
Syllabus
01 July 2019 06:17 AM

 I - Semester - FLAT Page 1

 I - Semester - FLAT Page 2

 I - Semester - FLAT Page 3

UNIT - I
30 June 2017 07:14 PM

 I - Semester - FLAT Page 4

Symbol: a, b, c, 1, 2, 3 , etc. are called symbols.
Alphabet: finite and non-empty set of symbols.
Denoted by Σ.
Examples: Σ = {1, 2}
Σ = { a, b}
Word or String: finite sequence of symbols chosen from Σ.
Denoted by u, v, w, x, y, z
Ex: For Σ = {0, 1} , strings are λ, 0, 1, 00, 01, 10, 11, 000, 001, ….
Null String or Empty String is λ

Σ1 = { 0, 1 } (Strings of length 1)

Σ2 = { 00, 01, 10, 11} (Strings of length 2)

Σ3 = { 000, 001, 010, 011, 100, 101, 110, 111 } (Strings of length 3)

Σk = { x | x is string of length k } (strings of length exactly k)

Σ* = { x | x is string of any length ≥ 0 } (including null string)

Σ+ = { x | x is string of any length > 0 } (no null string)

Language : L is a subset of Σ*
For Σ = {0, 1},
L1 = {all strings of 0's and 1's ending with 01}
L2 = { all strings of 0's and 1's with substring 101}
L3 = { all strings of 0's and 1's with even length}
L4 = {all strings of 0's and 1's starting with 1 and ending with 011} etc.

SET THEORY:
SET: unordered collection of definite and distinct objects.
A = {1, 2, 3, …..} or A = { x | x is a natural number}
Empty Set vs Non-empty Set
Finite Set vs Infinite Set
{1, 2, 3} = {2, 1, 3} = {1, 2, 2, 3}

Formal Language: A language that has a well-defined set of syntax rules. (grammar)
The mathematician "Noam Chomsky" gave a classification of formal languages as
follows:

RL

CFL

REL

CSL
RL - Regular Languages
CFL - Context Free Languages
CSL - Context Sensitive Languages
REL - Recursively Enumerable Languages

Each regular language is also a context free language. But each CFL is not a RL.
Each context free language is also a context sensitive language. But each CSL is not a CFL.
Each context sensitive language is also a recursively enumerable language. But each REL is not a CSL.

Language Language Recognizer

RL DFA or NFA

CFL PDA

CSL LBA

REL TM

DFA = Deterministic Finite Automata
NFA = Non-deterministic Finite Automata
PDA = Push Down Automata
LBA = Linear Bounded Automata
TM= Turing Machine

Finite State Machines

FA with output (Transducers) FA without output (Acceptors)

Moore machines Mealy machines DFA NFA

Before learning DFA formally, see DFA in real life.
Example: Electric Switch
Switch has two states: ON (1) and OFF (0).
By default, switch is in the initial state of OFF.
When we press the switch, state transition occurs between ON and OFF as shown below:

DFA is represented using directed graph where each node is a
state and edge represents state transition.

FA models the computer hardware
consisting of a processor with finite
amount of memory.

So far we have seen computations in
high level (using programming
languages). Now we look at the
computations at machine level.

A digital computer takes input data and produces output data. How the
input data is mapped with output data? We see the mapping of input
data to output at the lowest level.

Basic Terms and Definitions
05 July 2017 06:23 AM

 I - Semester - FLAT Page 5

DFA Model

Input Tape

Read Head

Control
Unit

Binary
Output
Yes / No

DFA has memory in the form of tape to store input string to be scanned.
Tape is divided into cells so that each cell stores a symbol of input string.
Control unit is responsible for state transitions.
Using read head, the control unit scans the input string stored in the tape one
symbol at a time.
After reading the last symbol of input string, DFA halts in one state which is
considered as the state yielding output "yes" or "no".

When we press the switch, state transition occurs between ON and OFF as shown below:

OFF/0 ON/1

Press

Press

state and edge represents state transition.

Deterministic Finite Automata

Given the state and input,
You must be able to
determine
The next output state

Finite no.of states
Finite amount of
memory

Singular - "automaton"

Given the switch state as ON, and
Asked to determine the next state for

 ON OFF

Pressing 5 times as 01001 or 11100 etc.

Another example of DFA is FAN Regulator.

0

1

2
3

4

a

a

a

a

c

c

c
c

c

c - clockwise rotation
a - anticlockwise rotation

Formal Definition of DFA:
M = (Q, Σ, δ, q0, F) where
Q is set of states
Σ is set of symbols
δ is state-transition function defined as Q X Σ → Q
q0 is initial state
F is set of final states , F

For the electric switch example:
Q = {OFF, ON}
Σ = { 0, 1}
q0 = OFF
F={0,1}

Ϲ Q

For the fan regulator example:

Q = { 0, 1, 2, 3, 4}
Σ = { c, a}
q0 = 0
F={0,1,2,3,4}

Here, the switch must remember current state out of two possible states.
Therefore, memory of two bits is enough.

Here, Fan has to remember the
current state out of five possible
states. Therefore, log2(5)=3 bits are
enough for memory

In general, if DFA has 'n' states then it requires log2(n) bits for memory

a

 I - Semester - FLAT Page 6

Pattern Recognition Problems1.
Divisible by k Problems2.
Modulo-k-counter problems3.

Draw a DFA to accept string of a's having at least one a.1.

Draw a DFA to accept strings of a's and b's having at least one a.2.

Draw a DFA to accept strings of a's and b's having at most one b.3.

Draw a DFA to accept strings of a's and b's having exactly one a.4.

Obtain a DFA to accept strings of a's and b's starting with the string ab.5.

Draw a DFA to accept strings of a's and b's ending with the string abb.6.

Draw a DFA to accept strings of a's and b's having substring aab.7.

Design a DFA to accept strings of a's and b's that do not start with string ab.8.

Design a DFA to accept strings of a's and b's that do not end with string abb.9.

Design a DFA to accept strings of a's and b's that do not have substring aab.10.

Draw a DFA to accept string of a's and b's such that L = { awa | w ϵ (a + b)* where n >= 0 }11.

Draw a DFA to accept strings of a's and b's starting with ab or ba.12.

Draw a DFA to accept strings of a's and b's ending with ab or ba.13.

Design a DFA to accept strings of a's and b's having substring aab or bba.14.

Obtain a DFA to accept strings of a's and b's having four a's.15.

Obtain a DFA to accept strings of 0's,1's and 2's beginning with a '0' followed by odd

number of 1's and ending with a '2'.

16.

Obtain a DFA to accept strings of a's and b's with at most two consecutive b's.17.

Obtain a DFA to accept strings of a's and b's starting with at least two a's and ending with at

least two b's.

18.

Draw a DFA to accept strings of a's and b's having not more than three a's.19.

Draw a DFA to accept set of all strings on the alphabet Σ = { 0, 1 } that either begins or ends

with the substring 01.

20.

Draw a DFA to accept the language L = { w : na(w) >=1, nb(w) = 2}21.

Draw a DFA to accept the language L = { w : na(w) = 2, nb(w) >= 3}22.

Pattern Recognition Problems

While designing DFA, it is represented using a directed graph in which each state is a node and the edge
between two nodes shows the state transition between the two states. Each edge is labelled with an
input symbol to denote the input symbol upon which state transition occurs.

DFA as a Graph:

Design DFA to accept strings of 0's and 1's containing odd number of 0's.

Graph Notation:

Initial stateq0 Final State qi Intermediate state

When a DFA is represented as a graph, each state in DFA is shown as a node in the graph and state
transition is shown as an edge between nodes with the symbol on which transition occurs.

On the other hand, if DFA is shown as table, then the number of rows is equal to the number of states in
DFA and the number of columns is equal to the number of input symbols in the alphabet.

State 0 1

q0 q1 q0

q1 q0 q1

DFA as a Table:

State-Transition Graph

State-Transition Table

From each state and for every input symbol, draw exactly one transition. (m states, n symbols → mn transitions).1.
In DFA, state transition occurs only after reading the input symbol. (no null transitions).2.
DFA must contain only one initial state. (Deterministic property). (Ex: C program contains only one main() function.)3.

DFA Design Constraints:

DFA Design
10 July 2017 05:53 AM

 I - Semester - FLAT Page 7

Obtain a DFA that accepts binary integers divisible by 2,3,4 and 5.1.

Draw a DFA to accept decimal strings divisible by 2,3,4 and 5.2.

Draw a DFA to accept decimal strings divisible by 2 and 3.3.

Draw a DFA to accept binary strings divisible by 2 and 34.

Draw a DFA to accept decimal strings divisible by 2 or 3.5.

Draw a DFA to accept binary strings divisible by 2 or 3.6.

Divisible by k Problems

Obtain a DFA to accept strings of even number of a's.1.

Obtain a DFA to accept strings of odd number of b's.2.

Obtain a DFA to accept strings of even number of a's and odd number of b's.3.

Obtain a DFA to accept strings of odd number of a's and even number of b's.4.

Obtain a DFA to accept strings of odd number of a's and odd number of b's.5.

Obtain a DFA to accept strings of even number of a's and even number of b's.6.

Obtain a DFA to accept the language L = { w : |w| mod 3 = 0 } where Σ = { a }.7.

Obtain a DFA to accept the language L = { w : |w| mod 3 = 0 } where Σ = { a,b }.8.

Obtain a DFA to accept the following language L = { w such that9.

|w| mod 3 >= |w| mod 2 where w ϵ Σ* and Σ = {a}.a)

|w| mod 3 ≠ |w| mod 2 where w ϵ Σ* and Σ = {a} b)

Obtain a DFA to accept the following language L = { w such that10.

|w| mod 3 >= |w| mod 2 where w ϵ Σ* and Σ = {a, b}.a)

|w| mod 3 ≠ |w| mod 2 where w ϵ Σ* and Σ = {a, b} b)

Obtain a DFA to accept the language L = { w : |w| mod 5 ≠ 0 } on Σ = {a}.11.

Obtain a DFA to accept the language L = { w : |w| mod 5 ≠ 0 } on Σ = {a, b}.12.

Obtain a DFA to accept strings of a's and b's such that L = { w | w ϵ (a + b)* such that

Na(w) mod 3 = 0 and Nb(w) mod 2 = 0 }

13.

Modulo k Counter Problems

 I - Semester - FLAT Page 8

C Program on DFA1
16 July 2018 08:52 PM

 I - Semester - FLAT Page 9

 I - Semester - FLAT Page 10

C Program on DFA2
16 July 2018 09:22 PM

 I - Semester - FLAT Page 11

 I - Semester - FLAT Page 12

C Program on DFA3
16 July 2018 09:14 PM

 I - Semester - FLAT Page 13

 I - Semester - FLAT Page 14

C Program on DFA4
16 July 2018 09:32 PM

 I - Semester - FLAT Page 15

 I - Semester - FLAT Page 16

C Program on DFA5
16 July 2018 09:40 PM

 I - Semester - FLAT Page 17

 I - Semester - FLAT Page 18

Non-deterministic Finite Automata (NFA) :

It is not always possible to solve the problems using deterministic procedures. There are few problems that can be
solved using non-deterministic approaches. In other words, guessing the solutions for the problem.

For example, if a person is missing and a group of people searching for him/her. Usually the people searches for the
missing person each one taking a different route. Someone searches in bus station, someone in railway station, someone
in friends place so on. Finally, if any one person finds the missing person, the mission will be completed.

In computer science applications, there are few problems that can be solved using non-deterministic algorithms.
For example, in MANET, if a source node has data to send to a destination node, DSR algorithm establishes a routing
path using RREQ and RREP packets. The source broadcasts RREQ and it is received by all its neighbour nodes. Then the
packet is forwarded by neighbour nodes until it reaches the destination node. The RREP packet is then given by
destination node.

Formal Definition:

M = (Q, Σ, δ, q0, F) where

Q is set of states
Σ is set of input symbols
q0 is set of initial states
F is set of final states and
δ is state-transition function defined as Q X Σ → 2Q

Sometimes it is not easy to draw DFA for few problems. There NFA helps you. Draw NFA for the problem and later you
may convert it into DFA.

Regarding no. of transactions: For m states and n input symbols, DFA must have mn transitions.1.
Regarding null transitions: DFA has no null transitions. (state-transition occurs only after reading input symbol).2.
Regarding no. of initial states: DFA has only one initial state.3.

While designing DFA, three rules must be followed:

NFA can have any no. of transitions (from any state you can draw any no. of transitions)1.
NFA can have null transitions.2.
NFA can have multiple initial states.3.

NFA design can omit the above three rules i.e.

Example: Design NFA to accept the strings containing any no. of a's followed by any no. of b's followed by any no. of c's.

From state q0, there is no transition defined for the symbol b. Also, λ-transitions are present.

NFA Introduction
21 July 2017 05:23 AM

 I - Semester - FLAT Page 19

State a b c

q0 {q0, q1, q2} {q1,q2} {q2}

q1 φ {q1,q2} {q2}

q2 Φ Φ {q2}

In the table, we can see multiple states from a given state and for given symbol. Also empty set (no
transitions are defined) for certain symbols from a state.

 I - Semester - FLAT Page 20

Design NFA to accept all the strings of a's and b's starting with ab.1.

Design NFA to accept all the strings of a's and b's ending with bb.2.
Design NFA to accept all the strings of a's and b's with substring aba.3.
Design NFA to accept all the strings of a's and b's starting with either ab or ba.4.
Design NFA to accept all the strings of a's and b's ending with either ab or ba.5.
Design NFA to accept all the strings of a's and b's containing substring either abb or aab6.
Find NFA for L = { x ϵ { a, b } * : x ends with a or x contain ab }7.
Find NFA for L = {aibj : i ≥ 1 , j ≥ 1 } ᴜ { λ, a }8.

Obtain NFA for L = { 10n : n ≥ 0 } ᴜ {10n10m : n, m ≥ 0 }9.
Draw NFA for L = { x ϵ { a, b, c } * : x contains exactly one b immediately following c }10.
Find NFA for L = { x ϵ { 0, 1 } * : x is starting with 1 and |x| is divisible by 3 }11.
Find NFA for L = { x ϵ { a, b } * : x contains any number of a's followed by at least one b }12.

13.

Design NFA to accept strings with atleast two consecutive 0's or 1's.
Design NFA to accept all strings of 0's and 1's in which third symbol from the right end is always 1.
Design NFA to accept all strings of 0's and 1's in which second leftmost symbol is always 1.
Design DFA and NFA to accept all the strings of 0's and 1's whose tenth symbol from the right end is 1.

NFA Design
21 July 2017 06:19 AM

 I - Semester - FLAT Page 21

Design DFA accepting all binary strings in which third symbol from the right end is always a 1.

 I - Semester - FLAT Page 22

For any given NFA M, there exists an equivalent DFA M' such that L(M) = L(M').

Proof: Let M = (Q, Σ, δ, q0, F) be given NFA accepting L(M).
We can define DFA M' = (Q', Σ, δ', q0', F') as follows:
Σ is same for both DFA and NFA.
q0' = q0

For each input symbol 'a' if δ(qi, a) = {qj, qk, ql} then
δ'(qi,a) = [qj,qk,ql] (single state)
Q' = 2Q

For each input symbol 'a' if δ(qi, a) = {qj, qk, ql} ϵ F then
δ'(qi,a) = [qj,qk,ql] ϵ F' (single state)

Example: Obtain the DFA for the following NFA.

NFA Table:

δ a b

q0 {q0, q1} q0

q1 φ q2

q2 Φ φ

DFA Table:

δ' a b

[q0'] [q0,q1] [q0']

[q0,q1] [q0,q1] [q0,q2]

[q0,q2] [q0,q1] [q0]

To prove the equivalence relationship between
DFA and NFA, we use the principle of
mathematical induction.
Induction principle is used to prove that
something is always true.
For e.g., Real-life example
The Sun came yesterday, The Sun came today and
the Sun will come tomorrow.
After one year, Sun will come
After 10 years, Sun will come
i.e., The Sun will come as long as the Universe
exists and nothing wrong happens.
Programming example:
Recursive definition of factorial of a number
n! = n * (n-1)!
0!=1
1!=1
2!=2*(2-1)!
3!=3*(3-1)!

n!=n*(n-1)!

(n+1)!=(n+1) * n!

If we find factorial upto number n, then we can
also find factorial for number (n+1)

Another example: if we run a program calculating
the sum of two numbers, and if we run the
program 10 times successfully, and if we want to
run the program 11th time, we expect it will run
successfully.

Similarly, it is always true that for any given NFA,
there exists an equivalent DFA.

NFA to DFA Conversion
24 July 2017 04:50 AM

 I - Semester - FLAT Page 23

1.

1.

2.

3.

4.

NFA to DFA Problems
24 July 2017 05:37 AM

 I - Semester - FLAT Page 24

4.

5.

6.

7.

8.

 I - Semester - FLAT Page 25

9.

10.

 I - Semester - FLAT Page 26

 I - Semester - FLAT Page 27

1.

2.

3.

4.

5.

6.

NFA-λ to DFA Problems
24 July 2017 03:18 PM

 I - Semester - FLAT Page 28

6.

7.

8.

 I - Semester - FLAT Page 29

NFA Implementation
16 July 2018 10:46 PM

 I - Semester - FLAT Page 30

 I - Semester - FLAT Page 31

 I - Semester - FLAT Page 32

 I - Semester - FLAT Page 33

 I - Semester - FLAT Page 34

While implementing DFA, the amount of memory required is directly proportional to number of states in DFA.
To save memory space, it is important to minimize DFA (reduce no. of states in DFA).

DFA minimization is based on the property of equivalence of states.
Two states, say s1 and s2 of an finite automaton M are equivalent if for any x ϵ Σ*,
δ*(s1,x) = δ*(s2,x) = t ϵ Q
That is , for any input string both the states must reach to the same state t.
Two states S1 and S2 are 0-equivalent if they have the same output, that is, either both are accepting states or
both are non-accepting states.
Two states S1 and S2 are 1-equivalent if they have the same output (i.e., they are 0-equivalent) and for each
input symbol, their succeeding states are also 0-equivalent.
Two states S1 and S2 are k-equivalent if for any x ϵ Σ*, where x has no more than k symbols, δ*(s1,x) = δ*(s2,x)

Example:

0-equivalent states:

{s0, s1, s3} (set of final states) {s2, s4} (set of non-final states)

δ a b

S0 S2 S1

S1 S2 S0

S3 S2 S3

All the states
S0, s1, s3 are
Going to same
Group of
Non-final states

All the states
S0, s1, s3 are
Going to same
Final states
Group of

Therefore, States s0, s1 and s3 are
1-equivalent.

δ a b

S2 S4 S3

S4 S0 S1

Same groupDifferent
groups

Threfore, states s2 and s4 are not
1-equivalent.

The final groups of states are:

{s0, s1, s3} {s2} {s4}

DFA
minimizat...

DFA Minimization
25 July 2017 03:04 PM

 I - Semester - FLAT Page 35

1.

2.

DFA minimization problems
27 July 2017 12:39 PM

 I - Semester - FLAT Page 36

2.

3.

4.

 I - Semester - FLAT Page 37

4.

5.

δ a b Output

→A B C 0

B F D 0

C G E 0

D H B 0

E B F 1

F D H 0

G E B 0

H B C 1

6.

δ a b

→A B E

B C F

C D H

D E H

E F I

F G B

G H B

H I C

I A E

 I - Semester - FLAT Page 38

 I - Semester - FLAT Page 39

Machines producing binary output are not much significant. The machine is considered as efficient if it produces output other than binary output.

All the problems do not have the answer as "yes" or "no". There are few problems that have answer other than "yes" or "no".

Ex: Do you come to movie? (Answer is either yes or no)
 What is your name? (Vijay; answer is other than yes or no)

Given L={binary strings ending with 01}
Does w=010101101 belong to L? (Answer is yes)
Does x=01110 belong to L? (Answer is no)

What is the 1's complement of 0100111? (Answer is 1011000; other than yes or no)

Moore machine formal definition: M = (Q, Σ, δ, q0, Δ, Γ) where

Q is set of states,
Σ is set of input symbols,
δ is state-transition function defined as δ: Q X Σ → Q
q0 is initial state
Δ is set of output symbols and
Γ is output function mapping Q into Δ

Mealy machine formal definition: M = (Q, Σ, δ, q0, Δ, Γ) where

Q is set of states,
Σ is set of input symbols,
δ is state-transition function defined as δ: Q X Σ → Q
q0 is initial state
Δ is set of output symbols and
Γ is output function mapping Q X Σ into Δ

In Moore machine, output is associated with state.
In Mealy machine, output is associated with transition.

Example: Moore machine to calculate 1's complement of binary string. Example: Mealy machine to calculate 1's complement of binary string.

For an input string of "n" symbols,
Moore machine produce output string of "n+1" symbols
Mealy machine produce output string of "n" symbols.

(because of output symbol associated with initial state)

Moore & Mealy machines
27 July 2017 06:33 PM

 I - Semester - FLAT Page 40

Design Moore and Mealy machines to get 1's complement of binary number.1.
Design Mealy machine for the following table and also find the output for the string "abbabaaa".2.

δ a b o/p

q0 q1 q2 1

q1 q1 q1 0

q2 q1 q0 1

Design Moore and Mealy machines that give an output '1' if input of binary sequence a '1' is preceded by exactly two zero's.3.
Design a Moore machine such that it produces output A if the string ends with 10, B if the string ends with 11 and C
otherwise.

4.

Design a Moore and Mealy machines for a binary input sequence, if it ends in 101, output is 'A', if it ends in '110' output is B,
otherwise 'C'.

5.

Design Moore and Mealy machines that replace each occurrence of substring 100 by 101.6.
Design Moore and Mealy machines that print residue modulo of 2,3,4, and 5 for the given binary number.7.
Design Moore and Mealy machines that print residue modulo of 2,3,4, and 5 for the given decimal number.8.
Design a Mealy machine which can give output Even, Odd according to the total number of 1's encountered is even or odd.9.
The input symbols are 0 and 1.
Design Mealy machine to count how many times the substring 'aab' occurs in a string.10.
Design a mealy machine to print two's complement of binary number. (Assume input and output are taken from right to left).11.
Design a Mealy machine to perform a 3-bit odd parity check on the input string. If the total number of 1-bits in the input
string is even, the total number of 1-bits of the string will be odd.

12.

Moore & Mealy machines problems
27 July 2017 07:45 PM

 I - Semester - FLAT Page 41

UNIT - II
30 June 2017 07:14 PM

 I - Semester - FLAT Page 42

A Regular Language has different notations: Set Notation, Graph Notation, Tabular Notation.
Example: Language of all strings of 0's and 1's ending with 11.
Set Notation: L = {x ϵ {0, 1}* | x ends with 11}
Graph Notation:

Tabular Notation:

δ 0 1

→q0 q0 q1

q1 q0 q2

q2 q0 q2

Now we see another notation: Regular Expression r = (0 + 1)*11 (Among four notations, which one is better and why?)

Regular Expression is the short and practical notation to describe the regular language.

Regular Expressions
03 August 2017 12:12 PM

 I - Semester - FLAT Page 43

Regular Expression Meaning

λ or ϵ Empty string

a + b String of length one (exactly)

(a + b) (a + b) or (a + b)2 Strings of a's and b's of length 2 (exactly)

(a + b) (a + b) (a + b) or (a + b)3 Strings of a's and b's of length 3 (exactly)

(a + b)10 Strings of a's and b's of length 10 (exactly)

(λ + a + b) (λ + a + b) or (λ + a + b)2 Strings of a's and b's of length atmost 2

(λ + a + b)10 Strings of a's and b's of length atmost 10

(a + b)* Strings of a's and b's of any length n ≥ 0

(a + b)+ Strings of a's and b's of any length n ≥ 1

(a + b)*abb Strings of a's and b's ending with abb

ab(a + b)* Strings of a's and b's starting with ab

(a + b)*aab(a + b)* Strings of a's and b's containing substring aab

a*b*c* Any no.of a's followed by any no. of b's followed by any no. of c's

a+b+c+ Atleast one a followerd by atleast one b followed by atleast one c

aa*bb*cc* Atleast one a followerd by atleast one b followed by atleast one c

(a + bb) (a + b)* Starting with either a or bb

(a + b)* (a + bb) Ending with either a or bb

(a + b)* (a + bb) (a + b)* Containing substring either a or bb

((a + b)(a + b))* Even length strings

((a + b)(a + b) (a + b))* String length divisible by 3

((a + b)(a + b))* (a + b) Odd length strings

 I - Semester - FLAT Page 44

((a + b)(a + b))* (a + b) Odd length strings

(a + b)* aaa (a + b)* Strings with three consecutive a's

(b + ab)* (a + λ) No two consecutive a's

a (a + b) b Starting with a and ending with b

(a + b)*a(a + b) Second symbol from right end is a

(a + b)*a(a + b)9 Tenth symbol from right end is a

(aa)*(bb)*b Even a's followed by odd b's

 I - Semester - FLAT Page 45

Different regular expressions can be written for the same language.
For example, the language of all strings of a's and b's with atleast one a followed by atleast one b, there are two
regular expressions such as aa*bb* and a+b+

As the regular expressions are used practically, it is important to write them with few symbols as possible. In other
words, it is required to simplify the regular expressions.
To simplify the regular expressions, there are few identity rules to be followed:

Simplification of Regular Expressions
05 August 2017 05:32 AM

 I - Semester - FLAT Page 46

 I - Semester - FLAT Page 47

 I - Semester - FLAT Page 48

 I - Semester - FLAT Page 49

Regular expression (RE) and Finite Automata (FA) are representations of regular
languages.

A regular language can be described using both RE and FA.

When RE is given, how to find equivalent FA?

When FA is given, how to write equivalent RE?

Equivalence between RE and FA
08 August 2017 04:06 AM

 I - Semester - FLAT Page 50

RE to FA conversion
08 August 2017 04:10 AM

 I - Semester - FLAT Page 51

 I - Semester - FLAT Page 52

 I - Semester - FLAT Page 53

Practice Problems:

(0 + 1)* (00 + 11) (0 + 1)*1.
R = ba + (a + bb) a*b2.
r=(0 + 1)* (011)3.
r=10 + (00 + 11) 0*104.
r= 0 + 11 + 101*05.
r=(01 + 2*)* 16.
r=0* + (01 + 0)*7.
r=(01 + 0)* (00 + 11)8.

 I - Semester - FLAT Page 54

 I - Semester - FLAT Page 55

Practice Problems:

 Process of Constructing RE from FA:

In the transitional graph, there must be no epsilon moves.•
In the FA, there is only one initial state.•

There are some assumptions:

Now, we have to construct equations for all the states. There are n number of equations
If there are n states.
For any FA, these equations are constructed in the following way:
<state name> = Σ [< state name from which inputs are coming>, <input>]
For the beginning state, there is an arrow at the beginning coming from no state. So, a λ is added with
the equation of the beginning state.
Then, these equations have to be solved by the identities of RE. The expression obtained for the final
state and consists of only the input symbol (Σ) is the RE for the FA.

FA to RE Conversion
17 August 2017 09:30 AM

 I - Semester - FLAT Page 56

 I - Semester - FLAT Page 57

RE to FA

 I - Semester - FLAT Page 58

Pumping Lemma is based on Pigeonhole Principle.

Pumping Lemma for Regular Languages
18 August 2017 06:05 AM

 I - Semester - FLAT Page 59

Prove-LipPi
s-prime-n...

 I - Semester - FLAT Page 60

 I - Semester - FLAT Page 61

Regular Languages Properties : Decision Properties and Closure Properties

Closure Properties of Regular Languages
22 August 2017 02:38 PM

 I - Semester - FLAT Page 62

UNIT - III
30 June 2017 07:14 PM

 I - Semester - FLAT Page 63

Grammar: A grammar G is a quadruple G = < V, T, P, S > where
V is a finite set of variables
T is a finite set of terminals
P is a finite set of productions
S is a special variable called start variable.

Phrase-Structure Grammar: A Pharse-Structure grammar is a grammar G = < V, T, P, S > where P consists of
productions of the form x → y where x ϵ (V U T)+ and y ϵ (V U T)*

Chomsky Hierarchy of Phrase-Structure Grammars:
Type-0 grammar
Type-1 grammar
Type-2 grammar
Type-3 grammar

Type-0 grammar (Unrestricted grammar) : u → v where u,v ϵ (V U T)*
Type-1 grammar (Context-sensitive grammar) : x → y where x,y ϵ (V U T)+ and |x| ≤ |y|
Type-2 grammar (Context Free Grammar): A → x where A ϵ V and x ϵ(V U T)*

 A → x or A → x
where A,B ϵ V and x ϵ(V U T)*

Type-3 grammar (Regular Grammar) : A → xB A → Bx

Regular Grammar: Regular grammar is either right linear grammar or left linear grammar.
Every regular grammar is linear but every linear grammar is not regular.

Regular Grammar
28 August 2017 11:01 AM

 I - Semester - FLAT Page 64

 I - Semester - FLAT Page 65

 I - Semester - FLAT Page 66

 I - Semester - FLAT Page 67

Definition: A grammar G = (V,T,P,S) is said to be CFG iff all productions are in the form
A → x where A ϵ V and x ϵ (V U T)*

Context Free Grammar
18 September 2017 05:55 AM

 I - Semester - FLAT Page 68

 I - Semester - FLAT Page 69

 I - Semester - FLAT Page 70

LMD, RMD & Derivation Trees
13 September 2018 08:29 AM

 I - Semester - FLAT Page 71

 I - Semester - FLAT Page 72

 I - Semester - FLAT Page 73

 I - Semester - FLAT Page 74

 I - Semester - FLAT Page 75

 I - Semester - FLAT Page 76

 I - Semester - FLAT Page 77

 I - Semester - FLAT Page 78

 I - Semester - FLAT Page 79

 I - Semester - FLAT Page 80

 I - Semester - FLAT Page 81

Derivation of a String:
Left most derivation of a string:
Right most derivation of a string:
Derivation tree of a string:
Ambiguous Grammar:

Ambiguous Grammar
03 October 2017 10:06 AM

 I - Semester - FLAT Page 82

 I - Semester - FLAT Page 83

 I - Semester - FLAT Page 84

 I - Semester - FLAT Page 85

 I - Semester - FLAT Page 86

CFG minimization algorithm:

Remove useless productions.1.
Eliminate variables that do not derive any terminal string.a)
Eliminate variables that are not reachable from the start variable.b)
Remove null productions.2.
Remove unit productions.3.

Repeat the following steps 1, 2 and 3 until there are no useless/null/unit productions in the given grammar.

Minimize the following CFGs.

S → aS | A | C1.
A → a
B → aa
C → acb

S → a | aA | B | C2.
A → aB | λ
B → Aa
C → cCD
D → ddd

3. S → aAa
 A → Sb | bcc | DaA
 C → abb | DD
 D → aDA
 E → ac

4 S → XY
 X → 0
 Y → Z | 1
 Z → W
 W → C
 C → 0

5 S → A
 A → B
 B → C
 C → D
D → a

6 S → aA | bB
 A → aA | a
 B → bB
 D → ab | Ea
 E → aC | d

7 S → aA | a | Bb | cC
 A → aB
 B → a | Aa
 C → cCD
 D → ddd

8 S → ABCa | bD
 A → BC | b
 B → b | λ
 C → c | λ
 D → d

9 S → BAAB
 A → 0A2 | 2A0 | λ
 B → AB | 1B | λ

10 S → AB
 A → a
 B → C | b
 C → D
 D → E | Bc
 E → d | Ab

11 S → A0 | B
 B → A | 11
 A → 0 | 12 | B

12 S → Aa | B | Ca
 B → aB |b
 C → Dd | D
 D → E | d
 E → ab

13 S → aSa | bSb | A
 A → aBb | bBa
 B → aB | bB | λ

CFG minimization
03 October 2017 10:08 AM

 I - Semester - FLAT Page 87

A CFG G = (V, T, P, S) is said to be in CNF notation iff all the productions are in the form

A → BC
A → a

Where A, B, C ϵ V and a ϵ T

By definition, the right hand side of a production in CFG contains any no.of variables and terminals.
CNF reduces the length of right hand side of production to one or two symbols only.
If there are two symbols then both must be variables.
If there is only one symbol then it must be a terminal.

Note: Any CFG can be converted into CNF notation but the given grammar must not contain null productions and unit productions . If so, eliminate them.

1 S → 0A | 1B
 A → 0AA | 1S | 1
 B → 1BB | 0S |0

2 S → Aba
 A → aab
 B → Ac

S → bA | aB
A → bAA | aS | a
B → aBB | bS | b

S → aSa | SSa | a

Chomsky Normal Form (CNF)
03 October 2017 04:43 PM

 I - Semester - FLAT Page 88

GNF was given by Sheila A. Griebach
in 1965. This normal form not only
put restrictions on the length of the
body of a production (like CNF) but
also put restrictions on the positions
in which terminals and non-terminals
appear in the body of production.

Using CNF, a string of length w can
be derived using 2w-1 steps.
Using GNF, a string of length w can
be derived using w steps because
each step produces a terminal
symbol of string.
Moreover, GNF is used to construct
PDA.

Any CFG can be converted into CNF
as well as GNF grammar.

Minimize CFG. (useless, null
and unit productions deleted)

1.

Convert into CNF.2.
Rename variables as A1, A2, ..3.
Starting with S = A1.
Apply substitution rule for all
productions of the form:]

4.

Ai ---> Aj where i > j until i = j
For all productions i = j ,
eliminate left recursion.

5.

Again apply substitution rule,
to convert productions in GNF.

6.

Brief Procedure:

Griebach Normal Form (GNF)
05 October 2017 09:39 AM

 I - Semester - FLAT Page 89

 I - Semester - FLAT Page 90

S ----> aSb | aA, A ----> Aa | Sa |a1.
S ----> XY1 | 0, X ----> 00X | Y, Y ----> 1X12.
S ----> 01 | 0S | 00S3.

GNF Practice Problems:

 I - Semester - FLAT Page 91

 I - Semester - FLAT Page 92

 I - Semester - FLAT Page 93

 I - Semester - FLAT Page 94

 I - Semester - FLAT Page 95

 I - Semester - FLAT Page 96

 I - Semester - FLAT Page 97

 I - Semester - FLAT Page 98

 I - Semester - FLAT Page 99

Pumping Lemma of CFL
15 September 2018 06:47 PM

 I - Semester - FLAT Page 100

 I - Semester - FLAT Page 101

 I - Semester - FLAT Page 102

 I - Semester - FLAT Page 103

UNIT - IV
30 June 2017 07:14 PM

 I - Semester - FLAT Page 104

PDA model
09 October 2017 06:06 AM

 I - Semester - FLAT Page 105

1 L = {anbn : n >= 1}

2 L = { anbn : n>=0}

3 L = {anb2n : n >=0}

PDA Design
10 October 2017 11:59 AM

 I - Semester - FLAT Page 106

4 L = {a2nbn : n >= 0}

5 L = {an+1bn : n >=0}

 I - Semester - FLAT Page 107

6 L = {anbn+1 : n >= 0}

7 L = {an+2bn : n >=0}

8 L = {wcwR : w ϵ {0,1}*}

9 L = {wwR : w ϵ {0,1}*}

 I - Semester - FLAT Page 108

10 L = {na(w) = nb(w) : w ϵ {a,b}*}

 I - Semester - FLAT Page 109

Convert the given grammar into Griebach Normal Form (GNF).1.
We construct PDA with 3 states (q0, q1 and qf) as follows: (Assuming q0 is initial state and qf is final state) (Also assume that Z is initial symbol on stack)2.
Push Start variable (S) into stack without reading input symbol and change state from q0 to q1. δ(q0, λ, Z) = (q1, SZ)3.
For each production of the form: A → aα write the following PDA moves: δ(q1, a, A) = (q1, α)4.
Finally, make a transition from state q1 to final state qf as : δ(q1, λ, Z) = (qf, Z)5.

CFG to PDA Conversion
15 October 2017 07:21 AM

 I - Semester - FLAT Page 110

 I - Semester - FLAT Page 111

 I - Semester - FLAT Page 112

Practice Problems

 I - Semester - FLAT Page 113

Given PDA, M = (Q, Σ, δ, q0, F, Γ, Z) we have to find G = (V, T, P, S) as follows:1.
T= Σ (all input symbols of PDA become terminal symbols of CFG)2.
Variables are triplet form: if there exists a PDA move as δ(qi, a, Z) = (qj, AZ) then variable corresponding to
this move is (qiZqj).

3.

Start variable: if q0, qf are initial and final states respectively, and Z is the initial symbol of stack then start
variable is (q0Zqf)

4.

To write productions, PDA moves must perform stack operation, either PUSH or POP. Otherwise, rewrite the
PDA move. For example, δ(qi, a, A) = (qj, A), (stack content is not modified after transition)

5.

δ(qi, a, A) = (qk, λ)
δ(qk, λ, Z) = (qj, AZ)
PDA moves for pop operations: δ(qi, a, A) = (qj, λ) 6.
(qiAqj) → a
PDA moves for push operations: δ(qi, a, A) = (qj, BC)7.
(qiAqk) → a (qjBql) (qlCqk) for all values of qk and ql.

PDA to CFG conversion
15 October 2017 07:21 AM

 I - Semester - FLAT Page 114

 I - Semester - FLAT Page 115

 I - Semester - FLAT Page 116

 I - Semester - FLAT Page 117

 I - Semester - FLAT Page 118

CFL Closure Properties
03 October 2018 08:34 PM

 I - Semester - FLAT Page 119

Example: L1 = {anbn | n >= 0 } L2 = { cmdm | n >= 0} then L3 = L1.L2 = {anbncmdm | m,n >= 0 } is CFL.

 I - Semester - FLAT Page 120

 I - Semester - FLAT Page 121

 I - Semester - FLAT Page 122

 I - Semester - FLAT Page 123

 I - Semester - FLAT Page 124

UNIT - V
30 June 2017 07:14 PM

 I - Semester - FLAT Page 125

Turing Machines
16 July 2018 09:56 PM

 I - Semester - FLAT Page 126

 I - Semester - FLAT Page 127

 I - Semester - FLAT Page 128

 I - Semester - FLAT Page 129

 I - Semester - FLAT Page 130

 I - Semester - FLAT Page 131

 I - Semester - FLAT Page 132

Turing Machines Introduction
10 October 2018 05:53 AM

 I - Semester - FLAT Page 133

Turing Machine Model
10 October 2018 05:57 AM

 I - Semester - FLAT Page 134

 I - Semester - FLAT Page 135

 I - Semester - FLAT Page 136

Turing Machine Representation
10 October 2018 06:02 AM

 I - Semester - FLAT Page 137

 I - Semester - FLAT Page 138

 I - Semester - FLAT Page 139

 I - Semester - FLAT Page 140

 I - Semester - FLAT Page 141

 I - Semester - FLAT Page 142

Design of TM
10 October 2018 05:35 AM

 I - Semester - FLAT Page 143

 I - Semester - FLAT Page 144

 I - Semester - FLAT Page 145

 I - Semester - FLAT Page 146

 I - Semester - FLAT Page 147

 I - Semester - FLAT Page 148

 I - Semester - FLAT Page 149

 I - Semester - FLAT Page 150

 I - Semester - FLAT Page 151

Increment a number //unary operators1.
Decrement a number2.
1's Complement a number3.
2's Complement a number (when you scan input string from right to left, copy the symbol as it is until you
see first 1, and from then onwards 1's complement the symbol for eg. 10010100 for this 2's complement is
01101100)

4.

Copy the string5.
Addition of two numbers // binary operators6.
Substraction of two numbers (Always assume that first number is greater than second number)7.
Multiplication of two numbers (Repeated Addition)8.
Division of two numbers (Repeated Substraction)9.
TM as acceptor10.
TM as transducer11.
TM as DPDA (L=wcwR}12.
TM as NPDA (L=wwR) (even length palindromes)13.
TM accepting non-CFL like L={anbncn:n>=1} etc.14.

 I - Semester - FLAT Page 152

Universal TM
10 October 2018 07:47 AM

 I - Semester - FLAT Page 153

 I - Semester - FLAT Page 154

Church-Turing Thesis
10 October 2018 02:10 PM

 I - Semester - FLAT Page 155

 I - Semester - FLAT Page 156

