Agile Development

Extreme Programming

* |tis the most widely used approach for agile software development.

l. XPValues:
. Beck defines a set of five values:

» Communication

> Simplicity
> Feedback
» Courage

> Respect

/. The XP Process

Extreme Programming uses object oriented approach
Four framewaork activities:

1 Planning:
> |t begins with listening

» [reation of a set of stories
> \lalue to the story
> The XP team order the stories that will be in one of the three ways

.. Implemented immediately
. Stories with highest value implemented first

Il. Riskiest stories will be implemented first
> XP team computes project velocity

> |t can be used to schedule and estimate.

1 Design
> XP design follows KIS (Keep it simple) principle.

> Simple design X complex presentation

> CRC cards identify and organize the object oriented classes that are relevant to the current software
increment.

> Spike solution-prototype

> Refactoring: it is a process of changing software system in such a way that it does not alter the
external behavior of the code yet improves the internal structure.

> Design occurs both before and after code commences.

I Coding
» Mter designing it undergoes unit testing.

> Pair Programming.

I Testing
> Unit testing

> Regression testing

> Integration testing
> \lalidation testing
> Acceptance testing

3. Industrial XP
Joshua Kerievsky defines this Industrial XP
It is imbued with XP's minimalist, customer-centric and test-driven spirit.

. Readiness assessment:

» Anappropriate_development environment

» Proper set of stakeholders

» [ontinuous improvement

» The organizational will support the new values of an agile team

» Broader project community.
. Project community

. Project chartering

V. Test-driven management
. Retrospectives

Vl. Continuous learning

4,

The XP debate

Requirement volatility

Lonflicting customer needs

Requirements are expressed informally

| ack of formal design

Uther agile process models

Adaptive software development(ASD)

SCrum

Dynamic systems development methods(DSDM)
Crystal

Feature Driven Development(FDD)

Lean software development(LSD)

Agile Modeling(AM)

Agile unified process(ALP)

Product Backlog

e g o l'l E.

Stories

Create adcount
Hook reservation
Print repont
Login

Search

——

Sprint Backlog

Lreate Parmut

‘ e

Cancel Parmit

Daily Scrum

2 weeks

Potentially Shippable
Product Increment

THANK YOU

Quality of Design

SOFTWARE QUALITY GUIDELINES
AND ATTRIBUTES

IMPLEMENT ALL EXPLICIT REQUIREMENTS
ACCOMMODATE ALL THE IMPLICIT REQUIREMENTS
READABLE, UNDERSTANDABLE GUIDE TO CODE AND TEST

COMPLETE PICTURE OF THE SOFTWARE- ADDRESSING DATA ,
FUNCTIONAL AND BEHAVIOR AL DOMAINS.

QUALITY GUIDELINES:

ARCHITECTURE THAT
HAS BEEN CREATED USING RECOGNIZABLE ARCHITECTURAL STYLES OR PATTERNS
IS COMPOSED OF COMPONENTS THAT EXHIBIT GOOD DESIGN CHARACTERISTICS

CAN BE IMPLEMENTED IN AN EVOLUTIONARY FASHION THEREBY FACILITATING
IMPLEMENTATION AND TESTING

MODULES

DISTINCT REPRESENTATIONS OF DATA, ARCHITECTURE, INTERFACES AND COMPONENTS.
LEAD TO DATA STRUCTURES THAT ARE APPROPRIATE.

INDEPENDENT FUNCTIONAL CHARACTERISTICS.

LEAD TO INTERF ACES-REDUCE THE COMPLEXITY OF CONNECTIONS.

DERIVED USING A REPEATABLE METHOD

REPRESENTED USING & NOTATION.

QUALITY ATTRIBUTES

FUNCTIONALITY

USABILITY

RELIABILITY

PERFORMANCE

SUPPORTABILITY

Design Concepts

WHAT CRITERIA CAN BE USED TO PARTITION SOFTWARE INTO INDIVIDUAL
COMPONENTS?

HOW IS FUNCTION OR DAT& STRUCTURE DETAIL SEPARATED FROM A& CONCEPTUAL
REPRESENTATION OF THE SOFTWARE?

WHAT UNIFORM CRITERIA DEFINE THE TECHNICAL QUALITY OF & SOFTWARE DESIGN?

ABSTRACTION:
LOW-LEVEL
HIGH-LEVEL
DAT X

ARCHITECTURE

STRUCTUR AL PROPERTIES
EXTRA-FUNCTIONAL PROPERTIES
FAMILIES OF RELATED SYSTEMS

PATTERNS
WHETHER THE PATTERN IS APPLICABLE TO THE CURRENT WORK
WHETHER THE PATTERN CAN BE REUSED

WHETHER THE PATTERN CAN BE SERVED AS GUIDE FOR DEVELOPING SIMILAR, BUT
FUNCTIONALLY OR STRUCTURALLY DIFFERENT PATTERN

SEPARATION OF CONCERNS

f Total software cost

MODULARITY Cost to integrate

Region of minimum
cost

S
a£=
Q
|
O
»
o
v

Cost/module

Number of modules

INFORMATION HIDING

FUNCTIONAL INDEPENDENCE: COHESION AND COUPLING

REFINEMENT: ELABORATION

ASPECTS

REFACTORING: REORGANIZATION TECHNIQUE

00 DESIGN CONCEPTS

DESIGN CLASSES:

USER INTERFACE CLASSES
BUSINESS DOMAIN CLASSES
PROCESS CLASSES
PERSISTENT CLASSES
SYSTEM CLASSES

CHARACTERISTICS:

COMPLETE AND SUFFICIENT

PRIMITIVENESS

HIGH COHESION

LOW COUPLING

THANK YOU

Effort
Risk
Configuration

vV v Vv

O

Effort

Software Project Scheduling is an action that distributes the estimated effort

Early stages- Macroscopic schedule

Two different perspectives of viewing the schedule

Set by Computer-based system.

Set by Software Engineering organization

Effort validation:

Defined number of people

Ex: 3 engineers three person-days and 7 concurrent tasks 0.5 person-days

The Relationship between effort
and delivery time

Relation between effort & delivery time:
The PNR Curve

Ea=m (tg?/ta?d)

.
Impossible ' Eg = effort in person-months
region : tg = nominal delivery time for schedule

Ly = optimal development time (in terms of cost)
L4 = actual delivery time desired

e

development time

Effort distribution

40-20-40

» 40-front end

» 40-back end

> 20- coding

» Project planning-2to 3

» Customer communication and requirement analysis- 10 to 25
< Software design- 20 to 25

» Code- 151020

< Testing- 30 to 40

Risk Mitigation, Monitoring and
Management

vV Vv

V V V V

YV V V VY

Strategy-for dealing risk

3 issues: risk avoidance , risk monitoring and risk management and
contingency plan

Risk avoidance can be achieved by RISK MITIGATION.
Meet the current staff to determine turnover.
Mitigate those causes.

Assume turnover will develop technigques to ensure continuity when
people leave.

Information is widely dispersed.

Define work products and establish mechanisms.
Conduct peer review.

Assign a backup staff member.

RISK MONITORING

Manager monitors the factors
Project pressures

>

>

» Interpersonal relationships

» Potential problems with compensation and benefits
>

Availability of jobs
RISK MANAGEMENT AND CONTIGENCY

» Enabling new comers

» Knowledge transter mode

Software Configuration
Management(SCM)

>

vV V V V V¥V VvV V¥V

The items that comprise all information produced as a part of software process are
collectively called a SOFTWARE CONFIGURATION(SC).

Work progress- SC ITEMS(SCI).
Project manager

Elements in SCM system
Component elements
Process elements
Construction elements

Human elements

Baselines

Project database

Approved

Software Formal
— engineering —F@ technical —*@
tasks reviews J%
@

Sh::r red

Exir-:::lclecl /-)

‘\.

c:on’rmls

BASELINES:

System Specification
Software Requirements
Design Specification
Source Code

Test Plans/Procedures/Data

Software Configuration Items

Data model

=
A Design specification /

data design
architectural design

module design
interface design \

Component N

interface description
h 4 . ..
algorithm description

Test specification PDL

test plan
test procedure
test cases

Source code

SCM Repository

Repository Content

use cases

business nules
business functions
organuation structure

analy sis model
scenario-based diagrans
fow-orented diagrams

source code
object code
system buidd nistructons

class-based diagrams

behavioral giagram s
desgn model

achit ectura diagrams

interface dagrams

component-eveldagrams
technical metlrncs tes! cases

‘ tes! scripts

test results
qualty metrics

Project
Management

project estimates Content
project schedule y,
SCM requrements
change requests
change reports
SQA requrements
project reporis/auda reports
project metrics

mformation archtecture
Consiruction

Content

Business
Content

Model
Content

Project Plan

SCM/ SCQA Pean

System Spec
Requirement s Spec
Design Document

Test Pian and Procedure
Support documents
Usar manual

These slides are designed to accompany Soffware Engineering. A FPractitioner's Approach, 8/
(McGraw-Hill 2014). Slides copyright 2014 by Roger Pressman.

SCM Features

» Versioning

» Dependency tracking and change management
» Requirement tracing

» Configuration management

» Audit frails

SCM Process

Software
Vm.n

configuration auditing

Layers of
SCM Process

version control

change control

identification

@)

vV V V

ldentification Of objects in the software configuration

Base objects
Aggregate objects

Version Control

A project database
Version management capability
Make a facility

System modelling approach
Template

Construction rules
Verification rules

Change confirol

Need for e 15 recognized
User submits change regquest
Developer evaluates
Change Feport 15 senerated
Change control authonty decides
Request 15 queried forAction, ECO generated Chang quest denied

Indaviduals ascgned confignmwaton objects User 1 annforaned

Configuration objects(items) "checked out™
Change mnade
Change reviewed (audited)
Confimuration items that have been chansed "checked in™
Baseline for testing established
Dality assurance and testineg achvibies
Changes for inclnsion in next release {(revision} " prommoted””
Appropriate version of software rebiolt

Change to all confiemration iteins reviewad (andited)

Configuration Audit

» Has the change specified in the ECO been made?
» Has atechnical review been conductede

» Has the software process been followed and SE standards been
properly applied?

» Has the change been *highlighted” in SCI¢
» Have SCM procedures been followed?

» Have dll related SCls been properly updated?

Status report

» What happened?
» Who did it¢
» When did it happened?¢

» What else will be affectede

SOFTWARE QUALITY

what Ls quatl’%?

ol multifaceted

S
ot
t
W
0
Ve
G
0
L
Lt Y

’/{/gﬁ/
N (A
4
0
Lol
“
ol
"
T
L
0
4V

-
O
8
Y
V\/
Vl
P 8
(/(«S
8
V
M
8
S
W
V
6

Ganvin's Quality Dumenstons

MceCall’s @Aatltg Foctor

SO 9126 @AaLLtg Foctors

* The cost of Quality

EMERGENCE OF SOFTWARE
ENGINEERING AS A&
DISCIPLINE

» Software Engineering is a “Systematic approach to the analysis,
design, assessment, implementation, test, maintenance and re-
engdineering of software.

Profession:-thinking, communicating, defining, designing,
ilding, testing and maintaining software system:s.

» One word definition of Software Engineering is MODELING

» Two word definition of Software Engineering is MODELING and OPTIMIZATION.

is a Conversion activity.

» Optimization deals with finding the most economical conversion possible.

SE Discipline is the result of advancement in the
field of technology

» Early Computer Programming

» High Level Language Programming

» Control flow base design

» Data flow oriented design

» Object Oriented design

= Early Computer Progromming:

» Computers were slow and expensive.

» Programs were small

®» High Level Language Programming:

Computers became smaller, faster and cheaper(Semiconductors)

» Assembly languages to high level languages
» COBOL and FORTRAN

» Control flow based Design:

» Flowcharting technique

» More GOTO constructs makes the algorithm messy to understand and debug.
» Structured flowcharts-Structured constructs decision

» Structured Programming language

®» Data flow oriented design:
» Computers became powerful and faster(\LSI)

» Flow of date through business functions is represented by DFD

®» Object Oriented Design:
» This has revolutionized the process of Software development

» It includes some new and powerful features such as
inheritance, polymorphism, abstraction and encapsulation.

» Reusability of code.

THE UNIFIED PROCESS

/
J

» | early [330s James Rambaugh, Grady Booch and Ivar Jacobson began working
on unified-process.

cognizes the importance of customer communication and streamlined
ethods for describing the customer view of a system.

® |t suggests a process flow that is iterative, incremental, providing the evolutionary
teel that is essential in modern software development.

Phases of the Traditional Process Model:

Communication \

Increment

Planning
Deployment

Construction Modelling

g

Phases of the Unified Process:

= |nception

o Lommunication
o Planning

» [|aboration

ommunication

o Modelling
= [onstruction

= [ransition

o Construction

o Deployment

» Production

Can drive%est cases that

. Guarantee that all the independent paths within a module have been exercised at lease
once

. Exercise all logical decisions on their true and false slides

. Execute all loops at their boundaries & within their operational bounds

. Exercise internal data structures to ensure their validity

BASIC PATH TESTING is a white box testing technique first proposed by Tom McCabe

Flow graph Notation

The structored constructs in Bow grogh foem: =
—aso

o;@o@/o@-ocfd

Whete aoch circle represents cos or mone
nanbranching POL o0 sowce code satementy

Flow graph notation

Q

<>
=

<>
<
A

[-

Q1

These slides are designed to accomp any Sofhwae Srginearing: A Precifoners Aoprosch, e
(hcGrave-Hill 20097, Slides copyright 2009 by R oger Pressman.

T°\1O“'€-‘|"1 05 en

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11
Path 3: 1-2-3-6-8-92-10-1-11
Path 4: 1-2-3-6-7-9-10-1-11

Paths 1 through 4 constitute a basis set for the flow
graph

If you can design tests to force execution of these
paths, every statement in the program will have
been guaranteed to be executed at least once
and every condition will have been executed on its
true and false sides

O O

of tests.

No.of ways to compute CC:

The no.of regions of the flow graph

CC V(G) for a flow graph G is defined as:
V(G) = E-N+2

V(G) = P+1

The flow graph has four regions.
V(G) = 11 edges-9 nodes+2=4
V(G)= 3 predicate nodes+1=4

O Using the design or code as foundation, draw a corresponding flow graph

O Determine the cyclomatic complexity of the resultant flow graph

O Determine a basis set of linearly independent paths

O Prepare test cases that will force execution of each path in the basis

Condition festing:

It exercises that logical condifions contained in a program module

A simple condition is a Boolean variable or a relational expression
El<relational-operator> E2

A compound condition is composed of two or more simple conditions, Boolean operators and
parenthesis

Types of errors in condition include Boolean operator errors, Boolean variable errors, Boolean
parenthesis errors, relafional operator errors and arithmetic expression errors.

O DEF(S) = {X|statement § contains a definition of X}

O USE9?S) = { X|statement § contains a use of X}

O Simple loops

O Nested loops

O Concatenated loops

O Unstructured loops

O Skip the loop entirely

O Only one pass through the loop

O Two passes through the loop

O m passes through the loop where m<n

O n-1,n,n+l passes through the loop

Start at the innermost loop. Set all other loops to minimum values

Conduct simple loop tests for the innermost loop while holding the outer loops at their
minimum iteration parameter values. Add other tests for out-of-range or excluded values.

Work outward, conducting tests for next loop, but keeping all other outer loops at
minimum values and other nested loops to typical values

Continue until all loops have been tested

O Concatenated loops can be tested using the approach defined for simple loops, if each
of the loop is independent of the other.

O If the loops are not independent then the approach applied to nested loops is
recommended.

O Whenever possible this class of loops should be redesigned to reflect the use of the
stfructured programming constructs.

Black box testing also called as Behavioral testing

O Enables f@iderive sets of input conditions that will fully exercise all functional requirements

O Itis an alternative to white-box tesfing

BB testing attempts to find out errors in following categories:
Incorrect or missing functions

Interface errors

Errors in data structures or external database

Behavior or performance errors

YV V VYV V V O

Initialization and termination errors

YV V VYV VYV V V V O

Performed during the stages of testing

Tests are designed to answer the following questions

How is functional validity testede

How are system behavior and performance tested?

What classes of input will make good test cases?

Is the system particularly sensitive to certain input values?
How are the boundaries of data class isolated?

What data rates and data volume can the system tolerate?

What effect will specific combinations of data have on system operation

Graph-based testing methods

Graph-Based Testing

Directed link

Undirected link

(link weight]

Node weight
(value)
Parallel links

New file
menu
select {generation time < 1.0 sec)

Menvu select generates

Allows editing of
Is represented as

Contains

Document
text

Atftributes:
Start dimension: default setting
or preferences

Background color: white
Text color: default color

or preferences

O Transaction flow modeling

O Finite state modeling

O Data flow modeling

O Timing modeling

Y

Divides the input domain of the program into classes of data from which test cases can be derived

Test case design for equivalence partitioning is based on an evaluation of equivalence classes for an
input condition

Guidelines:
If an input condition specifies a range , one valid and two invalid equivalence classes are defined

If an input condition requires a specific value, one valid and two invalid equivalence classes are
defined.

If an input condition specifies a member of set, one valid and one invalid equivalence classes are
defined.

If an input condition is Boolean , one valid and one invalid classes are defined.

As errors occurring at the boundaries are greater than at the center BVA is developed

It is complementary to Equivalence partitioning

Guidelines:

If an input condifion specifies a range bounded by values a and b, test cases should be
designed with value a and b and just above and just below a and b.

Specifies no.of values 2 exercise the minimum and maximum numbers
Apply guidelines 1 and 2 to output conditions

If internal program data structure have prescribed boundaries be certain to design a test
case to exercise the data structure at its boundaries

Orthogonal array testing can be applied to problems in which the input domain is relatively small.
Exhaustively test the input domain
Particularly in finding region faults

Y
\8 :
“One input at a time” L9 orthogonal array

“Balanced property”- “test cases are dispersed uniformly throughout the test domain™

‘Detect and isolate all single mode faults: A single mode fault is a consistent problem with any level
of any single parameter

*Detect all double mode faults: A consistent problem when specific levels of two parameters occur
together

Multimode faults

THANK YOU

S -
s -
WIESEEN SR e

A classic system testing problem is “finger pointing’.
Design error handling paths
Conduct series of tests

Record the result of test-evidence

Participate in planning and design of the system

Recovery testing

Recovery from faults and resume processing

Fault tolerant

RT is a system test that forces software to fail in a variety of
ways and verifies the recovery

Automatic- reinitialization, checkpoint mechanisms, data
recovery and restart are evaluated for correctness

Human intervention-MTTR

Security testing

Improper or Illegal penetration

ST- verity that protection mechanisms built into a system
will, in fact, protect it from improper penetration

The tester plays role of hacker
Good security testing will ultimately penetrate a system.

Penetration cost is more than value of the information

Stress Testing
Stress testing- demands resources in abnormal quantity, frequency and volume

Special tests may be designed that generate ten interrupts per second, when 1
or 2 is the average rate

Input data rates may be increased by magnitude
Require maximum memory

Thrashing in virtual operating system

Excessive hunting for disk-resident data

Sensitivity testing-small range of data

Performance testing

PT- the run time performance of software within the
context of integrated system

Often coupled with stress testing and usually require
both hardware and software instrumentation

Resource utilization

Execution intervals , log events and sample machine
states on a regular basis

Deployment testing

Deployment testing-Configuration testing

Examines all installation procedures and specialized
installation software and documentation

B . e YO

>y

g
2t
<

Primary purpose- test the reading speed of the system
as per non-functional requirements.

Functional testing checks the correctness of internal
functions while Non-Functional testing checks the
ability to work in an external environment.

Non-functional testing gives detailed knowledge of
product behavior and used technologies

Loading
e .
& 2

Security

Reliability Testing

Accountability Portability

