

Scheme – 2020

Scheme and Syllabus for additional courses to be completed for the award of

B.Tech (Honors)

in

Electrical & Electronics Engineering

Department of Electrical & Electronics Engineering Honors in Electrical & Electronics Engineering Scheme of instruction and examination (Effective from 2020-2021)

Scheme: 2020

S	SEMESTER	COURSE	COURSE NAME	L-T-P	CR			
No		CODE						
			POOL-1					
1		HEE01	Reactive Power Compensation & Management	3-1-0	4			
2		HEE02	Data Communications and Networking	3-1-0	4			
3	IV	HEE03	Advanced Power Semiconductor Devices	3-1-0	4			
1		HEE04	Programmable Logic Controller and Its	310	4			
4			Applications	5-1-0	4			
			POOL-2					
1		HEE05	Power System Deregulation	3-1-0	4			
2	V	HEE06	Cellular and Mobile Communications	3-1-0	4			
3	v	HEE07 Advanced Power Electronic Co		3-1-0	4			
4		HEE08	Advance Control Systems	3-1-0	4			
POOL-3								
1		HEE09	Advanced Power System Protection	3-1-0	4			
2	VI	HEE10	Embedded Systems and Programming	3-1-0	4			
3	V I	HEE11	PWM Converters & Applications	3-1-0	4			
4		HEE12	Digital Control Systems	3-1-0	4			
			POOL-4					
1		HEE13	Power System Stability & Control	3-1-0	4			
2		HEE14	Introduction to VLSI Design	3-1-0	4			
3	VII	HEE15	Modelling & Simulation of Power Converters	3-1-0	4			
4		HEE16	SCADA Systems and Sequence of Event	2 1 0	4			
4			Recording System	3-1-0	4			
1			MOOC-1		2			
2 MOOC-2/Mini Project								
			Total Credits		20			

REACTIVE POWER COMPENSATION & MANAGEMENT (RPCM)

B.Tech. EE	E (Honors	s) – PO (0L-1					Scher	me : 2020	
Course Code	Categ	ory	Ho	ours/We	ek	Credits	Maxim	um Marks	}	
HEE01	Hono	ors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			3	0	0	3	40	60	100	
Comment		A 4 41			- 414-		-1-1			
Course O	utcomes :	At the e	end of th	e course	e the stu s of load	d compensatio	able to			
CO1 : U1	nderstand t	he types	s of read	tive nov	ver con	pensation	лі 			
CO3: U	nderstand t	he conc	ept of d	emand s	side ma	nagement				
CO4: U1	nderstand t	he conc	ept reac	tive pov	ver con	pensation eq	uipment			
CO5: U1	nderstand t	he conc	ept of re	eactive p	power n	nanagement in	n electric traction s	system.		
		Γ			UNI	Γ-Ι				
Load Comp	pensation	Object	ives an	d specif	fication	s – Reactive	power characteris	tics – Indu	ctive and	
		capaci	tive app	proxima	te bias	ing – Load o	compensator as a	voltage re	gulator –	
		Phase	balancii	ng and p	ower fa	actor correction	on of unsymmetric	al loads - E	xamples.	
					UNII	<u>- II</u>			-	
Steady St	tate &	Uncompensated line – Types of compensation – Passive shunt and series and								
Transient	state	dynam	iic shun	compe	nsation	- Characteris	stic time periods –	Passive shu	int	
Component	Power ion in	Compe	ensation	- Static	vnchro	nsations - Sei	ers Examples	pensation –		
Transmissi	ion III	Compe	clisation	using s	syncino		ers – Examples.			
System	JI									
Journ		1			UNIT	– III				
Reactive Po	wer	Object	ive –	Mathem	natical	modeling - Operation planning - Transmission				
Coordinatio	on &	benefits – Basic concepts of quality of power supply – Disturbances - Steady –								
Demand sid	le	state variations – Effects of under Voltages – Frequency – Harmonics, radio								
Managemen	nt	freque	ncy and	electro	magnet	ic interference	es. Load patterns -	- Basic met	hods load	
		shapin	g – Pov	ver tarif	ffs - KV	AR based ta	riffs penalties for	voltage fli	ckers and	
		Harmo	onic volt	age leve	els					
	0 11	C (- 1-	T.	UNIT	· - IV	E	<u></u>		
Distribution	n & User	System	n losses	- Loss	reducti	on methods –	- Examples – Reac	tuve power	planning	
side Reactiv	e Power	- Obj	tor ban	- ECO	$\frac{1011100}{7}$	Plaining Ca	or domestic appli	$ances$ \mathbf{D}	inting of	
Managemer	III	using	canacit	rs - rs	VAR IC Selectio	n of capacit	ors – Deciding	factors – 1 (Types of	
		availat	ole capa	citor ch	aracter	istics and Lin	nitations.		TYPES OF	
		aranat	ere cupu	-1101, 01	UNI	[- V				
Reactive Po	wer	Typica	al layou	t of tra	action s	systems – Re	eactive power cor	ntrol requir	ements –	
Managemer	nt in	Distrib	oution t	ransform	ners - 1	Electric arc f	urnaces – Basic o	operations-	Furnaces	
Electric traction transformer – Filter require					equirem	ents – Reme	dial measures – Po	ower factor	of an arc	
Systems and	Systems and Arc furnace.									
Furnaces										
Text Books										

1. J.E.Miller, Reactive Power Control in Electric Power Systems, John Wiley and Sons, 1982

2. D.M.Tagare, Reactive power Management, Tata McGraw Hill, 2004.

Reference Books

1. H.M.Alassouli, "Reactive power compensation", Blurb, Incorporated, 2020.

2. Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide", Wiely publication, 4th Edition, 2012.

Web References:

1.https://www.iare.ac.in/sites/default/files/IARE_RPCM_LN.pdf

2.https://www.scribd.com/presentation/385273934/17119-Unit-2-Theory-of-Steady-State-Reactive-Power Compensation-in-Electric-Transmission

3.https://www.researchgate.net/publication/317013549_Demand_response_strategy_management_with_ active_and_reactive_power_incentive_in_the_smart_grid_A_two-level_optimization_approach

4. https://ieeexplore.ieee.org/document/7339816

5.https://www.researchgate.net/publication/234778470_Adaptive_control_of_the_active_power_of_an_e lectric_arc_furnace

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

DATA COMMUNICATIONS AND NETWORKING (DCN)

B.Tech. EEE (Honors) – POC	DL-1					Sc	heme : 2020		
Course Code	Category	Ho	urs/We	eek	Credits	Maxi	mum Mar	ks		
HEE02	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	1	0	4	40	60	100		
Course Outco	omes : At the e	nd of t	ne cour	se the	student will	be able to				
CO1: Acqu	ire the knowled	lge abo	out the	layere	d structure o	f reference model	s for compu	iter.		
netwo	orks, the concept	ots of F	hysica	I Laye	r like transm	ission media, trar	ismission ir	npairments,		
CO2. Under	rstand the prince	nng an	d Multi f Error	detect	ig standards	rection Flow co	ntrol medi	Im accass		
contr	ol in the Data I	ink La	ver and	I IEEF	Estandards fo	or LANs	intoi, mean	and access		
CO3: Under	rstand the vario	us type	es of sta	atic an	d dynamic ro	outing algorithms	. congestion	control and		
avoid	lance in Networ	rk Laye	er				, •••••6••••••	•••••••		
CO4: Analy	ze the Process	to Proc	ess De	livery	using TCP,	UDP in transport	layer and th	ne		
crypto	ography algorith	nms lik	e DES	and R	SA in sessio	n layer.				
CO5: Under	rstand various a	applicat	tion lay	/er pro	tocols like D	NS, FTP, HTTP,	WWW, SM	ITP, SNMP		
				UN	$\mathbf{I}\mathbf{T} - \mathbf{I}$					
Introduction	to Network	letwork Services and Architecture. The Internet, Protocols and Standards,								
Data	Network	etwork Models: Layered Tasks, OSI Reference model, TCP/IP Protocol suite,								
Communicatio	n Data co	Data communication circuits, Serial and parallel data transmission, Data								
Networks	commun	communication circuit arrangements.								
Physical La	iyer Periodic	Periodic Analog Signals, Digital Signals, Transmission impairment, Data Rate								
and Media	Limits,	Perfor	mance.	, Ira	nsmission i	nedia, Data mo	odems, Sw	and and		
	Multiple	xing (F	DM, I							
Doto Link Low	on Introduce	tion E	Tromin	T Err	or Detection	and Correction	n Dority			
Data LINK Lay	er Introduc	uon, r	Flou	g, Ell	Error Contr	and Correction	II- Parity,	LKC, CKC,		
		g coue Iontroll	ed Ac	ees (Contraction Contraction	on IFFF Standa	rds. Stand	ard Ethernet		
	Changes	in the	Standa	rd Fa	st Ethernet (Gigabit Ethernet	wireless I A	Ne		
	Changes	III the	Stanua	$\frac{10, 1a}{10}$	$\frac{\mathbf{T} - \mathbf{III}}{\mathbf{T} - \mathbf{III}}$	Sigaon Emerner,		113.		
Network Lave	r Virtual c	ircuit a	nd dat	agram	approach in	subnets Shortest	nath routin	g Flooding		
	Hierarch	ical ro	outing.	Broad	lcast routing	g. multicast rout	ing and d	istant vector		
	routing a	lgorith	ms. Co	ngesti	on control al	lgorithms				
	6	0	,	UN	IT - IV	8				
Transport Lay	rer Transpor	rt servi	ces, a	ddress	ing, upward	and downward	multiplexin	g, TCP and		
	UDP.									
Session Layer	Encrypti	on, Cip	ohers, 7	Гурез	of ciphers, D	DES Algorithm, P	ublic key c	ryptography-		
	KSA Alg	gomum		TIN						
Application La	WOR DNS DN	NS in i	ntornot	FTD		W SMTD SNM	D			
Application La	iyer Dins, Di	NO 111 11	nernet	, гтр,	1111F, WW	w, SIVITE, SINIVI	Γ			
1 Rehrouz A	Forouzan Dat	a comr	nunica	tione	nd Network	ing Second aditic	n TMH 20	003		
2 Andrew C	Tanenhaum C	ompute	r Notu	orbe '	Third edition	\mathbf{P} PHI 2001	, 1 WH , 20	105		
\angle . And \bigcirc S.	i anchuauth, Co	ompute	1 INCLW	0165,		, 1 111, 2001				

3. Wayne Tomasi (2005), Introduction to Data Communications and Networking, Pearson Education, India.

Reference Books

1. William Stallings, Data and Computer Communications, 3rd edition, Pearson, 2007.

Web References:

1. https://nptel.ac.in/courses/106105081/

2. https://nptel.ac.in/downloads/106105080/

3. https://nptel.ac.in/courses/106106091/

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

ADVANCED POWER SEMICONDUCTOR DEVICES (APSD)

B.Tech. EEE (Honors) – POC	DL-1					Sc	heme : 2020		
Course Code	Category	Category Hours/Week				Maxi	mum Mar	ks		
HEE03	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	1	0	4	40	60	100		
Course Outco	omes : At the e	nd of the	ne cour	se the	student will	be able to				
CO1: Under	stand the static	and dy	mamic	chara	cteristics of o	current controlled	power sem	iconductor		
devices.	national the static	and d	monio	ahana	atomistics of	voltago controllad		iconductor		
devices	rstand the static	and dy	ynamic	cnara	cleristics of	voltage controlled	i power sen	nconductor		
CO3: Select	t the devices for	r differ	ent poy	ver ele	ectronics app	lications				
CO4: Under	rstand the contr	ol and	firing of	circuit	for different	devices.				
CO5: Under	rstand protectio	on for s	emicon	ducto	r devises					
	•			UN	IT – I					
Introduction	Power s	witchin	ıg devi	ces, o	verview – A	Attributes of an i	deal switch	, application		
	requirem	nents, I	Device	selecti	ion strategy	– On-state and sy	witching los	sses – Power		
	diodes - Types, forward and reverse characteristics, switching characteristics -									
	rating.	rating.								
UNIT - II										
Current	BJT's –	Constru	uction,	static	characteristi	cs, switching chai	acteristics;	Negative		
Controlled	temperat	ure co-	efficie	nt and	secondary b	reakdown; Power	darlington	– Thyristors		
Devices	- Physic		electric	atohin	cipie underi	ying operating me	orietice: con	ansistor		
	analogy	- COIICO rter gra	de and	other	g, Gale allu s	and parallel oper	ensues, con	iverter grade		
					$T = \mathbf{III}$	and paramer oper				
Voltage	Power	MOSE	ETs a	nd IC	BTs – Pri	inciple of volta	ge control	led devices		
Controlled	construc	tion. tv	pes. st	atic ar	d switching	characteristics. st	eadv-state	and dynamic		
Devices	models	of MC	SFET	and	IGBTs - Ba	asics of GTO, N	ACT (MOS	S Controlled		
	Thyristo	r), F0	CT(Fie	ld C	controlled '	Thyristor), RC	(Reverse	Conducting		
	Thyristo	r).				•	•	-		
				UN	IT - IV					
Firing and	Necessit	y of ise	olation	, pulse	e transformer	r, optocopler – G	ate drives c	circuit: SCR,		
Protecting	MOSFE	T, IGB	Ts and	l base	driving for	power BJT Ov	er voltage,	over current		
Circuits	and gate	protect	tions; I	Design	of snubbers	•				
	TT	6	1	UN	IT - V		1. 1.	• 1 1•		
Thermal	Heat tra	nster –	condu	iction,	convection	and radiation; Co	110 - 110	juid cooling,		
Protection	vapour –	phase	coolin	g; Gui	dance for head	ar sink selection –	- I hermal re	esistance and		
Toxt Books	Impedan	ce-Ele	curical	analog	gy of thermal	i components, nea	u sink types	s and design.		
1 Rashid M	H "Power Fla	etronic	Circu	ite Da	vices and A	nnlications" Pron	tice Hall In	dia		
Third Editi	on New Delhi		SUICU	nis, De	Lynces and A	pplications, rien		uia,		
2. BW Willi	ams 'Power Ele	ectronic	s: Dev	vices I	Drivers Ann	lications and Pass	ive Compo	nents		
Tata McGr	aw Hill.				···· •···, · ···	in and i uso	ine compo			

Reference Books

- 1. Advanced power electronics converters by Euzeli dos santos, Edison R. da silva.
- 2. Fundamentals of Power Semiconductor Devices by B. Jayanth Baliga, Springer Press, 2008.

Web References:

1. https://nptel.ac.in/courses/108/107/108107128/

2. https://nptel.ac.in/courses/108/108/108108122/

3. https://nptel.ac.in/courses/108/102/108102145/

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

PROGRAMMABLE LOGIC CONTROLLER AND ITS APPLICATIONS (PLC)

B.Tech. EEE (Ho	onors) – POC)L-1					Sc	heme : 2020			
Course Code	Category	Ho	urs/We	eek	Credits	Maxi	Maximum Marks				
HEE04	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		3	1	0	4	40	60	100			
Course Outcom	Course Outcomes : At the end of the course the student will be able to										
COI: The pur	pose of this c	ourse 1	is to un	dersta	nd the Funda	amental concept o	t Automati	on.			
CO2: To Unde	erstand the hi	story c	of autor	nation	from 1st gei	neration (relay ba	sed) to the I	atest and			
CO3. To unde	erstand the me	ogy us	of inte	oratino	uon various cor	npopents of autor	nation like	PI C			
sensors	transducers.	AC dr	ives. h	vdraul	ics and pneu	matics learnt in th	ne previous	semester.			
	,,		,	UN	IT – I						
Introduction to	Introduct	tion to	1st g	enerat	ion automat	tion, advent of r	nicrocontro	oller and the			
Automation	introduct	ion of	logic o	contro	ller. Difficul	ties of logic cont	roller and t	he advent of			
	program	mable	logic c	ontrol	lers. Classifi	cation of PLC ba	sed on the	I/O, parts of			
plc, like CPU, Chassis, Power supply, I/O module etc.											
	UNIT - II										
Input and outpu	ut List of ir	List of input and output device, methods of connecting input devices like source									
system, CP	U and sinl	and sink. Methods of connecting output devices. CPU SCAN diagram,									
system	introduct	ion to	analog	input	and output,	special inputs lik	e high spee	d inputs etc.			
	introduct	ion of	interfa	ice of	encoders, Iv	dt, ultrasonic sen	isor, optica	l sensor, AC			
	drives, s	stepper	moto	ors, sv	vitches and	lamps (sensors	covered	in previous			
	semester).		TINI	тп						
PLC	Different	metho	ds of r	rogra	mming the P	I C Introduction	to ladder n	rogramming			
Programming	Data stru	Data structures like I O AL AO M R etc. instructions like NO NC Transition									
Trogramming	coils, se	coils, set/reset coils, timers, counters, control functions, relational functions									
	arithmeti	withmetic functions.									
				UN	IT - IV						
Pneumatic	Program	ming o	exampl	les, fo	or applicatio	ons like cranes,	ice vendin	g machines,			
systems	conveyor	rs, Traf	fic ligh	nts, pic	k and place	mechanism using	sensors and	d VFDs.			
				UN	IT - V						
HMI – Human	Introduct	tion to	HMI a	and ne	ed for using	HMI. Different	features of	HMI and its			
machine interfac	e methods	of con	figurati	ion. U	se of HMI to	above mentioned	l application	ns.			
systems	systems										
Text Books											
1. F.G Shinskey	v., Process con	<u>itrol sy</u>	stems:	Appli	cation, Desig	gn and Tuning, 4/	e, McGraw	Hill, 1996			
2. P.R Belanger	r, Control Eng	gineeri	$\frac{\text{ng: A I}}{1}$	Moder	n Approach,	Saunders College	e Publishing	<u>;, 1995.</u>			
3. K.C.Dorf and	a Bishop R. T	. , Mo	uern Co	ontrol	Systems, 11/	e, Addison Wesle	ey Longmar	1., 2008			
1 D A Loplanta	Dool Time (Sustan	a. 1 . 1	Encina	or a Uandha	ok DUI 2007					
2 CU Uqueia a	., Real Times	amont	Digita		trol evetore	$\frac{\text{UK}, \text{F}\Pi\text{I}, 2007.}{\text{McGrow}, \Pi\text{III} = 10}$	85				
2. CI. HOUPIS a	linu Gary D. L	rollora	, Digila Drinci	in COII	nd Application	mediaw fill, 19	юл. DUI				
 P.A Laplante., Real Time Systems: An Engineer.s Handbook, PHI, 2007. CH. Houpis and Gary B. Lamont, Digital Control systems, McGraw Hill, 1985. Programmable Logic Controllers: Principles and Applications, Webb & Pais, PHI 											

Web References:

1. https://www.electrical4u.com/programmable-logic-controllers/

2. https://www.watelectrical.com/industrial-applications-of-programmable-logic-controller/

3. https://nptel.ac.in/content/storage2/courses/112103174/

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

POWER SYSTEM DEREGULATION (PSD)

B.Tech. EEE (Honors	s) – POO	L-2			Scheme : 2020								
Course Code	Cat	tegory	Ho	urs/We	eek	Credits	Maxim	um Marks						
HEE05	Ho	onors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total					
			3	60	100									
Course Outc	omes :	At the en	d of the	e cours	e the st	tudent will be	able to							
CO1: Unde	erstand	the proces	ss and o	operatio	on of re	estructured po	owersystem.							
CO2: Unde	rstand l	knowledg	ge on fu	ndame	ntal co	ncepts of con	gestion managemen	nt.						
CO3: Analy	yze the	concepts	of loc	cational	l marg	inal pricing	and financial trans	smission						
CO4: Unde	S. retand t	the concor	t of An	cillary	Sorvio	a managaman	t							
CO5: Unde	rstand	knowledg	re on R	eforms	in Ind	ian Power Sec	tor							
	1 Stanu	KIIOwieug	ge on K	cionis										
Introduction to	0	Introduc	tion: I	Deregul	lation	of power i	ndustry Restructu	ring proce	ss Issues					
Restructuring	of	involved	l in der	egulatio	on. Dei	regulation of y	various power syste	ems – Mark	et models:					
Power industr	v	Compari	ison o	f vario	ous m	arket model	s. OASIS: Open	Access S	ame_time					
	5	Informat	tion Sy	/stem -	– struc	cture of oasi	s - pooling of in	formation	– transfer					
	ca				capability on OASIS.									
	UNIT - II													
Transmission Introduction: Definition of Congestion, reasons for transfer capability limitation									nitation,					
Congestion		Importa	nce of c	congest	ion ma	nagement, Fe	atures of congestio	n managem	ent –					
Management		Classification of congestion management methods. Definitions transfer capability												
		issues: – ATC – TTC – TRM – CBM calculations –methodologies to calculate												
		ATC.												
					UNI	Γ–III								
Locational		Mathema	tical pr	elimina	aries: -	Locational ma	arginal pricing– Lo	ssless DCO	PF model					
Marginal price	es	for LMP calculation - Loss compensated DCOPF model for LMP calculation -												
and Financial		ACOPF model for LMP calculation – Financial Transmission rights.												
transmission														
rights														
					UNI	<u>T - IV</u>								
Ancillary Serv	ice	Introduct	ion of	ancillar	y serv	ices – Types	of Ancillary servic	es – Classif	fication of					
management a	nd	Ancillary	y servic	es – Lo	bad ge	neration bala	ncing related service	ces - Volta	ge control					
pricing of		and reac	tive po	wer su	ipport	devices – Bl	lack start capabilit	y service -	ancillary					
I ransmission		service	-Co-	optimiz Tronom		of energy	and reserve serv	ices - int						
rights		tronomios	on -	i ransin	athoda	pricing – i Morginal tr	encipies – Class	norodiam	Kole in					
		u ansmiss	sion pri	cing m		– Marginar tr	ansmission pricing	paradigin -	-					
Reforms in Inc	dian	Introduct	ion - F	rameu	ork of	Indian nower	sector - Reform in	itiatives -						
Power Sector	11411	Availahil	itv hae	ed tarif	f – Fle	ctricity act 20	03 - 0 nen access i	ssues $-$ Pow	ver					
		exchange $=$ Reforms in the near future												
Text Books		enemange												
1. Mohammad	Shahide	ehpour. N	luwaff	ag Alor	noush	Marcel Dekk	er. "Restructured e	lectrical no	wer					
				1			.,	Po and the po						

systems: operation, trading and volatility" Pub., 2001.

- 2. Kankar Bhattacharya, Jaap E. Daadler, Math H.J. Boolen, "Operation of restructured power systems", Kluwer Academic Pub., 2001.
- 3. Kimbark E.W. "Power system stability and control Vol III, synchronous machines", John Wiley & Sons.

Reference Books

1. Ajay Pandey Sebastian Morris, Electricity Reforms and Regulations -A Critical Review of Last 10 Years Experience, Indian Institute of Management Ahmedabad, 2009.

2. Loi Lei Lai, 'power system restructuring and Deregulation', John Wiley & Sons Ltd., England.

3. Sally Hunt, "Making competition work in electricity", John Willey and Sons Inc. 2002.

4. Steven Stoft, "Power system economics: designing markets for electricity", John Wiley & Sons, 2002.

Web References:

1. https://nptel.ac.in/courses/108/101/108101005/

2.https://www.researchgate.net/publication/241181846_Transmission_Congestion_Management_in_restru ctured_power_systems

3.https://ieeexplore.ieee.org/abstract/document/8326042

4. https://eal.iitk.ac.in/assets/docs/Rohit_Bajaj_Ancillary.pdf

5. https://home.kpmg/xx/en/home/industries/government-public-sector/international-developmentservices/strategy-and-policy-implementation/structural-reforms-in-the-indian-power-sector.html

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

CELLULAR AND MOBILE COMMUNICATIONS (CMC)

B.Tech. EEE (Honors) – POC	DL-2					Sc	cheme : 2020			
Course Code	Category	Ho	urs/W	eek	Credits	Maxi	mum Mar	ks			
HEE06	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		3	0	2	4	40	60	100			
Course Outcomes : At the end of the course the student will be able to											
CO1: Unde	rstand the fund	amenta	l conce	epts of	cellular& m	obile communica	tion and its				
Radi	opropagation.										
CO2: Unde	rstand the cell s	site and	l mobil	eanten	inas						
CO3: Analy	yze various type	es of ha	undoffs	and a	nalog and dig	gital switchingequ	uipment				
CO4: Analy	ze different Al	RQ tech	nniques	s and r	nultiple acce	ssschemes					
CO5: Under	rstand the GSM	l archit	ecture,	SS7 p	protocol mod	el, AIN for mobil	ecommunic	ation			
				UN	I – TI						
Introduction	Basic Ce	ellular S	System	, Oper	ration of Cel	lular system, Hex	agonal cell	s, Frequency			
	reuse of	channe	els, Co-	chann	el interference	ce reduction, Cell	splitting.				
Cell Coverage	for Incident,	Reflec	ction &	z Eleva	ation angles,	Point to point m	odel, Path	loss formula,			
signal and traf	fic propagat	propagation over water or flat Open Ares, Land-to mobile transmission, path loss									
	from poi	nt to po	oint pre	edictio	n model, Mo	bile to Mobile pr	opagation.				
UNIT - II											
Cell site Anten	nas Antenna	at cell	site an	d mob	ileantennas						
& Mo	bile										
Antennas							~ .				
Frequency	Frequence	Frequency management, Frequency-spectrum utilization, Set-up channels,									
Management	& Channel	Channel assignment to cell site & mobile units, Fixed & non-fixed channel									
Channel	assignme	assignment									
Assignment											
	3371 1	1 66 ($\frac{\mathbf{\Pi} - \mathbf{\Pi}}{\mathbf{\Pi} + \mathbf{\Pi}}$		· 11.0	<u> </u>			
Hand offs	Why har Queuing	id off (H.O, I	H.O), Power	l'ypes differe	of H.O, Initi ence H.O, Mo	ation of H.O, Del obile assisted H.C	aying H.O,), Soft H.O	Forced H.O, , Intersystem			
	H.O.										
Switching	& Space &	Time	switchi	ng, Aı	nalog switchi	ing equipment for	cellular m	obile system,			
Traffic	Cellular	digital	switch	ing eq	uipment, MT	SO inter connect	ions.				
				UN	IT - IV						
Introduction	to Introduc	tion to	o digit	al tec	chnology, A	RQ techniques,	Stop and	wait ARQ,			
Digital Mo	bile Selective	e refere	nce mi	ssion	with ARQ, N	Aultiple access scl	hemes.				
Telephony											
			C		IT - V		C) (1)				
Digital Cell	ular Global	system	tor r	nobile	communica	ation (GSM), G	SM archite	ecture, layer			
System	modeling	g, Trai	nsmissi	ion, C	iSM channe	els & channel m	nodes, Rad	10 resources			
	manager	nent,	viod111	iy ma	inagement,	Communication	inanageme	ni, Network			
Intolline 4	manager	nent.	ligant	a a t	J. (ATNI) 0 T	ta analita at O	C7 mast = 1	model ATAT			
Intelligent	Advance	a intel	iigent i	ietwoi	rk (AIN) & I	is architecture, S	5 / protocol	model, AIN			
INCLWORK	IOF IOF mob1	ie com	munica	uion							

Wireless	
Communication	
Text Books	
1. Lee William.C.Y	, Mobile Cellular Telecommunications Analog and Digital System, Mc Graw Hill,

2nd Edition.

2. T.S.Rappaport, Wireless communications, Pearson Ed, 2nd Edition.

Reference Books

1. Pandya Raj, Mobile and Personal Communication Services and Systems, PHI, 2nd Edition, March, 2004.

2. Jochen Schiller H, Mobile Communications, Pearson Ed, 2nd Edition, 2008.

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

ADVANCED POWER ELECTRONIC CONVERTERS (APEC)

B.Tech. EEE (H	[onors]) – POOL	-2					Scl	neme : 2020	
Course Code	Cat	tegory	Hou	ars/We	eek	Credits	Maxi	mum Mar	ks	
HEE07	Н	Honors		Т	Р	С	Continuous Internal Assessment	End Exam	Total	
			3	1	0	4	40	60	100	
	•			•	•					
Course Outco	mes:A	At the end	of the	course	the st	udent will b	e able to			
CO1: Get Kn	lowled	ge on Isola	ated an	d Non	isolat	ed DC-DC c	converters			
CO2: Get Kr	nowled	ge on resc	onant D	C-DC	conve	erters				
CO3: Get Kr	nowled	ge DC-AC	<u>C conv</u>	erters						
CO4: Get Kr	nowled	ge on PW	M tech	niques	5					
CO5: Get Kr	nowled	ge on AC-	-DC Co	onverte	ers.					
		T., (, 1 ,	<u>(;</u>	···· 1 -		$\mathbf{I} - \mathbf{I}$				
DC-DC Conve	rters	Introduc	tion, S	imple	DC to	DC conve	rters, Non-Isolate	ed DC-DC	converters-	
		BUCK, B	11 Conv	SUCK-E	500SU; Holf o	Isolate DC	-DC Converters	- Forward	Converter,	
		Push-Pu	II COIV	verter,			ige converters and	I FIY DACK	converter.	
DESONANT		Deconon	t conv	ortorg	ZOTO	ourront awit	ahing reconant of	nuortora	L type 7CS	
CONVEDTEDS	resonant		rtor	-2cio	CUITEIII SWII	ching resonant co	zero voltar	L type ZCS		
CONVERTERS		resonant	conve	rters _	comp	arison betwe	rand COnverter = 1	S resonant	converters –	
		Two at	adrant	7VS	reso	nant conve	rters $-$ resonant	t de-link	inverters _	
		evaluatio	on of I	and C	for a	zero current	switching invert	ər	mverters	
		evaluation					switching invert			
DC-AC Conver	ters	Introduc	tion to	Inve	rters	Multilevel	concept – Classi	ification of	f multilevel	
	U IS	inverters – Diode clamped Multilevel inverter, improved diode Clamped								
		inverter. Flying capacitors multilevel inverter, cascaded multilevel inverter –								
		principle	e of op	eration	– mai	in features.				
					UNII	- IV				
PWM technique	es for	Pulse wi	idth mo	odulati	on tec	hniques for	bridge converters	, Bus clam	ping PWM,	
power converter	rs	Space ve	ector ba	ased P	WM, A	Advanced PV	WM techniques.	,		
1		1			UNI	Γ-V	•			
AC to DC conve	erters	Single P	hase (Conver	ter, T	hree Phase (Converter, Effect	of Source	Inductance	
		and PW	VM R	ectifier	rs PV	VM Rectifie	ers and Power	Factor In	nprovement	
		Techniq	ues.							
Text Books										
1. Mohammed	H. Ra	ashid, "Po	ower I	Electro	nics"-	- Pearson E	ducation-Third I	Edition –	first Indian	
reprint - 20	004.									
2. B.K Bose, "	2. B.K Bose, "Modern Power Electronics and AC drives -Hall of India Pvt. Ltd., New Delhi								hi	
3. V. Ramanarayanan, "Course Material on Switched Mode Power Conversion" Narosa Publications										
Reference Book	Reference Books									
1. L. Umanand	, "Pov	ver Electro	onics: l	Essenti	als &	Application	s" Wiley Publishe	ers		
Web References	S:									
1. https://nptel.ac	e.in/cou	urses/108/	107/10	810712	28/					
2. https://nptel.ac	e.in/cou	$\frac{108}{3}$	102/10	81021	45/					

3. https://nptel.ac.in/courses/108/108/108108035/

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

ADVANCE CONTROL SYSTEMS (ACS)

B.Tech. EEE (H	Ionors) – PC	OOL-2			Scheme : 2020					
Course Code	Category	y Ho	urs/Wo	eek	Credits	Maxin	um Mark	S		
HEE08	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	1	0	4	40	60	100		
Course Outco	mes : At the	end of the	course	the stu	udent will be	able to				
CO1: Analyz	ze dynamics	of a linear	system	by sol	ving system	model/equation or	applying d	lomain		
transfo	ormation.									
CO2: Realiz	e the structur	re of a disc	rete tim	ne syst	em and mode	el its action mather	natically.			
CO3: Exami	ne a system	for its stabi	lity, co	ntrolla	bility and ob	servability.				
CO4: Impler	nent basic pi	rinciples an	<u>d techr</u>	inques	in designing	linear control syst	ems.	· 1·		
CO5: Formu	late and solv	e determin	istic op	otimal	control proble	ems in terms of pe	erformance	indices.		
	T (1 ()	4 1	UNI	1 – 1	C ' 1 1		1		
Introduction	Intro	duction to	control	syster	ns - properti	es of signals and s	Systems - C	onvolution		
	integ	ral - oruina	ry dille	erentia	arformance	ransier function	- Pole Zero	concepts -		
	effec	t of pole i	lmodol	импи		Specification - Sy	stem mode	is in state		
	space	tion stabil	in state sno							
UNIT - U										
Linear System Linear algebra vector spaces span and change of basis - linear transformations										
Transformation Cram Salumidt orthogonalization criterion OD decomposition Singular w								lar value		
11 ansi 01 mation		mposition	Julogo	manza		- QK decompositi	on – Singu	lai value		
	deeo			UNIT	_ III					
I inear System	Com	nuting ed	T con	trollah	ility - Obse	ervability control	ler design	observer		
Analysis	desig	design reduced order observers properties of controllability - Computing								
¹ Xilai y SiS	nime	erical rank	of a ma	trix - 1	Kalman canonical forms, partial pole					
	assig	nment usin	g static	nole o	output feedba	ck - Design of not	n-interactin	g systems		
	ussig		Botatie	UNIT	- IV			<u>g sjotems.</u>		
Non-linear syste	em Non-	linear syst	em be	havior	- different	methods of line	arization -	Lyapnov		
analysis	stabi	lity criterio	n - P	hase r	olane analysi	s. singular points	. construct	ing phase		
······································	portr	aits, exister	nce of 1	imit cy	vcle.	-,8 F	,	8 F		
	F			UNI	Γ - V					
Describing fund	tion Fund	amentals.	assump	tions.	definitions -	Describing functi	ons of con	nmon non-		
analysis	linea	rity's -Des	cribing	functi	on analysis o	of non-linear syste	em - Stabili	ity of limit		
	cycle	es, reliabilit	y of de	scribir	ng function a	nalysis.		5		
Text Books			2		0					
1. Robert E. Ske	lton, "Dynar	mic System	Contro	ol and	Linear System	m Analysis and Sy	nthesis", J	ohn Wiley		
and Sons Inc	., New Delhi	i, 1988.			2	5 5	, ,	2		
2. B. C. Kuo, "A	utomatic Co	ontrol Syste	ems", P	HI Lea	arning, 7 th ed	ition, 1995				
3. M.Gopal, "M	odern Contro	ol Systems'	', New	Age In	nternational, 2	2 nd edition, 1993				
4. Brogan W. L.	, "Modern C	ontrol The	ory", P	rentice	Hall Interna	tional, New Jersey	, 1991.			
Reference Book	S		- /							
1. Jean Jacques	E. Slotine, W	Veiping Au	tor Li, '	"Appli	ed Nonlinear	Control", Prentic	e Hall Inc.,	1991.		

2. M. Vidyasagar, "Nonlinear System Analysis", Prentice Hall Inc., 2nd Edition, 1993.

Web References:

1. portal.tpu.ru:7777/SHARED/s/SMIKE/Uchebnaya/.../Modern_Control_Engineering.pdf

2. www.znu.ac.ir/data/members/pirmohamadi_ali/Control/Brogan(BookZZ.org).pdf

3. sv.20file.org/up1/951_0.pdf

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

ADVANCED POWER SYSTEM PROTECTION (APP)

B.Tech. EEE ()	Honor	s) – POOl	L-3					Scl	neme : 2020			
Course Code	Ca	tegory	Но	urs/We	eek	Credits	Maxi	mum Marl	٢S			
HEE09	H	onors	L	T	P	C	Continuous Internal Assessment	End Exam	Total			
			3	U	U	3	40	00	100			
Course Oute	omos .	At the one	doftha	0011700	tho st	udant will ba	abla to					
CO1: Under	retand t	the knowle	edge or	zones	of pro	tection in stat	tic relays					
CO1: Under	rstand	the concer	of on co	mnarat	ors use	ed in static rel	lavs					
CO3: Under	rstand	the concer	ot over	current.	differ	ential and dis	stance relays.					
CO4: Under	rstand	the stabilit	ty analy	vsis and	time of	domain analy	sis					
CO5: Under	rstand	the concer	ot of M	icropro	cessor	Based Protec	ctive relays.					
		I			UNI	T – I	2					
Introduction	า	Need f	or prot	ection s	system	s: Nature and	d causes of faults,	types of fa	ults, effects			
	-	of faul	lts, fau	lt statis	stics,	evolution of	protective relays	s, zones of	protection,			
		primar	y & bao	ek up pi	rotecti	on, essential	qualities of protec	tion.	•			
Static Relays	S	Advan	tages o	f static	relays	s-Basic const	ruction of static	relays-Leve	el detectors-			
5		Replica impedance –Mixing circuits-General equation for two input phase and										
		amplitu	ide con	nparato	rs-Dua	ality between	amplitude and ph	ase compar	ators			
	UNIT - II											
Amplitude		Circula	ating cu	rrent ty	pe and	l opposed vol	ltage type- rectifie	er bridge co	mparators,			
Comparators		Direct	and Ins	tantane	ous co	omparators.						
Phase Compar	ators	Coinci	dence c	ircuit t	ype-bl	lock spike ph	ase comparator, te	echniques to	o measure			
		the period of coincidence-Integrating type-Rectifier and Vector product type-										
		Phase of	compar	ators								
					UNI	Γ – III						
Static Over		Instantane	Instantaneous over-current relay-Time over-current relays-basic principles -definite									
Current Relay	'S	time and 1	Inverse	definit	e time	over-current	relays.					
Differential Re	elays	Analysis	of Stati	c Diffe	rential	Relays –Stat	tic Relay schemes	–Duo bias	transformer			
		differentia	al prote	ction –	Harmo	onic restraint	relay.					
Static Distance	;	Static imp	pedance	e-reacta	nce–N	IHO and ang	le impedance rela	y-sampling	comparator			
Relays		-realization	on of re	eactance	e and N	MHO relay us	sing sampling con	nparator.				
					UNI	Γ - ΙV						
Carrier-Aided		Need for	Carrie	r-aided	Prote	ection, Coup	ling and Trappin	g the carr	er into the			
Protection of		Desired L	ine Sec	tion.Ui	nit Typ	e Carrier-adi	ided Directional C	Comparison	Relaying,			
Transmission Carrier-aided Distance Scher					Schem	es for Accele	ration of ZoneII,	Phase Com	parision			
Lines		Relaying(Unit So	cheme)								
Induction Moto	or	Introducti	on, Va	rious F	aults a	and abnormal	operating Condi	tions, Start	ing			
Protection		Current, Elecrical faults, Abnormal Operating Conditions from supply										
		side, Ope	erating	Condi	tions	from Mecl	nanical side,Data	required	for			
		Desingnir	ng Moto	or prote	ction S	Schemes.						
					UNI	T - V						

Numerical	Introduction, Block diagram of numerical Relay, Sampling theorem, Correlation
Protection	with a Reference wave, Fourier Analysis of Analogue Signal, Least Error
	Squared(LES) Technique, Digital Filtering, Numerical Over-current Protection,
	Numerical Transformer Differential protection, Numerical Distance Protection of
	Transmission Line, Mann and Morrison Method, Differential Equation method.
Tart Daslar	i.

Text Books

1. Badri Ram and D.N.Vishwakarma, "Power system protection and Switch gear", TMH publication New Delhi 1995.

2. T.S. MadhavaRao, Power system protection Static relays, TMH 2nd edition 1981

3. Y.G.Paithankar, S.R.Bhide, "Fundamentals of Power System Protection" PHI publications.

Reference Books

1. Mason, The Art and Science of protective relaying, Wiley Eastern Ltd.

2. C.L. Wadhwa, Electrical power systems, New age International (P) Limited.

3. Sunil S. Rao, Switchgear and protection, Khanna Publications

Web References:

1. https://www.slideshare.net/jawaharramaya/static-relay

2. https://www.engineeringenotes.com/electrical-engineering/comparators/phase-comparators-and-its-types-devices-electrical-engineering/32832

3. https://www.electrical4u.com/differential-

relay/#:~:text=The%20differential%20relay%20is%20one,of%20an%20electrical%20power%20circuit.

4. https://www.elprocus.com/induction-motor-protection-system-circuit-

working/#:~:text=Induction%20motor%20Protection%20system%20from,system%20is%20violating%20its%20rating.

5. https://en.wikipedia.org/wiki/Numerical_relay.

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

EMBEDDED SYSTEMS AND PROGRAMMING (ESP)

B.Tech. EEE (H	lonors) – POC		Scheme : 2020							
Course Code	Category	Но	urs/W	eek	Credits	Credits Maximum Marks				
HEE10	Honors	L	T	P	C	Continuous Internal Assessment	End Exam	Total		
		3	1	U	4	40	00	100		
Course Outcomes • At the end of the course the student will be able to										
CO1: Unders	CO1: Understand the characteristics, attributes and applications of Embedded Systems									
CO2: Unders	stand the core	structure	and m	icroco	ntroller port	s for Embedded a	pplications	3		
CO3: Analyze the functions and data types of Embedded C in interfacing ports of microcontrollers										
CO4: Utilize the architecture and programming model of MSP 430 for peripheral interface										
CO5: Unders	stand the archi	tecture a	nd prog	gramm	ning model o	of ARM processor	rs.			
				UNI	Γ – Ι					
INTRODUCIO	N Defini	tion of 1	Embed	ded S	ystem, Emb	edded Systems V	/s General	Computing		
	Syster	ns, Clas	sificat	ion, N	Major Appli	ication Areas, P	urpose of	Embedded		
	Syster	ns, Char	acterist	tics an	d Quality At	ttributes of Embe	dded Syste	ms.		
				UNĽ	<u>[- II</u>	~				
CORE	OF Progra	amming	langua	ges fo	r embedded	systems, Structu	iral units i	n embedded		
EMBEDDED	proces	ssor, Mic	rocont	roller	Port Structur	res, Timer Conce	pts, Interru	pts.		
SYSTEMS										
	NC Introd		Employ	UNII ddad ($- \prod$	- Eurotione Helle		Company Company		
PROGRAMMI IN C	NG Introd	uction to	Embe	lov fu	, Data type	s Functions Hello	world pro	gram Super		
INC	Basic	technicu	ure, de	roodi	ng and writ	ting the port pin	Exampl	ig switches,		
	goats	teeninqu	105 101	Teau	ing and with	ung the port phi	is, Exampl	z. Counting		
	godis.			UNIT	- IV					
MSP430	Famil	v. Archi	tecture	e - N	ISP430. Ad	dress Space. Or	Chip Pe	ripheralsand		
	Regist	er sets.	Addı	ressing	Modes.	Programming G	PIO Inter	faces in C		
	langua	age- LEE), Swit	ches, I	Motor.					
		0	,	UNI	Γ-V					
ARM Processor	ARM	Design	Philos	ophy,	RISC vs C	SISC, ARM 7 an	d 9 proce	ssor family,		
	Block	Diagram	n, Reg	gisters.	, Program S	Status Register, 1	Five Stage	Instruction		
	Pipeli	ne, and	Arch	itectu	re Revision	n. Instruction S	Set: Data	Processing		
	Instru	ctions, A	ddress	ing M	ode. Introdu	ction to Thumb In	nstruction S	Set.		
Text Books										
1. Frank Vahid	, Embedded S	ystem Do	esign, 2	2nd Ec	lition Wiley	Publications,200	9			
2. Michael J. P	oint,,Embedde	ed C'' , 1s	stEdtio	n, A P	earson Educ	ation, 2002				
3. John H. Dav	ies, MSP430 I	Microcor	troller	Basic	s, Elsevier, 2	2008				
4. Steve Furber	; ARM Syster	n on Chi	p Arch	itectu	e, 2nd Editi	on, Addsion Wes	ley Profess	ional,2000		
Reference Book	S									
1. Raj Kamal, I	Embedded Sys	tems Ar	chitect	ure, Pr	ogramming	and design, 2nd I	Edition, TN	1H, 2006		
2. Arnold S Bu	rger,Embedde CMP Books 2	d Systen 2007	n Desig	gn An	Introduction	to Processes, To	ols and Teo	chniques,		
3. Shibu K.V,	Introduction to	Embedo	led Sys	stems,	Tata Mc Gr	aw Hill, 2009				

Web References:

1. www.nptel.onlinecourse.ac.in/embeddedsystemsdesgin.

2. www.nptel.onlinecourse.ac.in/microcontrollersapplications.

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

PWM CONVERTERS AND APPLICATIONS (PWMCP)

B.Tech. EEE (Honors) – POO	DL-3					Sc	cheme : 2020	
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks			
HEE11	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	1	0	4	40	60	100	
Course Outcomes : At the end of the course the student will be able to									
COI: Knowle	dge concepts	and	Dasic (operat	ion of PW	M converters, 1	including	basic circuit	
CO2 • Learn the	n and design	nd dyng	mic ar	alveie	of PWM con	nverters along wit	th the appli	cations like	
solid state	e drives and po	wer au	ality	1d1 y 515		inverters along with	in the appro-		
CO3: Able to r	ecognize and us	se the f	ollowii	ng con	cepts and ide	eas: Steady-State	and transier	nt modeling	
and analy	sis of power co	onverte	rs with	variou	is PWM tech	niques			
	1			UN	IT – I				
PWM Techniq	ues Carrier-l	Based	Pulse	Width	n Modulatio	on for Two-leve	1 Three-ph	ase Voltage	
for Two-level	Inverters	s, Spac	e Vect	or Mo	dulation Str	rategies, Overmoo	dulation of	Three-phase	
inverter	Voltage	source	inverte	ers.					
DWM Toohnic	unos Carrier	Rocad I	Dulca W	UN Vidth N	II - II Adulation	Space Vector Mo	dulation Str	enterrine	
for Multi-l	evel Overmo	dulatio	n for T	hree_n	hase Multile	vel Voltage source	e Inverters	alegies,	
inverter		overmodulation for three-phase multilevel voltage source inverters.							
	I			UN	III – III				
Applications of	f Compen	sation	for dea	d time	and DC volt	tage regulation, D	ynamic mo	del of PWM	
power convert	ers converte	r. Mult	ilevel o	conver	ters, Constar	nt V/f induction m	notor drives	•	
				UN	IT - IV				
Performance	Estimati	on of	current	ripple	e and torque	e ripple in inverte	er fed driv	es, Line-side	
parameters	converte	rs witl	n powe	er fac	tor compens	ation. Active po	ower filteri	ng, Reactive	
analysis	power	compe	isation	, Har	monic curre	ent compensatio	n, Selectiv	e harmonic	
	eliminat	ion PW	M tech	inique	for high pov	ver electric drives			
Special Drives	DWM of	onvorto	r annli	cation	s to special	Electrical Machin	nec BLD	C motor and	
Special Drives	switched	l Reluc	tance N	Motor	s to special		lles - BLD		
Text Books	Switchee	i iterue		10101.					
1. Mohan, Ur	deland and Ro	bbins.	"Powe	r Elec	tronics: Con	verters, Applicati	ons and De	sign",John's	
Wiley and	Sons.	,				, II		- 0 ,	
2. Erickson R	W, "Fundamen	tals of	Power	Electr	onics", Chap	man and Hall.			
3. Eric Mon	masson, "Pow	ver El	ectroni	ic Co	nverters PV	WM Strategies	and Curr	ent Control	
Techniques	s", Wiley Publis	sher.							
Reference Boo	ks								
1. Vithyathil.	J, "Power Elec	tronics	: Princi	iples a	nd Application	ons", McGraw Hi	<u>ill.</u>		
2. Rashid M.	H., "Power Ele	ectroni	es Cire	uits, I	Devices and	Applications", Pr	entice Hall	India, Third	
Edition, Ne	ew Delhi.								
3. B.K Bose,	" Modern Powe	er Elect	ronics	and A	C drives -Ha	ll of India Pvt. Lt	d., New De	elhi	

Web References:

1. https://nptel.ac.in/courses/108/108/108108035/

2. https://www.youtube.com/watch?v=7vyQZ_mDH5w

3. https://www.youtube.com/watch?v=xcxfDlz1bEs

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

DIGITAL CONTROL SYSTEMS (DCS)

B.Tech. EEE (H	lonors) – POOL		Scheme : 2020							
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks				
HEE12	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		3	1	0	4	40	60	100		
Course Outcomes : At the end of the course the student will be able to										
CO1: Unders	CO1: Understand the basic A/D and D/A conversion									
CO2: Unders	stand the Z- Trar	sform								
CO3: Understand the state space analysis methods										
CO4: Unders	stand the stability	y analy	sis and	time	domain anal	ysis				
CO5: Unders	stand digital proc	cess co	ntrol ai	nd des	ign.					
		•	6.4	UNI	$\frac{\Gamma - I}{1 + 1}$	1 / 1		1		
Introduction	Block d	agram	of ty	pical (digital contr	ol system - adva	intages of	sampling in		
	control	system	1s - ez	xampl	es of discre	ete data and dig	ital contro	I systems -		
7. Т	Definiti		of sam	pied s	af Z transfe	l.	-	long and m		
<i>L</i>-1ransforms	Definition	on and	evalu 7 tron	ation	of Z-transic	orms, mapping o	etween s-p	nane and z-		
	plane - I	plane - inverse Z-transform,								
	nulso tr	uncorents of Z-transform - function of Z-transform - pulse transfer function - $C(z)$ and $C(z)$								
	graph m	athod (nnliad	to di	zorital exeteme	Un between $O(s)$	and $O(Z)$ -	signal now		
	graph in	eniou	ippneu							
State Snace Ang	Ivsis State sn	ace mo	deling	of dig	rital systems	with sample and	hold - state	e transition		
State Space And	equation	n of dig	ital tin	ne in v	ariant systems	ms - solution of ti	me in varia	ant discrete		
	state equ	ation l	ov the 2	Z-tran	sformation -	transfer		int discrete		
	function	from	the stat	te mo	del. Eigen va	alues. Eigen vecto	ors and dia	gonalisation		
	of the A	-matrix	k, Jorda	an can	onical form,	computation of s	state transit	tion matrix.		
			,	UNII	<u> </u>	1				
Stability	Definiti	on of s	tability	, stabi	lity tests, the	e second method	of Lyapund	ov.		
Time Domain	Compar	ison of	time i	espon	ses of contin	nuous data and di	igital contr	ol systems -		
Analysis	correlati	on bet	ween t	ime r	esponse and	root locus in the	e s-plane a	nd z-plane -		
L L	root loc	i for c	ligital	contro	ol systems ·	- steady state er	ror analysi	is of digital		
	control	system	s.		-	-	-	_		
				UNI	Γ - ΙV					
Controllability	and Theorem	ns on	contro	ollabil	ity - theore	ems on observa	bility (tim	e invariant		
Observability	systems) - rela	tion be	tween	controllabil	lity - observability	y and trans	fer function		
	- contro	llability	y and o	bserv	ability vs. Sa	ampling period.				
				UNI	Γ - V					
Compensation (Design)	With Realizat	ion and	l Desig	gn of t	basic lead, La	ag and lead-Lag c	compensato	ors.		
PID Controllers	Digital l	PID co	ntrolle	r - pol	e placement	through state feed	dback.			
Text Books										
1 B C Kug "	Digital Control	Sustam	o" Ov	ford I	Inivarcity Dr	and USA and ad	lition 1005			
1. B. C. Kuo, "Digital Control Systems", Oxford University Press, USA, 2nd edition, 1995										

- 2. M.Gopal, "Digital Control Systems", Wiley; 1st edition, 1988
- 3. K. Ogata, "Modern Control Engineering", Prentice Hall, 5th edition, 2010

Reference Books

1. Ioan Doré Landau, Gianluca Zito, "Digital Control Systems: Design, Identification and Implementation", Springer Science & Business Media

Web References:

1. https://link.springer.com/book/10.1007%2F978-1-84628-056-6

2. http://www.sciencedirect.com/science/book/9780123943910

3. https://nptel.ac.in/courses/108/108/108108035/

4. http://www.springer.com/in/book/9781846280559

5. http://www.springer.com/in/book/9783642864193

6. http://nptel.ac.in/courses/108103008/

7. https://www.coursehero.com/file/13785953/DIGITAL-CONTROL-SYSTEMSpdf/

8. http://een.iust.ac.ir/profs/Esmaeilzadeh/MSc.%20Digital%20Control%20Systems/Digital%20Control%20System_PhilipsNagle.pdf

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

POWER SYSTEM STABILITY & CONTROL (PSC)

B.Tech. EEE (Honors) – POOL-4							Sche	me : 2020	
Course Code	Cat	tegory	Hours/Week		Credits	Maximum Marks			
HEE13	Но	onors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
			3	0	0	3	40	60	100
		A (1	1 6 4		(1)	1 4 111	11 /		
Course Out	comes and	At the er	u of th	e course	e the st	inear models	able to	ower system	me
CO1: Unde	erstand	the conce	ent of D	vnamic	Stabil	itv		Jower system	.115
CO3: Analyze various types of stability properties of power systems									
CO4: Unde	erstand	how to mo	odel and	d simula	ate exc	itation mecha	nisms in synchrono	ous machine	ès.
CO5: Anal	lyze co	ntrollers f	or trans	ient/ang	gle stal	oilization and	voltage regulation.		
	<u> </u>				UN	IT – I	0 0		
The Elementa	nry	A Classi	ical mo	del of o	ne ma	chine connect	ed to an infinite bu	s – Classica	l model of
Mathematical	l	multima	chine s	ystem	– Prob	olems – Effec	t of the excitation	system on	Transient
Model and Sy	stem	stability	. The u	nregula	ted syr	chronous Ma	chine – Effect of s	mall change	s of speed
Response to S	mall	– Mode	es of c	scillati	on of	an unregulat	ted multimachine	system –	Regulated
Disturbances		synchron	nous m	achine	– Volt	age regulator	with one time lag	- Governo	r with one
		time lag	– Prob	lems.					
UNIT - II									
Dynamic Stab	oility	Concept of Dynamic stability – State space model of one machine system							
		connecte	ed to in	tinite bi	us - Et	fect of excitat	tion on Dynamic st	ability – Ex	amination
		of dynar	nic stat	bility by	Koutr	s criterion.			
Dowon System		Intro du ati	ion to	aunala	UNI	$\frac{1 - 111}{2}$	aignala Dlaak	licenson of	the lineer
Fower System Stabilizors	L	system	A nnroy	supplet	model	of the comp	signals - DIOCK C	nagrani oi erstor syste	m Lead
Stabilizers		compense	Appio.	Stabilit	mouer v analv	vsis using eige	en value approach	erator syste	III – Leau
		compense		Stubilit					
Excitation		Excitation	n sveter	n reeno	UNI nse -	Non-continuu	nucly regulated ave	tems - Con	ntinuouely
Systems		regulated	system	r = Fxc	ritation	system comp	ensation – State sn	ace descrin	tion of the
Systems		excitation	system system	n - Sir	nnlifie	d linear mod	lel – Effect of ex	citation on	generator
		power lin	nits. Tv	pe - 2 s	vstem:	Rotating rect	tifier system. Type	-3 system: S	Static with
		terminal 1	potentia	and c	urrent	supplies - Ty	pe –4 system: Non	- continuo	us acting -
		Block dia	gram re	epresen	tation -	- State space	modeling equations	s of these ty	pes.
UNIT - V									
Stability Anal	ysis	Review o	f Lyapı	unov"s	stabilit	y theorems of	f non-liner systems	using energ	gy concept
-		- Method	based	on first	conce	pt – Method b	based on first integr	als – Quadı	atic forms
		– Variab	le grad	lient m	ethod	- Zubov''s	method – Popov"	s method,	Lyapunov
		function	for sing	gle mac	chine c	connected to i	infinite bus. What	is voltage	stability –
		Factors a	affectin	g volta	ge ins	tability and	collapse – Comp	arison of A	Angle and
		voltage st	tability	– Anal	ysis of	voltage insta	bility and collapse	– Integrate	a analysis
		of voltage	e and A	ngle sta	ability ·	– Control of v	oltage instability		
Text Books									

- 1. P.M.Anderson, A.A.Fouad, "Power System Control and Stability", IOWA State UniversityPress, Galgotia Publications, Vol-I, 1st Edition.
- 2. PrabhaKundur., "Power system stability and control", Tata McGraw Hill.
- 3. Kimbark E.W. "Power system stability and control Vol III, synchronous machines", John Wiley & Sons.

Reference Books

1. M.A.Pai, Power System Stability-Analysis by the direct method of Lyapunov, North Holland Publishing Company, New York, 1981.

2. K.R. Padiyar, "Power systems Dynamics stability and control", Interline publishing Pvt., ltd., Bangalore.

Web References:

1. https://www.ijareeie.com/upload/2016/june/149_Study.pdf

2. https://nptel.ac.in/content/storage2/courses/108106026/chapter1.pdf

3. https://www.geenergyconsulting.com/practice-area/global-power-projects/power-system-

stabilizers#:~:text=Power%20system%20stabilizer%20(PSS)%20control,about%202%20%2D3 %20Hz).

4. https://circuitglobe.com/excitation-system.html

5. https://nptel.ac.in/content/storage2/courses/108104051/chapter_9/9_1.html

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

INTRODUCTION TO VLSI DESIGN (IVLSID)

B.Tech. EEE (Hono	E (Honors) – POOL-4						Sc	heme : 2020	
Course Code Ca	ategory	Ho	urs/We	eek	Credits	Maximum Marks			
HEE14 H	lonors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		3	1	0	4	40	60	100	
Course Outcomes : At the end of the course the student will be able to									
COI: Absorb the ASIC classification and detailed steps followed in modern IC fabrication.									
CO2: Derive the MOSFEI I-V characteristics from basic understanding of n, p channel devices.									
CO3: Analyze th	e CMOS (circuits	, their (charac	teristics dela	ys, power and trai	ISISTOL SIZIU	ig.	
CO4: Comprehen	la otter lo	etor m	amoria	s viz. p	ass-transisto	r, dynamic, pseud	10 INMOS, I atura sat	ogic.	
	senneonau		emorie		$\frac{1}{1} - 1$	Cowis, for them re	ature set.		
VISI Fabrication	Introduct	tion to	ASIC		Γ_{s} classific:	ation Typical AS	SIC/VLSLT	Design Flow	
Technology	IC Fabri	cation	Stens	Art of	f miniaturiza	tion VI SIProces	ses. Twin-	Well CMOS	
reemonogy	Process.	MOSE	ET. R	esistor	s. Capacitors	s. pn junction Die	odes. BiCM	IOS Process.	
	Lateral r	ond Tra	ansistor	r. p-Ba	ase and Pinc	hed-Base Resisto	rs. VLSI D	esign Rules.	
	VLSI L	ayout,	Layou	ts for	CMOS Inv	verter, CMOS N	AND and	NOR gates,	
	Beyond 20nm Technology- FinFET								
UNIT - II									
Introduction to	Introduct	Introduction, Device Structure and Physical Operation, Current-Voltage							
MOSFETs	Characte	ristics,	MOS	FET C	Circuits at D	C, The Body Ef	fect and O	ther Topics,	
	Compari	son of	MOSF	ET an	d BJT, Sumr	nary, Problems.			
				UN	III – III				
CMOS Digital	Introduct	tion, C	CMOS	Logic	-Gate Circui	ts, Digital Logic	Inverters,	The CMOS	
Logic Circuits	Inverter,	Dyna	mic Oj	peratic	n of the Cl	MOS Inverter, T	ransistor Si	zing, Power	
	Dissipati	lon, Su	mmary	, Prob	lems.				
				. UN	<u>IT - IV</u>		<u> </u>		
Advanced Topics	Introduct	tion, li	nplicat	ions c	of Technolog	gy Scaling in De	ep Submici	ron Designs,	
in Digital IC	Digital I	C Tecr	nologi	es, Lo	gic-Circuit I	amilies, Design	Nethodolog	gies, Pseudo-	
Design	NIMOS .	Logic Dinale	Circuit	is, Pas	SS-1 ransistor	Logic Circuits,	Dynamic	MOS Logic	
	Circuits,	ырои	li allu i		JS LOGIC CII	cuits, Summary,	FIODIEIIIS.		
Momory Circuits	Introduct	tion 1	atches	and	Flip-Flops	Semiconductor	Memories	Types and	
Wiemory Circuits	Architec	tures	Rando	m- Ac	cess Memor	rv (RAM) Cells.	Sense An	polifiers and	
	Address	Deco	ders.	Read-	Only Mem	orv (ROM). C	MOS Ima	ge Sensors.	
	Summar	v. Prob	lems.					6,	
Text Books	·	,							
1. Adel S. Sedra an	d Kenneth	n C. Sn	nith. 20)15. M	icroelectroni	c Circuits Revise	d Edition (7	thed.).	
Oxford Universi	ty Press, I	nc., Ne	w Yor	k, NY	, USA.		,		
2. Neil Weste and	David Har	ris. 20	10. CM	IOS V	LSI Design:	A Circuits and Sy	stems Pers	pective	
(4thed.). Addisor	n-Wesley	Publis	ning Co	ompan	y, USA.				
Reference Books				•	•				

- 1. Jan M. Rabaey, AnanthaChandrakasan, and Borivoje Nikolic. 2008. Digital IntegratedCircuits (3rded.). Prentice Hall Press, Upper Saddle River, NJ, USA .
- 2. Michael John Sebastian Smith. 2008. Application-Specific Integrated Circuits (1st ed.). Addison-Wesley Professional.
- 3. Wayne Wolf. 2008. Modern VLSI Design: Ip-Based Design (4th ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
- 4. Douglas A. Pucknell and Kamran Eshraghian. 1994. Basic VLSI Design (3rd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Web References:

- 1. https://nptel.ac.in/courses/117101058/
- 2. https://www.intel.in/content/www/in/en/company-overview/intel-museum.html
- 3. http://global.oup.com/us/companion.websites/9780199339136/
- 4. www.cmosvlsi.com/

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

MODELING & SIMULATION OF POWER CONVERTERS (MSPC)

B.Tech. EEE (Honors) – POO				Sc	heme : 2020										
Course Code	Category	Ho	urs/W	eek	Credits	Maxi	mum Mar	ks								
HEE15	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total								
		3	0	2	4	40	60	100								
Course Outc	Course Outcomes : At the end of the course the student will be able to															
CO1: Unde	erstand the basic	c opera	tion of	PWM	techniques t	for inverters and i	ts simulatio	m.								
CO2: Unde	CO2: Understand Advanced three phase PWM techniques for inverters and its simulation															
CO3: Mode	el three phase m	ultilev	el inve	rters te	est through si	imulation										
CO4: Mode	el DC-DC Conv	erters	and ve	rify th	rough simula	ation	•									
CO5: Deve	lop PV fed conv	verters	and ve	<u>rify its</u>	performanc	e through simulat	10 n									
	1 1	1.0	DI		$\frac{ \mathbf{I}\mathbf{I} - \mathbf{I}}{ \mathbf{I} }$	11 1 1 /	1 /	1 0 1								
AC-AC	1-phase	and 3-	Phase	AC VO	oltage contro	ller. I-phase step	and step of	Jown Cyclo-								
Converters	converte	rs- sim	ulation		tlab/Simulin	IK										
	Desister		1!		<u>11 - 11</u>		1 D1- 1	4								
DC-DC	Design a	nd ana	IYSIS OI		converter, E	Soost converter an	a Buck-bo	DSt								
Converters	converte	r- simu	liation :	In Mai	lad/Simuini pla	K. Simple Basic T	wo stage co	nverters-								
	siniulatio		Tatia0/S													
DC AC conver	tong 1 phage	and 2 m	hogo I		$\mathbf{I} = \mathbf{I}$	hniquag Camian (Commonicor	Anneach								
DC-AC conver	cingle p	ana 5-j	dth me	nverte dulati	on mothod	multiple pulse	vidth modu	Approach –								
	PWM m	ethod_s	um mo simulat	ion in	Matlah/Sim	- muniple puise v		nation - sine								
High nower D	C- PWM te	chniqu	es for	MLIs	– neutral n	oint clamped MI	I = cascad	ed H-bridge								
AC converters	MLI –	Dual	Invert	er fec	l open end	winding arrang	pement- si	mulation in								
	Matlab/S	Simulin	ık	01 100	open ena	winding unding	Semient SI									
				UN	IT - V											
PV fed Conver	ters Modelin	g of P	V syste	m, PV	fed DC-AC	converters, PV	fed DC-DC	converters -								
	simulatio	on in M	Iatlab/S	Simuli	nk.	,										
Text Books	L															
1. Mohamme	d H. Rashid, '	"Power	Elect	ronics	"– Pearson	Education-Third	Edition -	first Indian								
reprint - 20	04.															
2. Mohan, Ur	deland and Ro	bbins,	"Powe	r Elect	tronics: Con	verters, Application	ons and De	sign",John's								
Wiley and	Sons															
3. Agam Kum	nar Tyagi, "Mat	lab and	l Simu	link fo	r Engg, Oxfo	ord Higher Educat	tion.									
Reference Boo	ks															
1. M. B. Patil	, V. Ramanaray	'anan, '	V.T. Ra	angana	than ,"Simu	lation of Power E	lectronic Ci	rcuits								
Web Reference	es:															
1. http://www	.digimat.in/npt	el/cour	ses/vid	eo/108	3108166/L51	.html										
2. https://www	w.mathworks.co	om/vid	eos/mo	deling	-and-simulat	tion-of-pv-solar-p	ower-inver	ters-								
81813.htm																
3. https://www	w.mathworks.co	om/vid	eos/dev	velopir	ng-dc-dc-con	verter-control-wi	th-simulink	-modeling-								
simulating-	and-sizing-pass	sive-co	mpone	nts-15	3553673035	8.html		simulating-and-sizing-passive-components-1535536730358.html								

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

SCADA SYSTEMS AND SEQUENCE OF EVENT RECORDING SYSTEM (SCADA)

B.Tech. EEE (I	Honors) – POC					Sc	theme : 2020				
Course Code	Category	Hou	urs/We	eek	Credits	Maximum Marks					
HEE16	Honors	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		3	0	2	4	40	60	100			
Course Outco	Course Outcomes : At the end of the course the student will be able to										
CO1: The p	CO1: The purpose of this course is to understand the Fundamental concept of supervisory control										
again	against local control										
CO2: The p	urpose is to cre	eate a m	nimic d	liagran	n of a proces	s and to get a bird	ls eye view	of the entire			
proce	ess	danatan	d 1. a.r.	CAT							
CO3: The p	urpose is to un	derstan	a now	SCAL	DA neips in i	mproving the prod	cess.				
Introduction to	Introduce	tion to	SCAD		uero endita	utilities in a press	and planta 1	Drief view of			
SCADA system	the SCA	DA sof	SCAD	A SOIL	footuros	utilities in a proc	ess plants. I	Shel view of			
SCADA System	i uie SCA	DA SUI	twale								
Mimic diagram	Creating	new n	roject a	and its	work bench	properties Confi	auring PI C	ports			
winne utagi an	devices a	and tag	s Conf	fiourin	g process sci	reens for Bottling	nlant usino	ports,			
	library (Treating	g the m	nimic s	screens and a	dvantages of the	same.	object			
	INIT _ III										
Live trends cha	arts Creating	live t	rends	and a	ttaching poi	nts from the tag	database.	Concept of			
in a mimic	ODBC.	ODBC. OLE									
diagram	,										
				UN	IT - IV						
Historian	Concept	of R	DBMS	, crea	ting a Data	ı base logger ap	plication,	configuring,			
function and D	ata creating	histori	cal tre	end an	d importing	the same in CS	SV file, cre	eating alarm			
base logger,	screens.										
alarm											
management											
	-			UN	IT - V						
Advanced	Understa	inding	the adv	vanced	functions lil	ke web server, ser	ver redund	ancy, receipe			
functions in	managen	nent. T	he cor	ncept a	and sequence	e of event record	ing and its	advantages,			
SCADA and	time star	nping o	of the d	lata ev	ents.						
Sequence of eve	ent										
recording											
1 Stuart A I	Power: SCAD	A Sup	omicor		strol and De	to Acquisition"	Instrumon	t Society of			
1. Stuart A. I America Pu	blications US	A-Sup		y Col		ata Acquisition,	msuumen	Society of			
2 Gordon Cla	urke Deon Rev	nders	7. Practi	cal M	dern SCAD	A Protocols: DNE	23 60870 5	and Related			
Systems" N	Newnes Publics	ations (Oxford		2004	2 1 1 10100015. DIVI	5,00070.5	und related			
3. Efim Roser	nwasser Bernh	hard P	Lamn	e M	ultivariable	computer-control	led system	s: a transfer			
function ap	proach". Spring	ger. 20.	Lamp	-, ,,			ica system	s. a dansier			
Reference Bool	KS	••=, _•									
1. Gordon Cla	rke, Deon Rey	nders, ,	Practi	cal Mo	odern SCAD	A Protocols: DNF	P3, 60870.5	and Related			

- Systems", Newnes Publications, Oxford, UK,2004
- 2. Stuart A. Boyer, "SCADA-Supervisory Control and Data Acquisition", Instrument Society of America Publications, USA, 2004
- 3. William T. Shaw, "Cybersecurity for SCADA systems", PennWell Books, 2006

Web References:

- 1. https://www.dpstele.com/scada/how-systems-work.php
- 2. https://www.processsolutions.com/understanding-scada-and-what-it-can-do-for-you/
- 3. https://nptel.ac.in/content/storage2/courses/108106022/LECTURE%201.pdf

Question Paper Pattern:

Internal Assessment: The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.