

Scheme – 2020

Department of Mechanical Engineering

G. Pulla Reddy Engineering College (Autonomous): Kurnool

Accredited by NBA of AICTE and NAAC of UGC

Affiliated to JNTUA, Anantapuramu

Scheme and Syllabus for

B.Tech. HONORS

in

MECHANICAL ENGINEERING

(With Effect from the Batch Admitted in 2020-21)

DEPARTMENT OF MECHANICAL ENGINEERING

HONORS in Mechanical Engineering

Scheme of Instruction and Examination

S. No	Cate gory		Cr	Scheme of Instruction periods/week			Scheme of Examination Maximum Marks			
		Course Title	ts	L	Т	P/D	End Exam Marks	CIA Marks	Total Marks	
Ι		Theory								
1.	PCC	Advanced Thermodynamics	4	3	1		60	40	100	
2.	PCC	Non Destructive Testing	4	4			60	40	100	
3.	PCC	Vibrations & Machine tool Dynamics	4	3	1		60	40	100	
4.	PCC	Optimization Methods	4	3	1		60	40	100	
5.		MOOCS-I	2						100	
6.		MOOCS-II / Mini Project							100	
		Total	20							

<u>Note:</u> 1. Student has to acquire 20 credits

- 2. Compulsory MOOC/NPTEL courses for 04 credits (02 courses @ 2 credits each) OR One MOOC course and Mini project @ 2 credits each
- 3. Honors Degree must be completed simultaneously with a Major degree program.

ADVANCED THERMODYNAMICS (ATD)

Course Code	Category	н	Hours/Week Credits		Maxir	Maximum Marks											
HME01	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL									
		3	1	-	4	40	60	100									
Sessional Exam Duration : 1 ½ HrsEnd Exam Duration: 3 Hrs																	
Course C	outcomes : A	At the	end o	f the cour	se the stud	lent will be able t	0										
CO1: Understand The laws of thermodynamics and relations																	
CO2: Un	CO2: Understand gas laws and Psychometric processes																
CO3: Un	derstand En	thalp	y, En	tropy, En	ergy forma	tion and Gibb's	phase ru	ale									
CO4: Un	derstand the	e theo	ry of	power cyc	cles and th	eir applications											
CO5: Un	derstand en	ergy c	onver	rsion met	hods												
				U	NIT – I												
Review	of Thermoo	lynan	nic L	aws and	Corollarie	es: Transient flo	ow analy	sis, Second									
law the	rmodynamic	cs, E	ntrop	oy, Availa	ability an	id unavailabilit	y, Ther	modynamic									
potential	. Maxwell r	elatio	ns, S	specific he	eat relatio	ns, Mayer's rela	ation. Ev	valuation of									
thermody	ynamic prop	erties	of we	orking su	bstance												
			<u> </u>		$\frac{\mathbf{NIT} - \mathbf{II}}{1}$	1 ' 17 1	TT 7 12	, •									
P.V.T St	uriace: Equ	lation	0I 8	state. Rea	al gas be	enavior, Vande	r waars	s equation,									
Generaliz	cation com	pressi	Dility	factor.	Energy]	properties of r	eal gas	es. vapour									
pressure	, Clausius C	Japey	ron e	equation.	Inrottling	, Joule. Inomp	son coell	icient. Non-									
reactive Development	mixtures	or pe	riect	gases.	Governing	, laws, Evalua	tion oi	properties,									
Psychom Cooling t	etric mixtur	re pro	perue	es and Ps	ychometri	c chart, Air con	anoning	g processes,									
	owers, Rear	gas n	lixtui	e.													
Combust	ion: Combi	istion	Rea	ctions F	$\frac{11 - 11}{100}$	f formation Fr	trony of	formation									
Referenc	e levels of	table	s F	nergy of	formation	n Heat reaction	n Adial	batic flame									
temperat	ure genera	ted n	roduo	nt Entha	Inies Eau	ilibrium Chen	nical equ	ulibrium of									
ideal gas	es Effect o	f non-	-react	ing gases	equilibrii	im in multiple	reactions	The Van't									
Hoff's eq	uation The	chemi	ical n	otential a	nd nhase i	equilibrium The	Gibbs n	hase rule									
non s eq		enem	icui p			equinorium. The											
Power C	vcles: Reviev	v bina	rv vat	our cycle	. co-genera	tion and combine	ed cycles.	. Second law									
analysis	of cvcles.	Refrie	zerati	on cvcles	s. Thermo	dvnamics of ir	reversible	e processes									
Introduct	ion, Phenom	ienon	logica	al laws, O	nsager's re	eciprocal relation	, Applica	ability of the									
Phenome	nological re	elation	ns, F	leat flux	and en	tropy production	on, The	rmodynamic									
phenome	na, Thermoe	lectric	circu	uits		15 1	,	5									
1	,			U	NIT – V												
Direct E	nergy Conv	ersion	Intr	oduction:	Fuel cells	, Thermo electri	c energy,	Thermionic									
power ger	power generation, Thermodynamic devices magneto hydrodynamic generators. Photovoltaic																
cells																	
Text Books																	
1. Rajput, R. K., Thermal Engineering, Lakshmi Publications, New Delhi.																	
2. Nag, P. K., Basic and Applied Thermodynamics, TMH Publishers, New Delhi																	
3. Ganeshan, V., Internal Combustion Engines, TMH Publishers, New Delhi																	
Reference	e Books																
1. Mah	esh. M. Rat	thore,	The	rmal Engi	ineering, I	McGraw Hill Pu	bishers,	New Delhi									
2. Rajp	out, R.K., Aj	plied	The	rmodynai	nics, Laks	shmi Publicatio	ns, New	Delhi.									

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub-questions. and the student should answer any one question from each unit. Each Question carries 12 marks.

NON DESTRUCTIVE TESTING (NDT)

Course Code		Category	H	ours Week	/	Credits	Maximum Marks			
HME02		PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
			4	-	-	4	40	60	100	
Session	Sessional Exam Duration : 1 ¹ / ₂ Hrs End Exam Duration : 3 Hrs									
Course Outcomes : At the end of the course, students will be able to										
CO1 :)1: Understand the principles and classification of NDT methods for failure identification									
CO2 :	Understand the theory of surface NDT and techniques involved in it									
CO3 :	Unders	Understand Thermography and Eddy current testing methods to detect the flaws								
CO4:	Identify emissio	7 the flaws a on Methods	nd 1	eaks	in	the comp	oonents using ultras	onic and	acoustic	
CO5 :	Utilize	radiography to	o ide	ntify	une	derlying fa	ilure sites			
						UNIT – I				
NDT Versus Mechanical testing, Overview of the Non Destructive Testing Methods for the detection of manufacturing defects as well as material characterisation. Relative merits and limitations, Various physical characteristics of materials and their applications in NDT, Visual inspection – Unaided and aided UNIT – II Surface NDT Methods: Liquid Penetrant Testing – Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results Magnetic Particle Testing- Theory of magnetism, inspection materials, Magnetisation methods, Interpretation and evaluation of test indications, Principles and methods of demagnetization, Residual magnetism UNIT – III Thermography And Eddy Current Testing: Thermography- Principles, Contact and non-contact inspection methods, Techniques for applying liquid crystals, Advantages and limitation – infrared radiation and infrared detectors, Instrumentations and methods, applications Eddy Current Testing - Generation of eddy currents, Properties of eddy currents, Eddy current sensing elements, Probes, Instrumentation, Types of arrangement, Applications, advantages, Limitations, Interpretation/Evaluation										
Ultrasc	nic Tes	ting And Aco	usti	c En	niss	ion:				
Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A-Scan, B-scan, C-scan. Phased Array Ultrasound, Time of Flight Diffraction Acoustic Emission Technique – Principle, AE parameters, Applications										
Radiography:										
Radiography: Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types and use of filters and screens, geometric factors, Inverse square law, characteristics of films – graininess, density, speed, contrast, characteristic curves, Penetrometers, Exposure charts, Radiographic equivalence. Fluoroscopy- Xero -Radiography, Computed Radiography, Computed Tomography										

Text Books: 1. Baldev Raj, T.Jaya kumar, M.Thavasimuthu, Practical Non-Destructive Testing, Narosa Publishing House Ravi Prakash, Non-Destructive Testing Techniques, 1st revised edition, New Age 2. International Publishers **Reference Books:** 1. ASM Metals Handbook, Non-Destructive Evaluation and Quality Control, American Society of Metals, Metals Park, Ohio, USA 2. Paul E Mix, Introduction to Non-destructive testing: a training guide, Wiley, New Jersey **3.** Charles, J. Hellier, Handbook of Non-Destructive evaluation, Mc Graw Hill, New York 4. Dr. V. Jayakumar, Dr. K. Elangovan, Non-Destructive Testing of Materials Lakshmi Web Resources: https://nptel.ac.in/courses/113/106/113106070/ **Question Paper Pattern: Sessional Exam :** The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second Sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section. **End Examination:** The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these

questions may contain sub questions and the student should answer any one question

from each unit. Each Question carries 12 marks.

VIBRATIONS AND MACHINE TOOL DYNAMICS (VMTD)

Course Code	Category	Ho	urs / V	/eek	Credits	Maximum Marks					
HME03	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	1	-	4	40	60	100			
Session	Sessional Exam Duration : 1 ½ HrsEnd Exam Duration : 3 Hrs										
Course Outcomes t At the and of the second students will be able to											
Course											
CO1:	solve problems on under damping, critical damping and over damping vibrating systems.										
CO2:	Compute natural frequency of a single degree freedom systems with forced vibration.										
CO3:	Calculate natural frequencies and mode shapes for two degree freedom										
CO4:	Determine natural frequencies and mode shapes for transverse vibration systems with concentrated load and UDL and torsional vibrations of rotor system.										
CO5 :	Understand of a machin	l effe	ct of vi ol.	bratio	ons on cu	atting conditions,	work piec	e and tool life			
					UNIT	- I					
dampin logarith Forced vibration and tran Two de systems	Single degree ireedom systems: Free vibrations, natural frequency, free vibrations with damping, differential equation of S.H.M, critical damping, under damping, over damping, logarithmic decrement. UNIT – II Forced vibrations: Single degree freedom forced vibrations, vector representation, and vibrations due to unbalance, vibration force transmitted to the ground, vibration isolation and transmissibility. UNIT – III Two degree freedom system: Introduction, vibrations of free damped two degree freedom										
absorbe	r.				UNIT -	· TV					
Transverse and torsional vibrations: Natural frequency of free transverse vibrations-single concentrated load, uniformly loaded simply supported shaft, transverse vibration of shaft carrying with several loads-Dunkerley's method, energy method, critical speed of the shaft. Free torsional vibrations-single rotor system, two rotor system, three rotor system and geared system.											
UNIT – V											
VIDrations of machine tools : Sources of vibration in machine tools, effect of vibration on machine tool, effect of vibration on cutting conditions, effect of vibration on work piece, effect of vibration on tool life, self excited vibration and dynamic stability, elimination of vibrations.											
Text Bo	Text Books:										
1. G. F	1. G. K. Grover, Mechanical Vibrations, New Chand and Bro's Publishers, Roorkee										
2. S. Graham Kelly, Mechanical Vibration, Tata McGraw-Hill, Delhi.											
3. G.C. Sen and A.Bhattacharya, Principles of Metal Cutting, New Central Book Agency, New Delhi.											

Reference Books:

1. Timoshenko SP and Young DH, Introductory Course on Vibration Problems in Engineering, John Wiley and Sons Publishers, Singapore

2. Thomson William T, Vibration Theory and Applications, Pearson Education, New Delhi

3. V.P. Singh, Mechanical Vibrations, Dhanpat Rai and Sons Publishers, New Delhi,

Web Resources: https://nptel.ac.in/courses/112/103/112103016/ Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second Sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub questions and the student should answer any one question from each unit. Each Question carries 12 marks.

OPTIMIZATION METHODS (OM)

Course Code	Category	Ho	urs /	Week	Credits		Maximum Marks				
HME04	PCC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	1	-	4	40	60	100			
Sessiona	l Exam Dura	ation	:1 ½	Ars		En	d Exam Durat	tion: 3 Hrs			
Course Outcomes : At the end of the course, students will be able to											
CO1:	CO1: Solve problems of optimization using Integer programming										
CO2:	CO2: Solve problems of optimization using Dynamic programming										
CO3:	Understand	l opti	miza	tion usi	ing Geneti	c algorithms					
CO4:	Understand	$\frac{1}{1}$	solv	$\frac{1}{1}$	<u>cal optimi</u>	zation problem		1.,.			
C05:	Solve the si	mple	prot	olems u	sing Lagra	angean methoc	l and Kuhn c	onditions.			
Optimiz Optimiza	Optimization: Introduction, Historical Development, Engineering Applications of Optimization, Classification of Optimization problems.										
Integer methods Algorith	Integer Programming : Simple applications of integer programming, solution methods of integer programming- Branch and Bound Algorithm, Cutting Plane Algorithm										
					UNIT – II						
Dynamie	c Programn	ning:	Intro	oduction	ı-Bellman's	s principle of o	optimality-App	olication of			
dynamic	programmin	ng to	Linea	ar progr	amming p	roblem and Ca	pital budgetin	ig problem			
	A1	(0.4)	T 4	1	UNIT – III	1 / 0		.1 1			
Genetic Tradition	Algorithm	(GA)	: Intr	Conductio	on, Differe	nce between G	enetic Algorit	thm and			
Genetic	algorithm o	nerat	ors -	selecti	on crosso	ver and mutat	ion Simple	nemataj,			
applicat	ions of GA	perut	010	bereett	011, 010000	ver und mutat	ion, ompie				
F					UNIT – IV	,					
Classica minima,	al Optimiza constraine	tion- d pro	1: In blem	troduct s of ma	tion; Unco xima and	nstrained prot minima	plems of maxi	ima and			
					UNIT – V						
Classica method;	l Optimizat Constraints	ion-2 s in tl	Con Con	nstraint rm of in	s in the lequalities	form of ec -Kuhn-tucker	uations - I conditions	Lagrangian			
Text Boo	oks:										
1. S.D.S	sharma , Op	eratio	ons F	Researc	h, Kedarn	ath and Co. Pu	ublishers, Me	erut			
2. A.P.V	erma , Oper	ation	is Re	search,	S.K.Kata	ria & Sons, Ne	w Delhi				
Reference	e Books:										
1. V. K.	Kapoor , Op	oerati	ons l	Researc	h, S. Cha	nd, New Delhi					
2. S.S.Rao, Optimization Theory and Applications, NAI Publishers, Hyderabad											
Web Resources:											
1. <u>https://nptel.ac.in/courses/105/103/105103210/</u>											
2. <u>https://nptel.ac.in/courses/111/105/111105039/</u>											
3. <u>https://nptel.ac.in/courses/111/105/111105100/</u>											
Question Paper Pattern: Sessional Exam :											
The question paper for sessional examination shall be for 25 marks, covering half of the											

syllabus for first sessional and remaining half for second Sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each

section. The student shall answer one question from each section.

End Examination:

The question paper for End examination shall be for 60 marks. The Question paper shall contain Five Units with Two Questions (Either or Type) from each unit. Each of these questions may contain sub questions and the student should answer any one question from each unit. Each Question carries 12 marks.