perceptual inputs at any given instant

Percept sequence

 Complete history of everything that the agent

has ever perceived.

Agent function & program

Agent’s behavior is mathematically

described by

 Agent function

 A function mapping any given percept

sequence to an action

Practically it is described by

 An agent program

 The real implementation

Vacuum-cleaner world

Perception: Clean or Dirty? where it is in?

Actions: Move left, Move right, suck, do

nothing

Vacuum-cleaner world

Program implements the agent

function tabulated in Fig. 2.3

Function Reflex-Vacuum-Agent([location,status])

return an action

If status = Dirty then return Suck

else if location = A then return Right

else if location = B then return left

Concept of Rationality

Rational agent

 One that does the right thing

 = every entry in the table for the agent

function is correct (rational).

What is correct?

 The actions that cause the agent to be

most successful

 So we need ways to measure success.

Performance measure

Performance measure

 An objective function that determines

 How the agent does successfully

 E.g., 90% or 30% ?

An agent, based on its percepts

 action sequence :

if desirable, it is said to be performing well.

 No universal performance measure for all

agents

Performance measure

A general rule:

 Design performance measures according to

 What one actually wants in the environment

 Rather than how one thinks the agent should

behave

E.g., in vacuum-cleaner world

 We want the floor clean, no matter how the

agent behave

 We don’t restrict how the agent behaves

Rationality

What is rational at any given time depends

on four things:

 The performance measure defining the criterion

of success

 The agent’s prior knowledge of the environment

 The actions that the agent can perform

 The agents’s percept sequence to date

Rational agent

For each possible percept sequence,

 an rational agent should select

 an action expected to maximize its performance

measure, given the evidence provided by the

percept sequence and whatever built-in knowledge

the agent has

E.g., an exam

 Maximize marks, based on

the questions on the paper & your knowledge

Rational agent

Performance measure

 Awards one point for each clean square

 at each time step, over 10000 time steps

Prior knowledge about the environment

 The geography of the environment

 Only two squares

 The effect of the actions

Actions that can perform

 Left, Right, Suck and NoOp

Percept sequences

 Where is the agent?

 Whether the location contains dirt?

Under this circumstance, the agent is
rational.

Example of a rational agent

An omniscient agent

 Knows the actual outcome of its actions in

advance

 No other possible outcomes

 However, impossible in real world

An example

 crossing a street but died of the fallen

cargo door from 33,000ft  irrational?

Omniscience

Based on the circumstance, it is rational.

As rationality maximizes

 Expected performance

Perfection maximizes

 Actual performance

Hence rational agents are not

omniscient.

Omniscience

Learning

Does a rational agent depend on only

current percept?

 No, the past percept sequence should also

be used

 This is called learning

 After experiencing an episode, the agent

 should adjust its behaviors to perform better

for the same job next time.

Autonomy

If an agent just relies on the prior knowledge of
its designer rather than its own percepts then
the agent lacks autonomy

A rational agent should be autonomous- it
should learn what it can to compensate for
partial or incorrect prior knowledge.

Sometimes, the environment may not be

the real world

 E.g., flight simulator, video games, Internet

 They are all artificial but very complex

environments

 Those agents working in these environments

are called

 Software agent (softbots)

 Because all parts of the agent are software

Software Agents

Task environments

Task environments are the problems

 While the rational agents are the solutions

Specifying the task environment

 PEAS description as fully as possible

 Performance

 Environment

 Actuators

 Sensors

In designing an agent, the first step must always be to

specify the task environment as fully as possible.

Use automated taxi driver as an example

Task environments

Performance measure

 How can we judge the automated driver?

 Which factors are considered?

 getting to the correct destination

 minimizing fuel consumption

 minimizing the trip time and/or cost

 minimizing the violations of traffic laws

 maximizing the safety and comfort, etc.

Environment

 A taxi must deal with a variety of roads

 Traffic lights, other vehicles, pedestrians,

stray animals, road works, police cars, etc.

 Interact with the customer

Task environments

Actuators (for outputs)

 Control over the accelerator, steering, gear
shifting and braking

 A display to communicate with the
customers

Sensors (for inputs)

 Detect other vehicles, road situations

 GPS (Global Positioning System) to know
where the taxi is

 Many more devices are necessary

Task environments

A sketch of automated taxi driver

Task environments

Properties of task environments

Fully observable vs. Partially observable

 If an agent’s sensors give it access to the

complete state of the environment at each

point in time then the environment is

effectively and fully observable

 if the sensors detect all aspects

 That are relevant to the choice of action

Example: Chess game

Partially observable

An environment might be Partially observable

because of noisy and inaccurate sensors or

because parts of the state are simply missing

from the sensor data.

Example:

 A local dirt sensor of the cleaner cannot tell

 Whether other squares are clean or not

 Automated Taxi driver

Deterministic vs. stochastic

 next state of the environment Completely

determined by the current state and the actions

executed by the agent, then the environment is

deterministic, otherwise, it is Stochastic.

 Strategic environment: deterministic except for

actions of other agents

Example: Chess game

-vaccume Cleaner and taxi driver are:

 Stochastic because of some unobservable aspects 

noise or unknown

Properties of task environments

Episodic vs. sequential

 An episode = agent’s single pair of perception & action

 The quality of the agent’s action does not depend on

other episodes

 Every episode is independent of each other

 Episodic environment is simpler

 The agent does not need to think ahead

Example: Classification

Sequential

 Current action may affect all future decisions

-Ex. Taxi driving and chess.

Properties of task environments

Static vs. dynamic

 A dynamic environment is always changing

over time

 E.g., Automated Taxi driver

 While static environment

 E.g., crossword puzzle

Semidynamic

 environment is not changed over time

but the agent’s performance score does.

Properties of task environments

Discrete vs. continuous

 If there are a limited number of distinct

states, clearly defined percepts and actions,

the environment is discrete

 E.g., Chess game

 Continuous: Taxi driving because the speed

and location of the taxi and the other vehicles

sweep through a range of continuous values.

Properties of task environments

Single agent VS. multiagent

 Playing a crossword puzzle – single agent

 Chess playing – two agents

 Competitive multiagent environment

 Chess playing

 Cooperative multiagent environment

 Automated taxi driver

 Avoiding collision

Properties of task environments

Properties of task environments

Known vs. unknown
This distinction refers not to the environment itslef but to

the agent’s (or designer’s) state of knowledge about

the environment.

-In known environment, the outcomes for all actions are

given. (example: solitaire card games).

- If the environment is unknown, the agent will have to

learn how it works in order to make good decisions.(

example: new video game).

Examples of task environments

Structure of agents

Agent = architecture + program

 Architecture = some sort of computing

device (sensors + actuators)

 (Agent) Program = some function that

implements the agent mapping = “?”

 Agent Program = Job of AI

Agent programs

Input for Agent Program

 Only the current percept

Input for Agent Function

 The entire percept sequence

 The agent must remember all of them

Implement the agent program as

 A look up table (agent function)

Agent programs

Skeleton design of an agent program

Agent Programs

P = the set of possible percepts

T= lifetime of the agent

 The total number of percepts it receives

Size of the look up table

Consider playing chess

 P =10, T=150

 Will require a table of at least 10150 entries

 

T

t

t
P

1

Agent programs

Despite of huge size, look up table does

what we want.

The key challenge of AI

 Find out how to write programs that, to the

extent possible, produce rational behavior

 From a small amount of code

 Rather than a large amount of table entries

 E.g., a five-line program of Newton’s Method

 V.s. huge tables of square roots, sine, cosine,

…

Types of agent programs

Four types

 Simple reflex agents

 Model-based reflex agents

 Goal-based agents

 Utility-based agents

Simple reflex agents

It uses just condition-action rules

 The rules are like the form “if … then …”

 efficient but have narrow range of applicability

 Because knowledge sometimes cannot be

stated explicitly

 Work only

 if the environment is fully observable

Simple reflex agents

Simple reflex agents (2)

A Simple Reflex Agent in Nature

percepts
(size, motion)

RULES:

(1) If small moving object,

then activate SNAP

(2) If large moving object,

then activate AVOID and inhibit SNAP

ELSE (not moving) then NOOP

Action: SNAP or AVOID or NOOP
needed for
completeness

Model-based Reflex Agents

For the world that is partially observable

 the agent has to keep track of an internal state

 That depends on the percept history

 Reflecting some of the unobserved aspects

 E.g., driving a car and changing lane

Requiring two types of knowledge

 How the world evolves independently of the

agent

 How the agent’s actions affect the world

Example Table Agent

With Internal State

Saw an object ahead,
and turned right, and
it’s now clear ahead

Go straight

Saw an object Ahead,
turned right, and object
ahead again

Halt

See no objects ahead Go straight

See an object ahead Turn randomly

IF THEN

Example Reflex Agent With Internal State:

Wall-Following

Actions: left, right, straight, open-door

Rules:

1. If open(left) & open(right) and open(straight) then

choose randomly between right and left

2. If wall(left) and open(right) and open(straight) then straight

3. If wall(right) and open(left) and open(straight) then straight

4. If wall(right) and open(left) and wall(straight) then left

5. If wall(left) and open(right) and wall(straight) then right

6. If wall(left) and door(right) and wall(straight) then open-door

7. If wall(right) and wall(left) and open(straight) then straight.

8. (Default) Move randomly

Model-based Reflex Agents

The agent is with memory

Model-based Reflex Agents

Goal-based agents

Current state of the environment is

always not enough

The goal is another issue to achieve

 Judgment of rationality / correctness

Actions chosen  goals, based on

 the current state

 the current percept

Goal-based agents

Conclusion

 Goal-based agents are less efficient

 but more flexible

 Agent  Different goals  different tasks

 Search and planning

 two other sub-fields in AI

 to find out the action sequences to achieve its goal

Goal-based agents

Utility-based agents

Goals alone are not enough

 to generate high-quality behavior

 E.g. meals in Canteen, good or not ?

Many action sequences  the goals

 some are better and some worse

 If goal means success,

 then utility means the degree of success

(how successful it is)

Utility-based agents (4)

Utility-based agents

it is said state A has higher utility

 If state A is more preferred than others

Utility is therefore a function

 that maps a state onto a real number

 the degree of success

Utility-based agents (3)

Utility has several advantages:

 When there are conflicting goals,

 Only some of the goals but not all can be

achieved

 utility describes the appropriate trade-off

 When there are several goals

 None of them are achieved certainly

 utility provides a way for the decision-making

Learning Agents

After an agent is programmed, can it
work immediately?

 No, it still need teaching

In AI,

 Once an agent is done

 We teach it by giving it a set of examples

 Test it by using another set of examples

We then say the agent learns

 A learning agent

Learning Agents

Four conceptual components

 Learning element

 Making improvement

 Performance element

 Selecting external actions

 Critic

 Tells the Learning element how well the agent is doing with

respect to fixed performance standard.

(Feedback from user or examples, good or not?)

 Problem generator

 Suggest actions that will lead to new and informative

experiences.

Learning Agents

Solving Problems by Searching

Reflex agent is simple

 base their actions on

 a direct mapping from states to actions

 but cannot work well in environments

 which this mapping would be too large to store

 and would take too long to learn

Hence, goal-based agent is used

Problem-solving agent

Problem-solving agent

 A kind of goal-based agent

 It solves problem by

 finding sequences of actions that lead to

desirable states (goals)

 To solve a problem,

 the first step is the goal formulation, based on

the current situation

Goal formulation
The goal is formulated

 as a set of states, in which the goal is satisfied

Reaching from initial state  goal state

 Actions are required

Goal formulation, based on the current situation and the
agent’s performance measure, is the first step in problem
solving.

Actions are the operators

 causing transitions between states

 Actions should be abstract enough at a certain degree,
instead of very detailed

 E.g., turn left VS turn left 30 degree, etc.

Problem formulation

The process of deciding

 what actions and states to consider, given

a goal

E.g., driving Amman  Zarqa

 in-between states and actions defined

 States: Some places in Amman & Zarqa

 Actions: Turn left, Turn right, go straight,

accelerate & brake, etc.

Search
Because there are many ways to achieve

the same goal

 Those ways are together expressed as a tree

 Multiple options of unknown value at a point,

 the agent can examine different possible

sequences of actions, and choose the best

 This process of looking for such a sequence

is called search

 A search algorithm takes a problem as input

and returns a solution in the form of an

action sequence.

Search algorithm

Defined as

 taking a problem

 and returns a solution

Once a solution is found

 the agent follows the solution

 and carries out the list of actions –
execution phase

Design of an agent

 “Formulate, search, execute”

Well-defined problems and solutions
A problem is defined by 4 components:
 The initial state

 that the agent starts in

 The set of possible actions

Transition model: description of what each action does.

(successor functions): refer to any state reachable from
given state by a single action

Initial state, actions and Transition model define the
state space
 the set of all states reachable from the initial state by any

sequence of actions.

A path in the state space:
 any sequence of states connected by a sequence of actions.

Well-defined problems and solutions

The goal test

 Applied to the current state to test

 if the agent is in its goal

-Sometimes there is an explicit set of possible goal states.

(example: in Amman).

-Sometimes the goal is described by the properties

 instead of stating explicitly the set of states

Example: Chess

 the agent wins if it can capture the KING of the opponent on

next move (checkmate).

 no matter what the opponent does

Well-defined problems and solutions

A path cost function,

 assigns a numeric cost to each path

 = performance measure

 denoted by g

 to distinguish the best path from others

Usually the path cost is

 the sum of the step costs of the individual
actions (in the action list)

Well-defined problems and solutions
Together a problem is defined by
 Initial state

 Actions

 Successor function

 Goal test

 Path cost function

The solution of a problem is then
 a path from the initial state to a state satisfying the goal

test

Optimal solution
 the solution with lowest path cost among all solutions

Formulating problems

Besides the four components for problem

formulation

 anything else?

Abstraction

 the process to take out the irrelevant information

 leave the most essential parts to the description of the

states

(Remove detail from representation)

 Conclusion: Only the most important parts that are

contributing to searching are used

Example

From our Example

1. Formulate Goal

- Be In Amman

2. Formulate Problem

- States : Cities

- actions : Drive Between Cities

3. Find Solution

- Sequence of Cities : ajlun – Jarash - Amman

Our Example

1. Problem : To Go from Ajlun to Amman

2. Initial State : Ajlun

3. Operator : Go from One City To another .

4. State Space : {Jarash , Salat , irbed,……..}

5. Goal Test : are the agent in Amman.

6. Path Cost Function : Get The Cost From The Map.

7. Solution :{ {Aj  Ja  Ir  Ma  Za  Am} , {Aj Ir  Ma  Za  Am} …. {Aj  Ja  Am} }

8. State Set Space : {Ajlun  Jarash  Amman}

Example: Romania

Example problems

Toy problems

 those intended to illustrate or exercise

various problem-solving methods

 E.g., puzzle, chess, etc.

Real-world problems

 tend to be more difficult and whose

solutions people actually care about

 E.g., Design, planning, etc.

Toy problems
Example: vacuum world

Toy problems
Example: vacuum world

Number of states: 8

Initial state: Any

Number of actions: 4

 left, right, suck,

noOp

Goal: clean up all dirt

 Goal states: {7, 8}

Path Cost:

 Each step costs 1

The 8-puzzle

The 8-puzzle
States:
 a state description specifies the location of each of

the eight tiles and blank in one of the nine squares

Initial State:
 Any state in state space

Successor function:
 the blank moves Left, Right, Up, or Down

Goal test:
 current state matches the goal configuration

Path cost:
 each step costs 1, so the path cost is just the length

of the path

The 8-queens

There are two ways to formulate the

problem

All of them have the common followings:

 Goal test: 8 queens on board, not attacking

to each other

The 8-queens

(1) Incremental formulation

 involves operators that augment the state

description starting from an empty state

 Each action adds a queen to the state

 States:

 any arrangement of 0 to 8 queens on board

 Successor function:

 add a queen to any empty square

The 8-queens

(2) Complete-state formulation

 starts with all 8 queens on the board

 move the queens individually around

 States:

 any arrangement of 8 queens, one per column in

the leftmost columns

 Operators: move an attacked queen to a row,

not attacked by any other

The 8-queens
Conclusion:

 the right formulation makes a big difference

to the size of the search space

Examples

Route finding problem

Touring problem

VLSI layout

Robot navigation

Automatic assembly sequence

Protein design

Internet searching

3.3 Searching for solutions

3.3 Searching for solutions
Finding out a solution is done by

 searching through the state space

All problems are transformed

 as a search tree

 generated by the initial state and

successor function

Search tree
Initial state

 The root of the search tree is a search node

Expanding

 applying successor function to the current state

 thereby generating a new set of states

leaf nodes

 the states having no successors

Fringe : Set of search nodes that have not been
expanded yet.

Refer to next figure

Tree search example

Tree search example

Search tree
The essence of searching

 in case the first choice is not correct

 choosing one option and keep others for later
inspection

Hence we have the search strategy

 which determines the choice of which state to
expand

 good choice  fewer work  faster

Important:

 state space ≠ search tree

Search tree
A node is having five components:

 STATE: which state it is in the state space

 PARENT-NODE: from which node it is generated

 ACTION: which action applied to its parent-node

to generate it

 PATH-COST: the cost, g(n), from initial state to

the node n itself

 DEPTH: number of steps along the path from the

initial state

Search tree

Informal Description of Genearl search Algorithm

Search tree

Measuring problem-solving performance

The evaluation of a search strategy

 Completeness:
 is the strategy guaranteed to find a solution when

there is one?

 Optimality:
 does the strategy find the highest-quality solution

when there are several different solutions?

 Time complexity:
 how long does it take to find a solution?

 Space complexity:
 how much memory is needed to perform the search?

Measuring problem-solving performance

In AI, complexity is expressed in

 b, branching factor, maximum number of
successors of any node

 d, the depth of the shallowest goal node.

(depth of the least-cost solution)

 m, the maximum length of any path in the state
space

Time and Space is measured in

 number of nodes generated during the search

 maximum number of nodes stored in memory

For effectiveness of a search algorithm

 we can just consider the total cost

 The total cost = path cost (g) of the solution
found + search cost
 search cost = time necessary to find the solution

Tradeoff:

 (long time, optimal solution with least g)

 vs. (shorter time, solution with slightly larger
path cost g)

Measuring problem-solving performance

3.4 Uninformed search strategies

3.4 Uninformed search strategies

Uninformed search

 no information about the number of steps

 or the path cost from the current state to
the goal

 search the state space blindly

Informed search, or heuristic search

 a cleverer strategy that searches toward
the goal,

 based on the information from the current
state so far

Uninformed search strategies

Breadth-first search

 Uniform cost search

Depth-first search

 Depth-limited search

 Iterative deepening search

Bidirectional search

Breadth-first search

The root node is expanded first (FIFO)

All the nodes generated by the root

node are then expanded

And then their successors and so on

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

2 3

4 5

1

6 7

FRINGE = (1)

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (2, 3)2 3

4 5

1

6 7

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (3, 4, 5)2 3

4 5

1

6 7

Breadth-First Strategy

New nodes are inserted at the end of FRINGE

FRINGE = (4, 5, 6, 7)2 3

4 5

1

6 7

Breadth-first search (Analysis)

Breadth-first search

 Complete – find the solution eventually

 Optimal, if step cost is 1

The disadvantage

 if the branching factor of a node is large,

 for even small instances (e.g., chess)

 the space complexity and the time complexity

are enormous

Properties of breadth-first search

Complete? Yes (if b is finite)

Time? 1+b+b2+b3+… +bd = b(bd-1) = O(bd+1)

Space? O(bd+1) (keeps every node in memory)

Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

Breadth-first search (Analysis)
assuming 10000 nodes can be processed per second, each with

1000 bytes of storage

Uniform cost search

Breadth-first finds the shallowest goal state

 but not necessarily be the least-cost solution

 work only if all step costs are equal

Uniform cost search

 modifies breadth-first strategy

 by always expanding the lowest-cost node

 The lowest-cost node is measured by the path

cost g(n)

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

 fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

Complete? Yes, if step cost ≥ ε

Time? numbr of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε)) where C* is the cost of the
optimal solution

Space? Number of nodes with g ≤ cost of optimal
solution, O(bceiling(C*/ ε))

Optimal? Yes – nodes expanded in increasing order of
g(n)

let

C* be the cost of optimal solution.

ε is possitive constant (every action cost)

Depth-first search

Always expands one of the nodes at the

deepest level of the tree

Only when the search hits a dead end

 goes back and expands nodes at shallower levels

 Dead end  leaf nodes but not the goal

Backtracking search

 only one successor is generated on expansion

 rather than all successors

 fewer memory

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search
Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search

Expand deepest unexpanded node

Implementation:

 fringe = LIFO queue, i.e., put successors at front



Depth-first search
S

A D

B D A E

C E E B B F

D F B F C E A C G

G C G F

14

19 19 17

17 15 15 13

G 25

11

Depth-first search (Analysis)

Not complete

 because a path may be infinite or looping

 then the path will never fail and go back try

another option

Not optimal

 it doesn't guarantee the best solution

It overcomes

 the time and space complexities

Properties of depth-first search

Complete? No: fails in infinite-depth spaces,
spaces with loops
 Modify to avoid repeated states along path
  complete in finite spaces

Time? O(bm): terrible if m is much larger than
d
 but if solutions are dense, may be much faster

than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No

Depth-Limited Strategy

Depth-first with depth cutoff k (maximal
depth below which nodes are not
expanded)

Three possible outcomes:

 Solution

 Failure (no solution)

 Cutoff (no solution within cutoff)

Depth-limited search

It is depth-first search

 with a predefined maximum depth

 However, it is usually not easy to define
the suitable maximum depth

 too small  no solution can be found

 too large  the same problems are
suffered from

Anyway the search is

 complete

 but still not optimal

Depth-limited search
S

A D

B D A E

C E E B B F

D F B F C E A C G

G C G F

14

19 19 17

17 15 15 13

G 25

11

depth = 3

3

6

Iterative deepening search

No choosing of the best depth limit

It tries all possible depth limits:

 first 0, then 1, 2, and so on

 combines the benefits of depth-first and

breadth-first search

Iterative deepening search

Iterative deepening search

(Analysis)

optimal

complete

Time and space complexities

 reasonable

suitable for the problem

 having a large search space

 and the depth of the solution is not known

Properties of iterative deepening

search

Complete? Yes

Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd

= O(bd)

Space? O(bd)

Optimal? Yes, if step cost = 1

Bidirectional search

Run two simultaneous searches

 one forward from the initial state another
backward from the goal

 stop when the two searches meet

However, computing backward is difficult

 A huge amount of goal states

 at the goal state, which actions are used to
compute it?

 can the actions be reversible to computer its
predecessors?

Bidirectional Strategy

2 fringe queues: FRINGE1 and FRINGE2

Time and space complexity = O(bd/2) << O(bd)

Bidirectional searchS

A D

B D A E

C E E B B F

D F B F C E A C G

G C G F

14

19 19 17

17 15 15 13

G 25

11

Forward

Backwards

Comparing search strategies

Baye’s Theorem

