Syllabus

01 July 2019 06:17 AM

| - Semester - FLAT Page 1

FORMAL LANGUAGES AND AUTOMATA THEORY (FLAT)

V Semester: B.Tech-CSE

Scheme: 2017
Course Code| Category Hours/Week | Credits Maximum Marks
Continuous
CS303 Program Core L T P C Internal End Exam | TOTAL
Assessment
3 0 0 3 40 60 100
Sessional Exam Duration:2 Hrs

End Exam Duration:3 Hrs

Course Out comes: At the end of the course students will be able to
CO1: Design the finite automata for a given regular language.

CO2: Understand the regular expressions and pumping lemma of regular languages.
CO3: Understand the regular grammar, context free grammar and pumping lemma for CFL.

CO04: Design push down automata and context free grammar for a given context free language.
COS5: Design the Turing machine for the given formal language.

UNIT-1
Finite Automata preliminaries: Strings, Alphabet, Language Operations, Finite State Machine
definitions, Finite Automation Model, Acceptance of strings and languages, Non-deterministic Finite
Automation, Equivalence between NFA and DFA, conversion of NFA into DFA, Equivalence between
two FSM's, Minimization of FSM, Moore and Mealy machines, Applications of FA's.

UNIT-11

Regular Expressions and Regular Sets: Regular sets, Regular expressions, Identity rules,

Manipulation of regular expression, Equivalence between RE and FA, Inter conversion, Pumping
lemma for RE, Closure properties of regular sets.

UNIT- 111

Grammar Formalism: Regular Grammar-Right linear grammar and left linear grammar, Equivalence

between regular linear grammar and FA, inter-conversion between RE and RG, Derivation trees, Right
most and left most derivation of strings.

Context Free Grammar: Context Free Grammar, Ambiguity in CFG, minimization of CFG, Chomsky
INormal Form, Griebach Normal Form, pumping lemma of CFL.

UNIT-1V

Push Down Automata: Definition of the Pushdown Automaton, A Graphical Notation for PDA's,
Instantaneous Descriptions of a PDA, The Languages of a PDA, Acceptance by Final State,
Acceptance by Empty Stack, Equivalence of PDA's and CFG's, Properties of Context Free Languages.

UNIT-V

Turing Machines: Introduction to Turing Machines, Notation for the Turing Machine, Instantaneous
Descriptions for the Turing Machines, Transition Diagrams for Turing Machines, The Language of a
Turing Machine, Universal Turing machine, Halting problem of Turing Machine.

| - Semester - FLAT Page 2

Text Books:

1. J.E.Hopcroft, Rajeev Motwani and J.D.Ullman, Introduction to Automata Theory Languages
and Computation, Third edition, 2007, Pearson Education.

2. Mishra and Chandrashakaran, [2008], [Third Edition], Theory of computer sciences: Automata
languages and computation, Third Edition, 2008, PHI.

Reference Books:

1. John C Martin, Introduction to languages and the theory of computation, Third edition,
2007, TMH.

2. Peter Linz, An Introduction to Formal Languages and Automata, Fourth edition, 2010,
Narosa Book Distributors Pvt. Ltd.

3. Michael Sipser, Introduction to Theory of Computation, 3rd Edition, 2012, Cengage Learning.

4. Bernar M Moret, The Theory of Computation, First edition, 2002, Pearson Education.

Web References:

1. https://nptel.ac.in/courses/1 11103016/

2. https://www.tutorialspoint.com/automata_theory/

Question Paper Pattern:

Sessional Exam:

The question paper for Sessional examination is for 30 marks, covering half of the syllabus for first
Sessional and remaining half for second Sessional exam. Question No 1, which carries 6 marks,
contains three short answer questions of two marks each. The remaining three questions shall be
EITHER/OR type questions carrying 8 marks each.

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks.
(Total 10 marks) covering one question from each unit. The remaining five questions shall be
EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may
contain sub-questions. i.e. there will be two questions from each unit and the student should answer
any one question.

Note: JFLAP software is used to design the models of DFA, NFA, Moore machine, Mealy
machine, PDA and TM.

| - Semester - FLAT Page 3

UNIT - |

30 June 2017 07:14 PM

| - Semester - FLAT Page 4

Basic Terms and Definitions

05 July 2017 06:23 AM

Symbol: a, b, ¢, 1, 2, 3, etc. are called symbols.

Alphabet: finite and non-empty set of symbols.

Denoted by .

Examples: 2 ={1, 2}

2 ={a, b}

Word or String: finite sequence of symbols chosen from Z.
Denoted by u, v, w, X, y, z

Ex: For 2 = {0, 1}, strings are A, 0, 1, 00, 01, 10, 11, 000, 001,
Null String or Empty String is A

31={0,1} (Strings of length 1)
32={00,01, 10, 11} (Strings of length 2)
33={000, 001, 010, 011, 100, 101, 110, 111} (Strings of length 3)
2k ={x | xis string of length k } (strings of length exactly k)

* = {x | xis string of any length >0} (including null string)

2+ ={x | xis string of any length >0 } (no null string)
Language : L is a subset of Z*

For 2 ={0, 1},

L1 = {all strings of 0's and 1's ending with 01}

L2 = { all strings of 0's and 1's with substring 101}

L3 = { all strings of 0's and 1's with even length}

L4 = {all strings of 0's and 1's starting with 1 and ending with 011} etc.

Formal Language: A language that has a well-defined set of syntax rules. (grammar)

The mathematician "Noam Chomsky" gave a classification of formal languages as

SET THEORY:

SET: unordered collection of definite and distinct objects.
A={1,2,3,...}or A={x | xis a natural number}

Empty Set vs Non-empty Set

Finite Set vs Infinite Set

{1,2,3}={2,1,3}={1, 2,2,3}

Each regular language is also a context free language. But each CFL is not a RL.
Each context free language is also a context sensitive language. But each CSL is not a CFL.
Each context sensitive language is also a recursively enumerable language. But each REL is not a CSL.

DFA = Deterministic Finite Automata
NFA = Non-deterministic Finite Automata
PDA = Push Down Automata

LBA = Linear Bounded Automata

TM= Turing Machine

follows:
REL
CSL
CFL RL - Regular Languages
CFL - Context Free Languages
CSL - Context Sensitive Languages
REL - Recursively Enumerable Languages
Language Language Recognizer
RL DFA or NFA
Automan tagory CFL PDA
N CSL LBA
REL ™

Combinational logic

Finite-state machmne

Pushdown automaton

Turing Machine
k e

Finite State Machines

FA with output (Transducers)

¢
l l

Moore machines Mealy machines

Before learning DFA formally, see DFA in real life.
Example: Electric Switch

Switch has two states: ON (1) and OFF (0).

By default, switch is in the initial state of OFF.

When we press the switch, state transition occurs between ON and OFF as shown below:

| - Semester - FLAT Page 5

FA without output (Acceptors)

FA models the computer hardware
consisting of a processor with finite
amount of memory.

So far we have seen computations in
high level (using programming
languages). Now we look at the
computations at machine level.

l

DFA

l

NFA

A digital computer takes input data and produces output data. How the
input data is mapped with output data? We see the mapping of input
data to output at the lowest level.

DFA is represented using directed graph where each node is a
state and edge represents state transition.

SldLe dna eage represers stdie urdnsiuorn.

Press

> OFF/0) (ON/1

Press

Deterministic Finite Automata

\

ON

Given the state and input,

You must be able to Finite no.of states Singular - "automaton"
— e —— s determine Finite amount of
The next output state memory

Dreamstime.com

Given the switch state as ON, and
Asked to determine the next state for
Pressing 5 times as OlO(I or 11101etc.

Here, the switch must remember current state out of two possible states.
Therefore, memory of two bits is enough.

ON OFF

Another example of DFA is FAN Regulator. ¢ - clockwise rotation

a - anticlockwise rotation

Here, Fan has to remember the
current state out of five possible
states. Therefore, loga(5)=3 bits are
enough for memory

DFA Model DFA has memory in the form of tape to store input string to be scanned.
Tape is divided into cells so that each cell stores a symbol of input string.
Control unit is responsible for state transitions.
| G I \ | A | & | | l [\ | \ Using read head, the control unit scans the input string stored in the tape one
symbol at a time.
Input Tape After reading the last symbol of input string, DFA halts in one state which is
considered as the state yielding output "yes" or "no".
Read Head
In general, if DFA has 'n' states then it requires log,(n) bits for memory
Control
Unit
J/ Binary
Output
Yes / No

Formal Definition of DFA: For the electric switch example: For the fan regulator example:

M=(Q, 2,8, q0, F) where Q= {OFF, ON}

Qiis set of states z={0,1} Q={0,1,2,3,4}

3 is set of symbols q0 = OFF I={ca}

& is state-transition function defined as QX 2 > Q F={0,1} q0=0

q0 is initial state F={0,1,2,3,4}

F is set of final states, FCQ

| - Semester - FLAT Page 6

DFA Design

10 July 2017 05:53 AM

While designing DFA, it is represented using a directed graph in which each state is a node and the edge
between two nodes shows the state transition between the two states. Each edge is labelled with an
input symbol to denote the input symbol upon which state transition occurs.

Graph Notation:

—>
Initial state Final State Intermediate state

When a DFA is represented as a graph, each state in DFA is shown as a node in the graph and state
transition is shown as an edge between nodes with the symbol on which transition occurs.

On the other hand, if DFA is shown as table, then the number of rows is equal to the number of states in
DFA and the number of columns is equal to the number of input symbols in the alphabet.

Design DFA to accept strings of 0's and 1's containing odd number of 0's.

DFA as a Graph:
DFA as a Table:

State 0 1

0 ql q0
@ ® =

State-Transition Table

State-Transition Graph

DFA Design Constraints:
1. From each state and for every input symbol, draw exactly one transition. (m states, n symbols - mn transitions).
2. In DFA, state transition occurs only after reading the input symbol. (no null transitions).
3. DFA must contain only one initial state. (Deterministic property). (Ex: C program contains only one main() function.)

1. Pattern Recognition Problems
2. Divisible by k Problems
3. Modulo-k-counter problems

Pattern Recognition Problems
1. Draw a DFA to accept string of a's having at least one a.
. Draw a DFA to accept strings of a's and b's having at least one a.
. Draw a DFA to accept strings of a's and b's having at most one b.
. Draw a DFA to accept strings of a's and b's having exactly one a.
. Obtain a DFA to accept strings of a's and b's starting with the string ab.
Draw a DFA to accept strings of a's and b's ending with the string abb.
. Draw a DFA to accept strings of a's and b's having substring aab.
. Design a DFA to accept strings of a's and b's that do not start with string ab.
. Design a DFA to accept strings of a's and b's that do not end with string abb.
. Design a DFA to accept strings of a's and b's that do not have substring aab.

O NS RN WN

NN~
~

. Draw a DFA to accept string of a's and b's such that L = { awa | w € (a + b)* where n >=0}

. Draw a DFA to accept strings of a's and b's starting with ab or ba.

. Draw a DFA to accept strings of a's and b's ending with ab or ba.

. Design a DFA to accept strings of a's and b's having substring aab or bba.

. Obtain a DFA to accept strings of a's and b's having four a's.

. Obtain a DFA to accept strings of 0's,1's and 2's beginning with a '0’ followed by odd
number of 1's and ending with a '2'.

17. Obtain a DFA to accept strings of a's and b's with at most two consecutive b's.

18. Obtain a DFA to accept strings of a's and b's starting with at least two a's and ending with at

least two b's.
19. Draw a DFA to accept strings of a's and b's having not more than three a's.

N NN NN
NN WN

20. Draw a DFA to accept set of all strings on the alphabet X = { 0, 1 } that either begins or ends
with the substring 01.

21. Draw a DFA to accept the language L = { w : n,(w) >=I, ny(w) =2}

22. Draw a DFA to accept the language L = { w : n,(w) = 2, ny(w) >=3}

| - Semester - FLAT Page 7

Divisible by k Problems
1. Obtain a DFA that accepts binary integers divisible by 2,3,4 and 5.
. Draw a DFA to accept decimal strings divisible by 2,3,4 and 5.
. Draw a DFA to accept decimal strings divisible by 2 and 3.
. Draw a DFA to accept binary strings divisible by 2 and 3
. Draw a DFA to accept decimal strings divisible by 2 or 3.
6. Draw a DFA to accept binary strings divisible by 2 or 3.

@ NWw N

Modulo k Counter Problems
Obtain a DFA to accept strings of even number of a's.
Obtain a DFA to accept strings of odd number of b's.
Obtain a DFA to accept strings of even number of a's and odd number of b's.
Obtain a DFA to accept strings of odd number of a's and even number of b's.
Obtain a DFA to accept strings of odd number of a's and odd number of b's.
Obtain a DFA to accept strings of even number of a's and even number of b's.
Obtain a DFA to accept the language L = { w : |w| mod 3 =0} whereX={a}.
Obtain a DFA to accept the language L= {w : |w| mod 3 =0 } where 2 = { a,b }.
Obtain a DFA to accept the following language L = { w such that

a) |w| mod 3 >=|w| mod 2 where w € £" and £ = {a}.

b) |w| mod 3 % |w| mod 2 where w € X" and £ = {a}
10. Obtain a DFA to accept the following language L = { w such that

a) |w| mod 3 >=|w| mod 2 where w € L" and Z = {a, b}.

b) |w| mod 3 # |w| mod 2 where w € £" and X = {a, b}
11. Obtain a DFA to accept the language L = {w : |w|mod 5 % 0 } on X = {a;.
12. Obtain a DFA to accept the language L ={w : |w| mod 5% 0 } on X = {a, b}.

13. Obtain a DFA to accept strings of a's and b's such that L = {w | w € (a + b)* such that
N,(w) mod 3 =0 and Ny(w) mod 2 =10}

% N NN N

| - Semester - FLAT Page 8

C Program on DFA1

16 July 2018 08:52 PM

Design a DFA which will accept all the strings containing even number of 0's
over an alphabet {0, 1} and write a program to implement the DFA.

1 1
0
Yy
0
Start here ¥ | dfa_even_zeros.c

1 $include<stdio.h>

2 $include<string.h>

3 #define max 100

4 int main{()

5 i

& char str[max], f="=",c;

7 printf ("do you want to check for epsilon string's case? (yv/m) : "):

8 scanf ("%c", a2c)

9 ifje=="v'|| e=="%Y"}

10 goto flag:;

11
12 printf ("enter the =tring to be checked: ")
13 scanf ("%=",=str)
14 int i:;
15 for (i=0;i<s=strlen(str) ;i++)
1& {
17 switch(f)
18 i
13 case '=': if(stx[i]=='0") £="v";
20 else if(stcr[i]=='1") £="=";
21 break;
22 case 'v': 1f(str[i]=='C") £="x";
23 else if(scr[i]=="1") £="v";
24 break;
25 }
26 }
27 flag: if(f=='='") printf("\nString i=s accepted as it reaches the final =state that iz %c",f):
28 else princf("\nString is not accepted as it reaches a state %c which is not the final stace",f):
29
30 retorn O;
31 }

| - Semester - FLAT Page 9

L "CAUsers\GVK\Documents\C programs\dfa_even_zeros.exe” -

o you want to check for epsilon string’s case? (ysn> : y

Btring is accepted as it reaches the final state that is x
rocess returned B (Bx@> execution time : 3.959 =
Press any key to continue.

L "CA\Users\GVYK\Documents\C programs\dfa_even_zeros.exe” -
o you want to check for epsilon string’s case? (ysn2>
enter the string to be checked: 18181

execution time : 16.912
Prezs any key to continue.

L "CA\Users\GVK\Documents\C programs\dfa_even_zeros.exe" -

o you want to check for epsilon string's case? <ysn) - n
enter the string to he checked: 181818

Btring is not accepted as it reaches a state v which is not the final

rocess returned B (Bx@A> execution time = 18.938 s
ress any key to continue.

| - Semester - FLAT Page 10

C Program on DFA2

16 July 2018 09:22 PM

Design a DFA which will accept all the strings containing odd number of 1's over
an alphabet {0, 1} and write a program to implement the DFA.

Start here » | dfa_even_gzeros.c » | dfa2.c X | dfa3ec X

1 Fdefine max 10C
2 maini()
3 {
4 char str[max], f= H
= int i:
6 printf ("enter the string to be checked: ");
7 scanf ("%s",=str) ;
8 for(i=0;i<=strlen(str) ;i++)
9 {
10 switch(f)
11 {
12 case : if(scr[i]== y £= H
13 glse if(str[i]== } E= H
14 break;
15 case : if(str[i]l== y £= H
16 glse if(=str[i]== 1 E= H
17 break:
18 }
14 }
20 if(f==)} printf("\nString accepted. 5tate reached is: %c",f):
21 else printf ("\nstring not accepted. State reached is: %c",f):
22 }
23
u "CA\Users\GVK\Documents\C programs\dfa3.exe”

enter the string to he checked: 818811

Btring accepted. State reached is: y
37 (Bx25> execution time
continue.

| - Semester - FLAT Page 11

["CAUsers\GVK\Documents\C programs\dfa3.exe”
enter the string to be checked: H18681

tring not accepted. State reached is: x
rocess returned 41 (Bx29) execution time
ress any key to continue.

| - Semester - FLAT Page 12

C Program on DFA3

16 July 2018 09:14 PM

Design a DFA which will accept all the strings starting with 1 and ending with 0
over an alphabet {0, 1} and write a program to implement the DFA.

Start here » | dfa_even_geros.c ¥ difa2ec ¥

1 #define max 2C

2 maini()

3 .

4 char str[max], f= H

5 int i;

] printf ("Enter the string to be checked: ");
7 gcanf (=", str) ;

8 for(i=0;str[i]'= sisd)

g {
10 switch(f)
11 {
iz aase o if(str[i]== 1 £= H
13 else if(str[i]== V= H
14 break;
L
16 aase o if(str[i]== 1 £= H
17 else if(str[i]== 1 £= H
18 break;
19 case : 1f(str[i]== 1 £= H
20 else if(str[i]== 1 £= H
21 break;
22 case : if(str[i]l== 1 £= H
23 else if(str[i]== 1 £= :
24 break;
25 }
26 1
27 if(f== } printf|("\nEntered string is accepted as it reached the final state i.e., %c",f):
28 else printf("\nEntered string is not accepted as it reached %c which not the final state”,f);
29 }
30

L] "CAUsers\GVK\Documents\C programs\dfaZ.exe” - &

[Enter the string to bhe checked: #1818

Entered string iz not accepted as it reached d which not the final state
rocess returned 73 (Bx47?> execution time : 6.511 s
ress any key to continue.

| - Semester - FLAT Page 13

L “CA\Users\GVK\Documents\C programs\dfa2.exe” =
[Enter the string to be checked: 818181

executlun time : 5.5

L "Ch\Users\GVIK\Documents\C programs\dfa2.exe” -
[Enter the string to be checked: 188181

| - Semester - FLAT Page 14

C Program on DFA4

16 July 2018 09:32 PM

Design a DFA which will accept all the strings starting with 01 over an alphabet
{0, 1} and write a program to implement the DFA.

0.1
1
c

Start here ¥ | dfadec

1

2

=) main()

4 {

5 char str[max],f= H

6 int i;

T printf("enter the string to be checked: ");

8 scanf ("%s",=str) ;

9 for(i=0;str[i] '=NULL;i++)

10]

11 switch(f)

12]

13 case : if(str[i]== 1 £= H

14 else if(=cr[i]== 1 £= H

15 break;

16 case : if(str[i]== 1 £= H

17 else if(=cr[i]== 1 £= H

18 break;

19 case : if(str[i]== 1 £= H

20 else if(=cr[i]== 1 £= H

21 break;

22 case : if(str[i]== 1 £= H

23 else if(=tr[i]== 1 £= H

24 break;

25 }

26 1

27 ifif== I printf ("String is accepted as it reaches the final state that is %c.",.f);

28 else printf("5tring i=s not accepted as it reaches the state %c which is not a final state.",f):

29 }

30
L] "CAUsers\GVK\Documents\C programs\dfad.exe"” = B

enter the string to he checked: ABA1IAL

L "CAUsers\GVK\Documents\C programshdfad.exe”

enter the string to be checked: 8181810
Btring is accepted as it reaches the final state that is c.
rocess returned 57 (Bx3B) execution time : 4.4008 s

ress any key to continue.

| - Semester - FLAT Page 15

L "CA\Users\GVK\Documents\C programs\dfad.exe” = B
enter the string to he checked: 1881818

execution time : 4.453 =

execution time : 4.622 =

Prezs any key to continue.

| - Semester - FLAT Page 16

C Program on DFAS

16 July 2018 09:40 PM

Design a DFA which will accept all the strings ending with 00 over an alphabet
{0, 1} and write a program to implement the DFA.

Start here dfaS.c
1 100
2
&
4 char str[max],f= H
5 int i:
& printf ("enter the =string to ke checked: "):
7 scanf ("%s",=tr)
8 for(i=0;=str[i]!= sits)
9]
10 switch(f)
11 [
1z case : ifistr[i]l==) = :
13 else if(str[i]== 1 E= H
14 break:;
15 case i ifistr[i]l== | £= H
le else if(str[i]== | £= H
17 break;
18 case : ifistr[i]l==) = :
18 else if(str[i]== 1 E= H
20 break:;
21 case : ifiscr[i]l== | £= H
22 elze if(zcr[i]==) £= H
23 break;
24 }
25 }
26 if(f==)} printf("\nString is accepted as it reached the final state %c at the end.”,f):
27 el=e printf("\nS5tring iz not accepted as it reached %*c which iz not the final =state.",f):
28 }
L “CA\Users\GVK\Documents\C programs\dfab.exe”

enter the string to bhe checked: 18188

Btring is accepted as it reached the final state ¢ at the end.

rocess returned 63 C(Bx3F> execution time : 8.477 =
ress any key to continue.

L "CA\Users\GVK\Documents\C programs\dfa5.exe”
enter the string to he checked: BiPiBdl

Etring iz not accepted as it reached d which iz not the final state.

Frocess returned 67 (Bx45> execution time : GA.A?78 =
ss any key to continue.

| - Semester - FLAT Page 17

" "CA\Users\GVK\Documents\C programs\dfa5.exe”
enter the sztring to be checked: 181818

Btring is not accepted as it reached b which is not the final state.

execution time : 4.585

L "C\Users\GVK\Documents\C programs'dfa5.exe”
enter the sztring to be checked: 18181611

Btring iz not accepted as it reached d which iz not the final state.

Frocess returned 69 (Bx45> execution time : 5_.239 s
Press any key to continue.

| - Semester - FLAT Page 18

NFA Introduction

21 July 2017 05:23 AM

Non-deterministic Finite Automata (NFA) :

It is not always possible to solve the problems using deterministic procedures. There are few problems that can be
solved using non-deterministic approaches. In other words, guessing the solutions for the problem.

For example, if a person is missing and a group of people searching for him/her. Usually the people searches for the
missing person each one taking a different route. Someone searches in bus station, someone in railway station, someone
in friends place so on. Finally, if any one person finds the missing person, the mission will be completed.

In computer science applications, there are few problems that can be solved using non-deterministic algorithms.

For example, in MANET, if a source node has data to send to a destination node, DSR algorithm establishes a routing
path using RREQ and RREP packets. The source broadcasts RREQ and it is received by all its neighbour nodes. Then the
packet is forwarded by neighbour nodes until it reaches the destination node. The RREP packet is then given by
destination node.

Formal Definition:
M=(Q, Z, 6, q0, F) where

Q is set of states

3 is set of input symbols

g0 is set of initial states

F is set of final states and

& is state-transition function defined as Q X 2 > 22

Sometimes it is not easy to draw DFA for few problems. There NFA helps you. Draw NFA for the problem and later you
may convert it into DFA.

While designing DFA, three rules must be followed:
1. Regarding no. of transactions: For m states and n input symbols, DFA must have mn transitions.
2. Regarding null transitions: DFA has no null transitions. (state-transition occurs only after reading input symbol).
3. Regarding no. of initial states: DFA has only one initial state.

NFA design can omit the above three rules i.e.
1. NFA can have any no. of transitions (from any state you can draw any no. of transitions)

2. NFA can have null transitions.
3. NFA can have multiple initial states.

Example: Design NFA to accept the strings containing any no. of a's followed by any no. of b's followed by any no. of c's.

i b C

A
© : () 1

From state qO, there is no transition defined for the symbol b. Also, A-transitions are present.

| - Semester - FLAT Page 19

State a b c

q0 {q0, 1, g2} {al,92} {q2}
ql ¢ {al,92} {92}
q2 (0) () {92}

In the table, we can see multiple states from a given state and for given symbol. Also empty set (no
transitions are defined) for certain symbols from a state.

| - Semester - FLAT Page 20

21 July 2017

CoNoupsrwnr

NFA Design

06:19 AM

Design NFA to accept all the strings of a's and b's starting with ab.

Design NFA to accept all the strings of a's and b's ending with bb.

Design NFA to accept all the strings of a's and b's with substring aba.

Design NFA to accept all the strings of a's and b's starting with either ab or ba.

Design NFA to accept all the strings of a's and b's ending with either ab or ba.

Design NFA to accept all the strings of a's and b's containing substring either abb or aab
Find NFAforL={xe{a, b}*:xends with a or x contain ab }

Find NFAforL={abi:i=>1,j=>1}u{A a}

Obtain NFAforL={10":n>0}u {10"10™:n,m >0}

Draw NFAforL={ xe{a, b, c}*:x contains exactly one b immediately following c }

. Find NFAforL={xe{0,1}*:xisstarting with 1 and |x| is divisible by 3 }

Find NFAforL={xe{a, b} *:x contains any number of a's followed by at least one b }

Design an NFA with no more than five states for the set {abab™ : n > 0} U {aba™ : n > 0}.

The language { w € X* | w contains at least two Os, or exactly two 1s } with six
states.

Design NFA to accept strings with atleast two consecutive 0's or 1's.

Design NFA to accept all strings of 0's and 1's in which third symbol from the right end is always 1.
Design NFA to accept all strings of 0's and 1's in which second leftmost symbol is always 1.

Design DFA and NFA to accept all the strings of 0's and 1's whose tenth symbol from the right end is 1.

Using ten-tuples to represent states give the design of a DFA that recognizes the language

L={z € {0,1}* | the tenth symbol from the right end of x is a ’1’} To define the DFA we need only to
specify all components:

States Q = {(x10, %9, 28---x2,21) | ; € {0,1} } - note there are 2 states.

Alphabet ¥ = {0,1}

Start state ¢o = (0,0,0,0,0,0,0,0,0,0)

Final states F' = {(l: T9,xg---T2,x1) | T € {D., l} } - note there are 2° = 512 final or accepting states.
Transition Function For each element a € ¥ i(s, a) is defined by

0((x10, z9, 8 - - w2, 71), a) = (9,28, 27" T1,0Q)
The idea is to maintain in a list the last ten symbols and when the next charcter is considered shift everything
one position and add the new character as the most recent symbol.
0.1

| y 0,1 0.1,

_"' do _"':__rﬂ y —={ 2 /_.-' —_— .f.’_l |_1'?|
\‘._ - \‘._ o S e __’/ o _.-"
| 0.1
s
"'|"'n,1
L 01— 1 01,
(o) =gy =gz &=)=las

An NFA that accepts strings such that the tenth symbol from the right end is a 1

| - Semester - FLAT Page 21

The set of all strings whose tenth symbol from the left end is a 1.

Design DFA accepting all binary strings in which third symbol from the right end is always a 1.

| - Semester - FLAT Page 22

NFA to DFA Conversion

24 July 2017 04:50 AM

For any given NFA M, there exists an equivalent DFA M' such that L(M) = L(M').

Proof: Let M = (Q, Z, §, qo, F) be given NFA accepting L(M).

We can define DFAM'=(Q/, Z, &', qo', F') as follows:

2 is same for both DFA and NFA.

go' = Qo

For each input symbol 'a" if 8(qy;, a) = {q;, qx, ai} then
&'(ai,a) = [g;,a,q1 (single state)

Q'=22

For each input symbol 'a' if §(qi, a) = {q;, qx, ai} € F then
6'(gi,a) = [q;,ax,q1] € F' (single state)

Example: Obtain the DFA for the following NFA.

b
a b
NFA Table:
[a b
q0 {a0, g1} 0
ql ¢ q2
q2) ¢
DFA Table:
&' a b

[q0'] [90,q1] [q0']
[90,q1] [90,q1] [90,q2]
[90,02] [q0,q1] [qO]

| - Semester - FLAT Page 23

To prove the equivalence relationship between
DFA and NFA, we use the principle of
mathematical induction.

Induction principle is used to prove that
something is always true.

For e.g., Real-life example

The Sun came yesterday, The Sun came today and
the Sun will come tomorrow.

After one year, Sun will come

After 10 years, Sun will come

i.e., The Sun will come as long as the Universe
exists and nothing wrong happens.
Programming example:

Recursive definition of factorial of a number
n!=n*(n-1)!

0l=1

1l=1

21=2%(2-1)!

31=3%(3-1)!

nl=n*(n-1)!

(n+1)!=(n+1) * n!

If we find factorial upto number n, then we can
also find factorial for number (n+1)

Another example: if we run a program calculating
the sum of two numbers, and if we run the
program 10 times successfully, and if we want to
run the program 11th time, we expect it will run
successfully.

Similarly, it is always true that for any given NFA,
there exists an equivalent DFA.

NFA to DFA Problems

24 July 2017 05:37 AM

| - Semester - FLAT Page 24

| - Semester - FLAT Page 27

NFA-A to DFA Problems

24 July 2017 03:18 PM

| - Semester - FLAT Page 28

| - Semester - FLAT Page 29

NFA Implementation
16 July 2018 10:46 PM

| - Semester - FLAT Page 30

Nondeterministic Finite State Automata

A finite-state automaton can be nondeterministic in either or both of two ways:

A state may have two or more arcs emanating from it labeled with the
same symbol. When the symbol occurs in the input, either arc may be
followed.

A state may have one or more arcs emanating from it labeled with A
(the empty string) . These arcs may optionally be followed without
looking at the input or consuming an input symbol.

Due to nondeterminism, the same string may cause an nfa to end up in one of several different states, some
of which may be final while others are not. The string is accepted if any possible ending state is a final state.

Example NFAs

+

digit
O=0re
A
Integer with optional sign.
digitO
digit digit

Integer or real nurber.

Implementing an NFA

If you think of an automaton as a computer, how does it handle nondeterminism? There are two ways that
this could, in theory, be done:

1. When the automaton is faced with a choice, it always (magically) chooses correctly. We sometimes
think of of the automaton as consulting an oracle which advises it as to the correct choice.

2. When the automaton is faced with a choice, it spawns a new process, so that all possible paths are
followed simultaneously.

The first of these alternatives, using an oracle, is sometimes attractive mathematically. But if we want to
write a program to implement an nfa, that isn't feasible.

There are three ways, two feasible and one not yet feasible, to simulate the second alternative:

| - Semester - FLAT Page 31

. Use a recursive backtracking algorithm. Whenever the automaton has to make a choice, cycle through
all the alternatives and make a recursive call to determine whether any of the alternatives leads to a
solution (final state).

. Maintain a state set or a state vector, keeping track of all the states that the nfa could be in at any given
point in the string.

. Use a quantum computer. Quantum computers explore literally all possibilities simultaneously. They
are theoretically possible, but are at the cutting edge of physics. It may (or may not) be feasible to
build such a device.

Recursive Implementation of NFAs

An nfa can be implemented by means of a recursive search from the start state for a path (directed by
the symbols of the input string) to a final state.

Here is a rough outline of such an implementation:

function nfa (state A) returns Boolean:
local state B, symbol x;
for each A transition from state A to some state B do
if nfa (B) then return True;
if there is a next symbol then
{ read next symbol (x);
for each x transition from state A to
some state B do
if nfa (B) then
return True;
return False;

}

else
{ if A is a final state then return True;
else return False;

}

One problem with this implementation is that it could get into an infinite loop if there is a cycle of A
transitions. This could be prevented by maintaining a simple counter (How?).

State-Set Implementation of NFAs

Another way to implement an NFA is to keep either a state set or a bit vector of all the states that the
NFA could be in at any given time. Implementation is easier if you use a bit-vector approach (v[i] is
True iff state i is a possible state), since most languages provide vectors, but not sets, as a built-in
datatype. However, it's a bit easier to describe the algorithm if you use a state-set approach, so that's
what we will do. The logic is the same in either case.

function nfa (state set A) returns Boolean:
local state set B, state a, state b, state c, symbol x;

for each a in A do

for each A transition from a
to some state b do
add b to B;
while there is a next symbol do
{ read next symbol (x);
B := 0;
for each a in A do
{ for each A transition from a to some state b do
add b to B;
for each x transition from a to some state b do

| - Semester - FLAT Page 32

add b to B;
}

for each A transition from

some state b in B to some state c not in B do
add c to B;
A := B;

if any element of A is a final state then
return True;

else
return False;

Formal Definition of NFAs

The extension of our notation to NFAs is somewhat strained.
A nondeterministic finite acceptor or nfa is defined by the quintuple

M=(Q,Z,38,q0,F)
where
o Q is a finite set of states,
o X is a finite set of symbols, the input alphabet,
o 8:Qx (XU {i})—2isawransition function,
o q0 € Q is the initial state,
o F c Qisaset of final states.
These are all the same as for a dfa except for the definition of &:
o Transitions on X are allowed in addition to transitions on elements of X, and
o The range of & is 29 rather than Q. This means that the values of § are not elements of Q, but
rather are sets of elements of Q.
The language defined by nfa M is defined as

LM)={w e X" 8%(q0, w) " F = ¢}

DFA = NFA

Two acceptors are equivalent if the accept the same language.

A DFA is just a special case of an NFA that happens not to have any null transitions or multiple
transitions on the same symbol. So DFAs are not more powerful than NFAs.

For any NFA, we can construct an equivalent DFA (see below). So NFAs are not more powerful than
DFAs. DFAs and NFAs define the same class of languages -- the regular languages.

To translate an NFA into a DFA, the trick is to label each state in the DFA with a set of states from the
NFA. Each state in the DFA summarizes all the states that the NFA might be in. If the NFA contains

|Q| states, the resultant DFA could contain as many as [29] states. (Usually far fewer states will be
needed.)

From NFA to DFA

Consider the following NFA:

| - Semester - FLAT Page 33

What states can we be in (in the NFA) before reading any input? Obviously, the start state,
@ A. But there is a A transition from A to B, so we could also be in state B. For the DFA, we

construct the composite state {A, B}.

State {A,B} lacks a transition for x. From A, x takes us to A (in the NFA), and the

null transition might take us to B; from B, x takes us to B. So in the DFA, x takes us
from {A,B} to {A,B}.

State {A,B} also needs a transition for y. In the NFA, 8(A.y)=C and &(B.y)=C, so
we need to add a state {C} and an arc y from {A,B} to {C}.

[n the NFA, &(C,x)=A, but then a null transition might or might not take us
to B, so we need to add an arc x from {C} to {A,B}.

Also, there are two arcs from C labeled y, going to states B and C. So in
the DFA we need to add the state {B,C} and the arc y from {C} to this new
state.

In the NFA, 6(B,x)=B and 8(C,x)=A (and by a A transition we might get
back to B), so we need an x arc from {B,C} to {A,B}.

3(B,y)=C, while 8(C,y) is either B or C, so we have an arc labeled y from
{B,C} to {B,C}.

We now have a transition from every state for every symbol in X. The
only remaining chore is to mark all the final states. In the original NFA, B
was a final state, so in the DFA, every state containing B is a final state.

| - Semester - FLAT Page 34

DFA Minimization

25 July 2017 03:04 PM

While implementing DFA, the amount of memory required is directly proportional to number of states in DFA.
To save memory space, it is important to minimize DFA (reduce no. of states in DFA).

+ DFA minimization is based on the property of equivalence of states.

Two states S1 and S2 are 0-equivalent if they have the same output, that is, either both are accepting states or
both are non-accepting states.

Two states S1 and S2 are 1-equivalent if they have the same output (i.e., they are 0-equivalent) and for each
input symbol, their succeeding states are also 0-equivalent.

Two states S1 and S2 are k-equivalent if for any x € I*, where x has no more than k symbols, §*(s1,x) = §*(s2,x)

0-equivalent states:

{s0, s1, s3} (set of final states) {s2, s4} (set of non-final states)

Example:

3 a b
SO S2 S1
S1 S2 SO
S3 2

/N

All the states All the states Therefore, States s0, s1 and s3 are
SO, s1, s3 are SO, s1, s3 are 1-equivalent.
Going to same Going to same
Group of Final states
Non-final states Group of
6 a b
S2 S4 S3
sS4 SO S1
2 l/ \
DFA Different Same group
minimizat... groups

Threfore, states s2 and s4 are not
1-equivalent.

The final groups of states are:

{s0, s1, s3}{s2} {s4}

A
()

| - Semester - FLAT Page 35

DFA minimization problems

27 July 2017 12:39 PM

| - Semester - FLAT Page 36

| - Semester - FLAT Page 37

Output

A

2>A

w I I — 0o 0o O w

O 0O w u O I - <

s@ou@®o T

| - Semester - FLAT Page 38

| - Semester - FLAT Page 39

Moore & Mealy machines

27 July 2017 06:33 PM

Finite State Machines

FA with output (Transducers) FA without output (Acceptors)
Moore machines Mealy machines DFA NFA

Machines producing binary output are not much significant. The machine is considered as efficient if it produces output other than binary output.
All the problems do not have the answer as "yes" or "no". There are few problems that have answer other than "yes" or "no".

Ex: Do you come to movie? (Answer is either yes or no)

. " . Given L={binary strings ending with 01}
What is your name? (Vijay; answer is other than yes or no)

Does w=010101101 belong to L? (Answer is yes)
Does x=01110 belong to L? (Answer is no)

What is the 1's complement of 0100111? (Answer is 1011000; other than yes or no)

Moore machine formal definition: M = (Q, 3, §, g0, A, I) where Mealy machine formal definition: M = (Q, £, §, q0, 4, T) where
Qs set of states, Qs set of states,

3 is set of input symbols, 2 is set of input symbols,

§ is state-transition function defined as 5: QX2 > Q 6 is state-transition function defined as 6: QX 2 > Q

g0 is initial state g0 is initial state

A'is set of output symbols and A'is set of output symbols and

Iis output function mapping Q into A Iis output function mapping Q X Z into A

In Moore machine, output is associated with state.
In Mealy machine, output is associated with transition.

Example: Moore machine to calculate 1's complement of binary string. Example: Mealy machine to calculate 1's complement of binary string.

NG

For an input string of "n" symbols,
Moore machine produce output string of "n+1" symbols > (because of output symbol associated with initial state)
Mealy machine produce output string of "n" symbols.

| - Semester - FLAT Page 40

Moore & Mealy machines problems

27 July 2017

07:45 PM

Design Moore and Mealy machines to get 1's complement of binary number.
Design Mealy machine for the following table and also find the output for the string "abbabaaa".

5 a b o/p

q0 ql q2 1
ql ql ql 0
q2 ql q0 1

3. Design Moore and Mealy machines that give an output '1' if input of binary sequence a '1' is preceded by exactly two zero's.
4. Design a Moore machine such that it produces output A if the string ends with 10, B if the string ends with 11 and C

o o N o

10.
11.
12.

otherwise.

Design a Moore and Mealy machines for a binary input sequence, if it ends in 101, output is 'A’, if it ends in '110' output is B,
otherwise 'C.

Design Moore and Mealy machines that replace each occurrence of substring 100 by 101.

Design Moore and Mealy machines that print residue modulo of 2,3,4, and 5 for the given binary number.

Design Moore and Mealy machines that print residue modulo of 2,3,4, and 5 for the given decimal number.

Design a Mealy machine which can give output Even, Odd according to the total number of 1's encountered is even or odd.
The input symbols are 0 and 1.

Design Mealy machine to count how many times the substring 'aab' occurs in a string.

Design a mealy machine to print two's complement of binary number. (Assume input and output are taken from right to left).
Design a Mealy machine to perform a 3-bit odd parity check on the input string. If the total number of 1-bits in the input
string is even, the total number of 1-bits of the string will be odd.

Design a mealy machine for 2's complement

We will design mealy machine for 2's complement.

0/0 0/1

1/1

Generally we take 2's complement as follows:

1/0

1. Take 1's complement of the input

2. Add 1to step 1

But here we are taking 2's complement in a different manner to design mealy machine.

The

approach goes as follows:

1. Start from right to left

2. Ignore all 0's

3. When 1 comes ignore it and then take 1's complement of every digit

Example

1. Lets take 001 and we know that its 2's complement is (110+1 = 111)

2. 50 scan from right to left

3. On state A "1' came first to go to stage B and in output write 1

4. On state B replace "0" with '1" and vice-versa

5. So finally we got 111 as cutput

6. Be aware that the output is also printed in right to left order

| - Semester - FLAT Page 41

UNIT - I

30 June 2017 07:14 PM

| - Semester - FLAT Page 42

Regular Expressions

03 August 2017 12:12 PM

A Regular Language has different notations: Set Notation, Graph Notation, Tabular Notation.
Example: Language of all strings of 0's and 1's ending with 11.

Set Notation: L = {x € {0, 1}* | x ends with 11}

Graph Notation:

Tabular Notation:

[0 1
0 q0 ql
ql qo0 q2
q2 qo0 q2
Now we see another notation: Regular Expressionr = (0 + 1)*11 (Among four notations, which one is better and why?)

Regular Expression is the short and practical notation to describe the regular language.
Regular expression

Definition: A regular expression is recursively defined as follows.

¢ is a regular expression denoting an empty language.
e-(epsilon) is a regular expression indicates the language containing an empty string.
a 1s a regular expression which indicates the language containing only {a}
If R is a regular expression denoting the language Ly and S is a regular expression
denoting the language Lg, then

a. R+S is aregular expression corresponding to the language LrULs.

b. R.Sis aregular expression corresponding to the language Lg.Ls.

c. R*isaregular expression corresponding to the language Le .
5. The expressions obtained by applying any of the rules from 1-4 are regular
expressions.

b

| Regular | Meaning |

| - Semester - FLAT Page 43

expressions

(atb)* Set of strings of a’s and b’s of any length
including the NULL string.

(at+b)*abb Set of strings of a’s and b’s ending with the
string abb

ab(atb)* Set of strings of a’s and b’s starting with the
string ab.

(at+b)*aa(atb) | Set of strings of a’s and b’s having a sub string

* aa.

a*b*c* Set of string consisting of any number of
a’s(may be empty string also) followed by any
number of b’s(may include empty string)
followed by any number of c¢’s(may include
empty string).

abc Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one ‘c’.

aa*bb*cc* Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one ‘c’.

(atb)* (a + | Setof strings of a’s and b’s ending with either a

bb) or bb

(aa)*(bb)*b Set of strings consisting of even number of a’s
followed by odd number of b’s

(0+1)*000 Set of strings of 0’s and 1’s ending with three
consecutive zeros(or ending with 000)

(11)* Set consisting of even number of 1°s

Regular Expression
Aore
a+b

(a+b)(a+b)or(a+b)?

(a+b)(a+b)(a+b)or(a+h)?

(a+b)w

(A+a+b)(A+a+b)or(A+a+b)?

(A+a+b)to

(a+b)*

(a+b)*

(a + b)*abb

ab(a + b)*

(a + b)*aab(a + b)*
a*b*c*

a*b*ct

aa*bb*cc*

(a+bb) (a+b)*
(a+b)* (a+bb)
(a+b)*(a+bb)(a+b)*
((a+b)(a+b))*
((a+b)(a+b)(a+b))*

Meaning

Empty string

String of length one (exactly)

Strings of a's and b's of length 2 (exactly)

Strings of a's and b's of length 3 (exactly)

Strings of a's and b's of length 10 (exactly)

Strings of a's and b's of length atmost 2

Strings of a's and b's of length atmost 10

Strings of a's and b's of any lengthn > 0

Strings of a's and b's of any lengthn > 1

Strings of a's and b's ending with abb

Strings of a's and b's starting with ab

Strings of a's and b's containing substring aab

Any no.of a's followed by any no. of b's followed by any no. of c's
Atleast one a followerd by atleast one b followed by atleast one ¢
Atleast one a followerd by atleast one b followed by atleast one ¢
Starting with either a or bb

Ending with either a or bb

Containing substring either a or bb

Even length strings

String length divisible by 3

| - Semester - FLAT Page 44

((a+b)(a+b))* (a+b) 0dd length strings

(a+Db)*aaa(a+b)* Strings with three consecutive a's
(b+ab)*(a+A) No two consecutive a's

a(a+b)b Starting with a and ending with b
(a+b)*a(a+b) Second symbol from right end is a
(a+b)*a(a +b)° Tenth symbol from right end is a
(aa)*(bb)*b Even a's followed by odd b's

| - Semester - FLAT Page 45

Simplification of Regular Expressions

05 August 2017 05:32 AM

Different regular expressions can be written for the same language.
For example, the language of all strings of a's and b's with atleast one a followed by atleast one b, there are two
regular expressions such as aa*bb* and a‘b*

As the regular expressions are used practically, it is important to write them with few symbols as possible. In other
words, it is required to simplify the regular expressions.
To simplify the regular expressions, there are few identity rules to be followed:

The following theorem is very much useful in simplifying regular
expressions (i.e. replacing a given regular expression P by a simpler regular
expression equivalent to Py

Theorem 5.1 ({Arden’s theorem) Let P and @Q be two regular expressions
over £. If P does not contain A, then the following equation in R, namely

R H Q + RP {.51}
has a unique solution (i.e. one and only one solution) given by R = QP%

Proof Q + (QP*P = Q(A + P*P) = QP* by Iy
Henee (5.11 18 satisfied when R = OP*, This means B = OP# is a solution

| - Semester - FLAT Page 46

The following theorem is very much useful in simplifying regular
expressions (i.e. replacing a given regular expression P by a simpler regular
expression equivalent to P

Theorem 5.1 ({Arden’s theorem) Let P and Q be two regular expressions
over . If P does not contain A, then the following equation in R, namely

R=0Q+RP (5.1)
as a unique solution (i.e. one and only one solution) given by R = QP#%,
Proof Q + (QP*)P = Q(A + P*P) = QP” by [y
Hence (5.1) is satisfied when R = QP*. This means R = QP* is a solution
of (5.1
To prove uniqueness. consider {5.1). Here. replacing R by Q + RP on the
R.H.S.. we get the equation
Q+RP=0Q +(Q + RPP
=0Q + QP + RPP
=Q + QP + RV
=Q+ QP + QP + --. + QP + RP™!
=QA+P+ P +...+P)+ RPY
From (3.1).
R=QA+P+P +. ... +P)+ RP¥ foriz0 (5.2)
We now show that any solution of (5.1) is equivalent to QP#*. Suppose R
satisfies (5.1). then it satisfies (5.2). Let w be a string of length i in the set
R. Then w belongs 1o the set QA + P+ P~ + ... + P) + RP*. As P does
not contain A. RP! has no string of length less than ¢ + | and so w 1s not
in the set RP*!. This means that w belongs to the set QA + P + P* + . ..
+ P). and hence w QP=.
Consider a string w in the set QP*. Then w is in the set QP* for some
k 2 0. and hence in QA + P + P° + ..« + P)). So w is on the RH.S. of
i(5.2). Therefore, wis in R (L.H.S. of (5.2)), Thus R and QP* represent the
same set. This proves the uniqueness of the solution of (3.1 |

Example 5.3

{a) Give an r.e. for representing the set L of strings in which every 0 is
immediately followed by at least two I's.

{b) Prove that the regular expression R = A + 1H011)*(1* (011)*)* also
describes the same set ol strings.

140 =2 Theory of Computer Science

Solution

(a) If wisin L, then either (a) w does not contain any 0, or (b) it contains
a 0 preceded by 1 and followed by 11. So w can be written as
wywa ... w,, where each w; is either 1 or 011. So L is represented

by the re. (1 + 011)%.
by R = A + P\P#, where P; = 1%(011)*
=P/ using Ig
= (1%(011)*)*
= (PYPI)* letting P, = 1. Py = 011
= (P + Py® using [y,
= (1 + 011)*

| - Semester - FLAT Page 47

EXAMPLE 5.4

Prove (1 + 00%1) + (1 + 00%1)0 + 10*1)* (0 + 10*1) = 0*1{0 + 10%1)*,

Solution
LHS. =1+ 00%1) (A + (0 + 10%1)* (0 + 10*1)A using Iz
= (1 + 00%1) (0 + 10%1)* using Iy
(A + 00")1 (0 + 10%1)* using f;5 for 1 + 00%1
= 010 + 10%1)* using Iy
RHS.

| - Semester - FLAT Page 48

| - Semester - FLAT Page 49

Equivalence between RE and FA

08 August 2017 04:06 AM

Regular expression (RE) and Finite Automata (FA) are representations of regular
languages.

A regular language can be described using both RE and FA.
When RE is given, how to find equivalent FA?

When FA is given, how to write equivalent RE?

| - Semester - FLAT Page 50

RE to FA conversion

08 August 2017 04:10 AM

Theorem: Let R be a regular expression. Then there exists a finite automaton M = (Q, 2., 9,
qo, A) which accepts L(R).

Proof: By definition, ¢, € and a are regular expressions. So, the corresponding machines to
recognize these expressions are shown in figure 3.1.a, 3.1.b and 3.1.c respectively.

—w , @ —@—@ —@-
(a) (b) (c)

Fig 3.1 NFAs to accept ¢, ¢ and a

The schematic representation of a regular expression R to accept the language L(R) is shown
in figure 3.2. where q is the start state and f is the final state of machine M.

L(R)

Fig 3.2 Schematic representation of FA accepting L(R)

In the definition of a regular expression it is clear that if R and S are regular expression, then
R+S and R.S and R* are regular expressions which clearly uses three operators ‘+’, *-* and
*.”. Let us take each case separately and construct equivalent machine. Let M, = (Qy, 2.1, 81,
q1, f1) be a machine which accepts the language L(R) corresponding to the regular
expression R|. Let M, = (Q,, 25, 85, 2,) be a machine which accepts the language L(R;)

corresponding to the regular expression Ra.

Case 1: R =R, + R;. We can construct an NFA which accepts either L(R,) or L(R;) which
can be represented as L(R; + R,) as shown in figure 3.3.

L(R1)

| - Semester - FLAT Page 51

Fig. 3.3 To accept the language L(R1 + R2)

It is clear from figure 3.3 that the machine can either accept L(R;) or L(R,). Here, qq is the
start state of the combined machine and gy is the final state of combined machine M.

Case 2: R =R, . Ry. We can construct an NFA which accepts L(R) followed by L(R>) which
can be represented as L(R; . R») as shown in figure 3.4.

L(R) L(R»)

— @ M (e M)

Fig. 3.4To accept the language L(R1 . R2)

It is clear from figure 3.4 that the machine after accepting L(R;) moves from state q, to f;.
Since there is a g-transition, without any input there will be a transition from state f; to state
Q2. In state o, upon accepting L(R»), the machine moves to f> which is the final state. Thus,
q; which is the start state of machine M, becomes the start state of the combined machine M
and f, which is the final state of machine M,, becomes the final state of machine M and
accepts the language L(R,.R»).

Case3: R = (Rl)*. We can construct an NFA which accepts either L(R;)*) as shown in figure
3.5.a. It can also be represented as shown in figure 3.5.b.

(b)

Fig. 3.5 To accept the language L(R1)

It is clear from figure 3.5 tha;[the machine can either accept & or any number of L(R)s thus
accepting the language L(R) . Here, qq is the start state qr is the final state.

| - Semester - FLAT Page 52

3.5.2 Direct Method for Conversion of r.e. to FA

This method is a direct method for obtaining FA from given regular expression.
This is called a subset method. The method is given as below -

Step 1 : Design a transition diagram for given regular expression, using NFA with ¢
moves.

Step 2 : Convert this NFA with & to NFA without e.

Step 3 : Convert the obtained NFA to equivalent DFA.
Let us understand this method with the help of some example.

mmp Example 3.34 : Design a FA from given regular expression 10 + (0 + 11)0° 1
Solution : First we will construct the transition diagram for given regular expression.

o 10+(0+11)0"1 (@

| - Semester - FLAT Page 53

Now we have got NFA without &. Now we will convert it to required DFA for

that, we will first write a transition table for this NFA.

Bate Input 0 1
Go Q% {a. a2}
G qr ¢
@ 0 @
LY %@ qr
o 0
The equivalent DFA will be
State -y 0 !
(%) [as) (@, @]
(] [ar] U
[a2] o (93]
[as] [93] far)
(. G) far] (a]
o o

Practice Problems:

(0+1)* (00+11)(0+1)*
R=ba+(a+bb)a*b
r=(0 + 1)* (011)

r=10 + (00 + 11) 0*10
r=0+11+101*0
r=(01+2%)*1

r=0* + (01 + 0)*
r=(01+0)* (00 + 11)

O NV A WNE

| - Semester - FLAT Page 54

| - Semester - FLAT Page 55

FA to RE Conversion

17 August 2017 09:30 AM

Practice Problems:

Process of Constructing RE from FA:

There are some assumptions:

* In the transitional graph, there must be no epsilon moves.

* Inthe FA, there is only one initial state.
Now, we have to construct equations for all the states. There are n number of equations
If there are n states.
For any FA, these equations are constructed in the following way:
<state name> = I [< state name from which inputs are coming>, <input>]
For the beginning state, there is an arrow at the beginning coming from no state. So, a A is added with
the equation of the beginning state.
Then, these equations have to be solved by the identities of RE. The expression obtained for the final
state and consists of only the input symbol (Z) is the RE for the FA.

| - Semester - FLAT Page 56

& ¥

| - Semester - FLAT Page 57

| FA to RE conversion l

2 methods

steps assumptions steps

" e - l —

Arden's Theorem [1) Given FA has no null transitions,] [1) Write one equation for each ﬂate,] 1) No incoming edges from initial state. [1) T e e]

2) Given FA has only one initial state | | 2) Solve equations of final states. 2) No outgoing edges from final state. T e T el Rl e
3) Only one final state exists.

statement is
A4
R = Q + RP has unigue solution
R = QP*

| - Semester - FLAT Page 58

Pumping Lemma for Regular Languages

18 August 2017 06:05 AM

Proposition:Fish Is a brain food Some upper cast XYZ community is
brilliant because it eats Fish.

Me: If that's so,What about Fisherman’s family members ? Because their main
food is Fish. all the Fishermen's all sons/daughters should be brilliant scientists,
Engineers/doctors/IAS/IFS/Software scientists may be in NASA, ISRO,
Microsoft,Google,11Sc etc. Which is obviously not. Many of them are still
catching fish.

So, proposition is wrong. Fish is not brain food.

Let's assume i committed the crime.

But i was also out of town with my friends at the same same time,
Hence, i was at two locations at the same time.

This is absurd.

So, our ori

al assumption is wrong.
I never committed the crime.

Pumping Lemma is based on Pigeonhole Principle.

he Pigeonhole Principle is one of the most obvious fundamentals in
mathematics. It is o obvious that you may be surprised that there is

even a name for it It states that:

“If n items are put into m containers, with n >m, then at least one container

must contain more than one item.”

For those who prefer visuals and really hate math:

THE PIGEONMOLE PRINGIPLE

Even though the principle is simple it has been used to prove many complex

mathematical theorems and lemmas. Here is one 1 find quite interesting:

"Incompressible strings of every length exist.”

Alternatively,

"There is a file of every size that your favorite zip program can't compress.”

The solution is left to the reader as an exercise.

Example |: Ameng 367 pecple, there must be atleast two with the
same birthday.

BTW, what if there are 368 pecple?
Example 2: How many studsnts must be in out class to guarantes that
at Least b o of them receive the same score on the final exam?

Answer: Jince there 101 possitle scores, the class should have at least
102 studerts.

Atleas how many students in our classwets born on the same day of
the week?

The generalized pigeoniole principhe: 1f W objects are placed inta
baxes, then there is ot least one box cordeining atleast [Nik] objects.

Proof: Sugpose none of the boxes contains [W| or more objects.
Then every box contains at most [1] -1 otjects
So, the iotal number of cbjects is s most W[ME]-11
But [0k]-1 < M
This, the total number of cbjects is less than k(W)
ie. less than IV
This is 2 contradiction End of proof.
How many students should be in our class to guarantee that at least
4 of them were bosn on the same day of the week?
[207] shontd be atleastd. 3o, W should be 22 ormore

Pumping Lemma (PL) for Regular Languages
Theorem:

Let L be & regular language. Then there exisis a constant ‘n” (which depends
on Ly such that for every string w in L such that hw] = n, we can break w into three strings,
wenyz, such that:

lly=0
2yl =n
3. Forall k = 0, the string xy*z is olso in L,
PROOE:

Let 1 he remular defined by an FA havine ‘n” states. Let w= 2.4 . . and is in L.

| - Semester - FLAT Page 59

Pumping Lemma (PL) for Regular Languages
Theorem:
Let L be a regular language. Then there exists a constant “n° {which depends

an Ly such that for every string woin L such that fw] = n, we can break w into three strings,
wenyz, such that:

Llyi=0

2y =0

3. Forall k = 0, the string xy"z is olso in L,
PROOE:
Let L be regular defined by an FA having ‘n” states, Let w= 2,8z as----g,, and is in L.
|w| = n=n. Let the start state be Py Let w = xyz where 8= 8,87 iy - . y=a, and & = &

a
_{jpx
But there are only n states. == there
8PP must be a loop. Let there be a loop in
8PP, | P, State.
i Letx=a,......a,,
' yea,
(P,)P, =g
Therefore xykz

k=0 a] —— ap.] is aceepted

k=1 aj —— ap is accepred

k=2 a] ——ap+] is accepred

k=10 aj -—— an+9 is accepted and so on.

LUses of Pumping Lemma: - This is te be used to show that, certuin languages are not regular,
It should never be used 1o show that some language s regular 11 you want o show that
language is regular, write separate expression. DFA or NFA.

General Method of proof: -

{ib Select w such that [w] = n

(i) Select y such that [y = 1

(i) Seleet x such that [xy| < n

{iv) Assign remaining string to z

ivh Select k suitably to show that, resulting string i not in L
Example 1,

To prove that L={w/w £ a*, where n = 1} is not regular

Proof:

Let L be regular, Let n is the constant {PL Definition), Consider n word w in L.
Let w = arhe, such that fwi=2n. Since 2n > nand 1. is regular it must satisfy PL

o T
Consider w= ga—-a bb—-b
Fate 2]

xy contain only a's. {Because) n).
Let |v[=L where 1 = 0 (Because |yl » 0).

Then, the break up of . y and = can be as follows
e L
w=a" @ W

frism the definition of PL , w=sytz, where k=0,1,2 -, should belang to L

That is o~ (¥ b &L, for all k=0,1,2 -eeee 0
Put k=0, we get a0/ b g L.

Contradiction. Henee the Langisage i not regulas.
Example 2.

To prove that L={w|w is & palindrome on {ab]*} is not regular. Le.. L={aabas, aba,
abbbba,...}

Proaf:

Let L be regular, Let n is the constant {PL Definition), Consider n word w in L. Let w
= arhar such that w|=2nt1, Since 2nt1 = n and L is regular it must satisfy PL.

FTOOT; Let L be regular, Let w = [P where p is prime and | p| = n 42
Lety =m.
by PL xyz el
|xpbz|= | xz |+ gk | Letk = pem
= Apem) + m (pm)
= {p-m) {1+m) —-- this can not be prime
ifpmz=2orl+m=2
1 {1+m) = 2 because m = |
2. Limiting ease p=n+2
{pem) = 2 since m <n
Example 4.

| - Semester - FLAT Page 60

&

Prove-LipPi
s-prime-n...

ifpmz=2orl+m=2
1 (w2 2 becavse m = 1

2. Limiting ease p=n+2
{pem) = 2 since m =n

Example 4.
Ta prove that L={ 07|

imteger and § =0} is nat regular, ie., L= {0, 00 09 006 02

F'r(;ot Let L be regular. Let w = 0 where jw| = 02 = n
by PL xyéz L, forall k=
Seleet k=2
|z |= | xyz |+]3|
=nt+ Min 1 and Max n

Therefore n? < | xy%z | = n? +n

| ayde [= nttn s 14 adding 1+ n{ MNete that less than or equal L s
0| xyiz | <in+ 1R replaced by less than sign}

Say 1 = 5 this implies that string can have length > 25 and = 36
which is notof the ferm 07,

Exervises for students: -
a) Show that following languages are not regular
iy L={a'h™ |, m 20 and n<m |
it L={a"b"™ |, m 20 and n>m }
S | nomzl
(iviL={a" | n is a perfect square |
dvh L={u" | n is a perfect cube |
b} AFPIF pumping kemma to following languages and understand why we cannat complete
proo

(i} L={o"abn |n =0}
(i L={a"h" |m,m =0}

| - Semester - FLAT Page 61

Closure Properties of Regular Languages

22 August 2017

02:38 PM

Regular Languages Properties : Decision Properties and Closure Properties

Decision Properties of Regular Languages

I Is the language described empty?
2. Is a particular string w in the described language?
3. Do two descriptions of a language actually describe the same language?

This question is often called “equivalence” of languages.

Closure Properties of Reqular Lanquages

1. The union of two regular languages is regular,

2, The intersection of two regular languages is regular,

3. The complement of a regular language 1s regular,

4, The difference of two regular languages is regular,

5. The reversal of a regular language is regular.

6. The closure (star) of a regular language is regular.

7. The concatenation of regular languages is regular.

8. A homomorphism (substitution of strings for symbols) of a regular language is regular.

9, The inverse homomorphism of a regular language is regular

| - Semester - FLAT Page 62

UNIT - [l

30 June 2017 07:14 PM

| - Semester - FLAT Page 63

Regular Grammar

28 August 2017 11:01 AM

Grammar: A grammar G is a quadruple G=<V, T, P, S > where
Vis a finite set of variables

T is a finite set of terminals

P is a finite set of productions

S is a special variable called start variable.

Phrase-Structure Grammar: A Pharse-Structure grammar is a grammar G=<V, T, P, S > where P consists of
productions of the formx - y wherexe (VUT)" andye(VUT)*

Chomsky Hierarchy of Phrase-Structure Grammars:
Type-0 grammar
Type-1 grammar
Type-2 grammar
Type-3 grammar

Type-0 grammar (Unrestricted grammar) : u > v whereu,ve (VU T)*

Type-1 grammar (Context-sensitive grammar) : x > y where x,y e (VU T)*and |x| < |y|
Type-2 grammar (Context Free Grammar): A > x where AeVandxe(VUT)*

Type-3 grammar (Regular Grammar) : A > xB A - Bx

A->x or A->x
where ABeVand xe(VUT)*

Regular Grammar: Regular grammar is either right linear grammar or left linear grammar.
Every regular grammar is linear but every linear grammar is not regular.

2.1.3 Right-Linear Grammar

In general productions have the form:
VuT) -V urT) .
In right-linear grammar, all productions have one of the two forms:

VTV

or VT

.., the left hand side should have a single variable and the right hand side
consists of any number of terminals (members of 7) optionally followed by a
single variable.

| - Semester - FLAT Page 64

2.1.4 Right-Linear Grammars and NFAs

There 1s a simple connection between right-linear grammars and NFAs, as
shown in the following illustration.

A xB
A = xyzB
AB
A= x O=m'®)

As an example of the correspondence between an NFA and a right linear
grammar, the following automaton and grammar both recognize the set of set
of strings consisting of an even number of 0’s and an even number of 1°s.

S—> A
S—0B
S - 0A
A—0C
A—1S
B - 0S
B—-1C

2.1.5 Left-Linear Grammar

In a left-linear grammar, all productions have one of the two forms:
V VT

or VT

1.€., the left hand side must consist of a single varibale, and the right-hand side
consists of an optional single variable followed by one number of terminals.

| - Semester - FLAT Page 65

2.1.6 Conversion of Left-linear Grammar into
Right-Linear Grammar

Step Method
(a) Construct a right-linear Replace each production 4 — x of L
grammar for the different with a production 4 — x® and
languages L. replace each production 4 — Bx

with a production 4 — x* B

(b) Construct an NFA for L® from Refer to section 2.1.4 for derving an
the right-linear grammar. This NFA from a right-linear grammar.
NFA should have just one
final state.

(c) Reverse the NFA for L"to (1) Construct an NFA to
obtain an NFA for L. recognize the language L.

(i1) Ensure the NFA has only a
single final state

(111) Reverse the direction of arcs

(1v) Make the initial state final and
final state initial

(d) Construct a right-linear This 1s the technique described in
grammar for L from the the previous section.
NFA for L.

Construct a regular grammar G generating the regular set represented by
P = a*b(a + b)*.

Let G = ({A0, A;}. {a b}. P. Ap). where P is given by
."‘(_] — (L‘L}_. .‘LJ — bfh‘ ,40 — E}'
:‘1] —> (L’l], {"h — bfll, _v‘jlg — (. A| — b

G 1s the required regular grammar.

| - Semester - FLAT Page 66

Example 2.1.2: Construct right-and left-linear grammars for the
language L= {a"b™ :n22, m=3}.

Eolution

Right-Linear Grammar:

S —aS
S — aaA
A— bA
A— bbb

Left-Linear Grammar:

S — Abbb
S — Shb
A— Aa
A— aa

| - Semester - FLAT Page 67

Context Free Grammar

18 September 2017 05:55 AM

Definition: A grammar G = (V,T,P,S) is said to be CFG iff all productions are in the form
A-> xwhereAeVandxe(VUT)*

| - Semester - FLAT Page 68

3 [;
Wlbe CEGs ot the 'pollow\v\a Anguacgth
@ (= ,—{a‘“b“;r\wO} S——)O\Sb!)\

@ L¢{0{’\g‘-_ r\7/|§ S%agb]ab

f\‘H'\,r\?O} S’%ng|a,
@ L:'{a R

% 5-—?&55\5

@ L:-{c{\b

- r\—rlb’\ i V\7/Oﬁk g-))agb’aw

e
€ L= {o{‘b““;r'\y,o"} ¢ sy actbP

B L3 8N el s__?a,ng\%

® L,:-{a“g"\ o e qu‘b‘l)\: \

® palindromes ok ccdbs ¢y x|lalblase
L=dwds elapr b %‘G\Sa.\bsb_
M L= {ww.wc%qb}} Q—?c\

@ L= oM\MzA:mzmgz“%} |

bsb

aSal| bSb

I - Semester - FLAT Page 69

(B Hnd L ,anﬁ\,)a G - S>ose \ €&

A—I1s
£9€¢ S—yoa . #
L’—‘{G} =2olS = oloAR
=0l 1 ol018 = ol10l0hA

=) ©Olo| o) ©Ol10l 015 =)01010]

(.T{C/C)l} (5 ',-}C-/m/mol"‘ L= “{Ql O\/ OIO\, OlolOl/ ,»}
L=fert & =] @iy nyol

@ Wxike CFGH ko 3“\1?/‘“& balanced panm%efe,f.

S-e-(S)\e
§ o HERDoro 2t

nN=o aa.bb* i

: * > }

qe_b_—b“ Wbbb/"' :
\

5 — aA
B Al b|bb

@ i {gy T
N=2-

=t
M7 2

M » 0 m>|* e }
[N a-gbl b s AB
A—-?aSb\b

B— »|bB

| - Semester - FLAT Page 70

LMD, RMD & Derivation Trees
13 September 2018 08:29 AM
2.2 DERIVATION TREES

A “derivation tree’ is an ordered tree which the the nodes are labeled with the
left sides of productions and in which the children of a node represent its
corresponding right sides.

2.2.1 Definition of a Derivation Tree

Let G=(V. T, S, P)be a CFG. An ordered tree is a derivation tree for G iff it
has the following properties:

(1) The root of the derivation tree is S.
(i1) Each and every leaf in the tree has a label from 7 U {A}.
(i11) Each and every interior vertex (a vertex which is no a leaf) has a
label from V.
(iv) Ifavertex has label 4 € V', and its children are labeled (from left to
right) a,,a,, a,, then P must contain a production of the
form

A= ag, ay, a

(v) A leaf labeled A has no siblings, that is, a vertex with a child
labeled A can have no other children.

2.2.2 Sentential Form

For a given CFG with productions S — a4, A — aB,B — bB,B — a. The
derivation tree is as shown below.

N
"\
b/B\B
|

a

S = a4 = aaB = aabB = aaba

The resultant of the derivation tree is the word w = aaba.
This is said to be in “Sentential Form”.

| - Semester - FLAT Page 71

2.2.3 Partial Derivation Tree

In the definition of derivation tree given, if every leaf has a label from
V' UT U {A}itis said to be “partial derivation tree”.

2.2.4 Right Most/Left Most/Mixed Derivation
Consider the grammar G with production

.S — aSS
25—b

Now, we have

S = aSS

aaSSS

aabSS (Left Most Derivation)
aabaSSS

aababSS

aababbS

aababbb

el l-Uey-1-

The sequence followed is “left most derivation™, following “1121222”, giv-
ing “aababbb”.

| - Semester - FLAT Page 72

120 Theory of Automata, Formal Languages and Computation

S =I> aSs
=2> aSh
=I:~ aaSSh (Mixed Derivation)
:2> aabSh
:IP aabaSSh
:2) aabaSbhb
=2> aababbb

The sequence 1212122 represents a “Mixed Derivation”, giving
“aababbb™.

aaSaSSh (Right Most Derivation)

aaSabbb

=
=
=2> aaSaShh
>
=2) aababbb

The sequence 1211222 represents a “Right Most Derivation™, giving
“aababbh”.

Example 2.2.1: A grammar G which is context-free has the
productions

S — adB
A— Bba
B — bB
B—ec

(The word w = achabc is derived as follows)

8§ = adB — a(Bba)B = acbaB = acba(bB) = acbabc.

Obtain the derivation tree.

| - Semester - FLAT Page 73

Context-free Grammars

121

Eolutlon

a

S

/TN, ./T\B
’ B/T\a

(a) S — aAB (b) A —s Bba

S
I T

A A

SN N
I

c

o

(d)B— bB (e)B—-c¢c

BEH Example 2.2.2: A CFG given by productions is

S5 —a,
5 — aAds,
and 4— bS

Obtain the derivation tree of the word w = abaabaa.

Eizlution

w = abaabaa is derived from § as

S = adS = a(bS)S = abaS = aba(aAS)
= abaa(bs)S

= abaaba$
= abaabaa
The derivation tree is sketched below.
a/ j \
| RN
S a Ao S
|]
a s a
|
a

| - Semester - FLAT Page 74

122 Theory of Automata, Formal Languages and Computation

B4 Example 2.2.3: Givena CFG givenby G=(N, T, P,)

] . _ _ M S — aSh
with N= {8} T={a. b1 P =4 o 6 o [+

Obtain the derivation tree and the language generated L(G).

Eiolution

S = ab i.e.,abe L(G)
S = aSh

= qabb ic..a’h’e L(G)
S = aSh

= aaShh

= aaabbb iLe.a’bh’ e L(G),

3.3
=a'b and soon

Derivation tree is as follows.
JIN
S
/ ‘\
a b
S
/N
a b

Language generated L(G) = {a"b" | n=1}.

o
/

B4 Example 2.2.4: GivenaCFGG=(N, T, P, S)
J(l) S — aSa
with N={S}, T=1{a,b,c} and P = { (2) S — bSh}.
13 s=c

Obtain the derivation tree and language generated L(G).
Eolution

(i) S=¢ celiG) I

(i) S = aSa = aca € L(G)

| - Semester - FLAT Page 75

Context-free Grammars

123

(iii) S = bSh= bcb € L(G)

(iv) § = aSa
= abSha b
= abcbae L(G)

and so on.
Hence the language generated L(G) is given by

L(G) = {wew™ | we {a,b}"}
where w* = reversal of w
ie., it w=aa,..... a, a
then w® =a,d,) ... ayd.
Example 2.2.5: Given G = (N, T, P, S) with
N={E},.S=E ,T={id, +, *. ¢}

P.LE=SE+E
and 2E—EYE
3L E—=(E)
4 E— id
Obtain the derivation tree.

E;Iution
/TN /TN
E E E E
/ |\+ | / NS |
E | E (4)

‘ \ id / \ id

id id E E
I
id id

= = [(id + i) * id

| - Semester - FLAT Page 76

124 Theory of Automata, Formal Languages and Computation

B Example 2.2.6: Obtain the language generated L(G) for a CFG given

. . §— 588§
N, T, P, ith N= {8}, . P
G(N, T, P, S) with N= {58}, T{a} PH[Z,S—)a
Eiolution
S=a ‘S
a
/s
§= 58 S ‘
= aS ‘ S
= da a ‘
a

8§ =85 = aS = aS§ = aaS = aaa and so on....
Therefore the language generated is
LG)={a" | nz1}

Example 2.2.7: Obtain the language generated by each of the following
production rules.

(a) A—a (b) §—aS (c) A= a
A—» aB S—e A— aB
A—e A—e

(d) 4— aS (e) S—aS () S—ab
S— bS S— bS S— bs
S—e S—a S—=a

S—b

Eiolution

(a) The language generated is a “type-3 language”™ or “regular set™.

(b)y §=¢€
S=aS=a
S=as=aalS = aa

and so on.
Hence the language generated is

LiGy=1{a" | n20}

| - Semester - FLAT Page 77

Context-free Grammars 125

(c) A=e
A=a L(G) = {ww® | we {a,b}"}
A=aB
d) §—aS
S—bS L(G)={a, b}
S—e Language generated of any string of a,b
() §—aS
S—bS L(G)={a,b} a
S—a
() S—ab
S— bS L(G) = {a.b}"
S—a
S5—b

BW Example 2.2.8: Givena CFG G = (N, T, P, S)
(1. S— aS)

. 2.5 —ad
with N = (S, 4}, T= {a,b}andP:li A_)‘;;AL
14 A4=b J

Obtain the derivation tree and L(G).

EFI ution

S=ad =ab
S = a8 = aad = aab
S = a8 = aaS = aaad = aaabA = aaabb

and soon ...

The derivation tree has been shown here in fig.
S,
a— \
S
" \
S
a” \A
b/ \
'T
b
The language generated is

LGY={a"b" n=l, m=1}

| - Semester - FLAT Page 78

126 Theory of Automata, Formal Languages and Computation

B4 Example 2.2.9: Given a CFG with
J 1.S— a4
P =142 A— bS ;. Obtain the derivation tree and L(G).
[3. 455

S
Pa"
S = ad = ab l
S
PN
a A
S = ad = abS = abad = abab V/\\S
= adA = a = abaA = abab... ...
2N
a A
A

The derivation trees suggest ab, abab,
Therefore the language generated

L(G)={(ab)" | n>1}

BH Example 2.2.10: Obtain the production rules for CFG given the
language generated as
(@) LG)={w|we{a,b}, = (w)=",(w)
(b) L(G)={w]|we {a.h}*. W =2, (w)}
(©) LG)={w|we{a,b}", <, (w)=3",(w)}

E:Iution

(a) S— SaShS
S—e
S — SbSaS

(b) S — SaSaShS
S — SaShSaS
S — ShSaSaS
S—oe

| - Semester - FLAT Page 79

(c) S — SaSaSaSbS
S = SaSaShSaS
S — SaShSaSaS
S — ShSaSaSaS
S—>e

Example 2.2.11: Given a grammar G with production rules

S—aB
S — b4
A— aS
A— bAA
A—>a

B — bS
B — aBB
B—b

Obtain the (i) leftmost derivation, and (ii) rightmost derivation for the
string “aaabbabbba”.

Eolution

(1) Leftmost derivation:

S = aB = aaBB = aqaaBBB = aaabBB = aaabbB
= aaabbabB = aaabbabbB = aaabbabbbS = aaabbabbba
= aaabbabb
(i1) Rightmost derivation:

S = aB = aaBB = aaBbS = aaBbbA = aaaBBbba
= aaabBbba = aaabbSbba = aaabbaBbba = aaabbabbba

| - Semester - FLAT Page 80

EXAMPLE 6.3

Let G be the grammar S — 0B|1A. A — 0|0S|1AA. B — 1|1S|0BB. For
the string 00110101, find (a) the leftmost derivation. (b) the rightmost
derivation, and (c) the derivation tree.

Solution
(a) S= OB = 00BB = 001B = 00115
= 0°1°0B = 0°1°01S = 0-1°0108B = 0°1-0101
(b) S = 0B = 00BB = 00B1S = 00BI10B

= 0°B101S = 0°B1010B = 0°B10101 = 0-110101.
(c) The derivation tree is given in Fig. 6.9.

. 0
Fig. 6.9 The derivation tree with yield 00110101 for Example 6.3.

| - Semester - FLAT Page 81

Ambiguous Grammar

03 October 2017 10:06 AM

Derivation of a String:

Left most derivation of a string:
Right most derivation of a string:
Derivation tree of a string:
Ambiguous Grammar:

2.3 PARSING AND AMBIGUITY
2.3.1 Parsing
A grammar can be used in two ways:

(a) Using the grammar to generate strings of the language.
(b) Using the grammar to recognize the strings.

“Parsing” a string is finding a derivation (or a derivation tree) for that
string.

Parsing a string is like recognizing a string. The only realistic way to
recognize a string of a context-free grammar is to parse it.

2.3.2 Exhaustive Search Parsing

The basic idea of the “Exhaustive Search Parsing”™ is to parse a string w,
generate all strings in L and check if w is among them.

Problem arises when L is an infinite language. Therefore a systematic
approach is needed to achieve this, as it is required to know that no strings are
overlooked. And also it is necessary so as to stop after a finite number of steps.

The idea of exhaustive search parsing for a string is to generate all strings
of length no greater than | w |, and see if w is among them.

The restrictions that are placed on the grammar will allow us to generate
any string we L in at most 2 | w | — | derivation steps.

Exhaustive search parsing is inefficient. It requires time exponential in| wi.

There are ways to further restrict context free grammar so that strings may
be parsed in linear or non-linear time (which methods are beyond the scope of
this book).

There is no known linear or non-linear algorithm for parsing strings of a
general context free grammar.

2.3.3 Topdown/Bottomup Parsing

Sequence of rules are applied in a lefimost derivation in Topdown parsing.
(Refer to section 2.2.4.)

Sequence of rules are applied in a rightmost derivation in Bottomup
parsing.

This is illustrated below.

Consider the grammar G with production

1. § — aSS
2.85=b

The parse trees are as follows.
S
7N
a S\
S
a/ | \ ’
s 5
/ a/ | N
s
/b
b
Fig. Topdown parsing.

aababbb — Left parse of the string with the sequence 1121222,
This is known as “Topdown Parsing.”

| - Semester - FLAT Page 82

“Right Parse” is the reversal of sequence of rules applied in a rightmost
derivation.

S

\
s\\ .

s| (
b a

Fig. Bottom-up parsing.

S

|]
b

b

u-—m//

a a

aababbb — Right parse of the string with the sequence 2221121.
This is known as “Bottom-up Parsing.”
2.3.4 Ambiguity
The grammar given by
G=({S}.{a.b}.S.S —> aSh| bSa | SS | L)

generates strings having an equal number of @’s and b’s.
The string “abab™ can be generated from this grammar in two distinct
ways, as shown in the following derivation trees:

S s
SN 2R

S S S
"/l\"” /l\" a/l\”
| | |
A A A

Similarly, “abab™ has two distinct leftmost derivations:

S = aSh = abSab = abab
S = SS = aShS = abS = abaSh = abab.

Also, “abab™ has two distinct rightmost derivations:

S = aSh = abSab = abab
S =SS = SaSh = Sab = aShab = abab

Each of the above derivation trees can be turned into a unique rightmost
derivation, or into a unique leftmost derivation. Each leftmost or rightmost
derivation can be turned into a unique derivation tree. These representations
are largely interchangeable.

2.3.5 Ambiguous Grammars/Ambiguous Languages

Since derivation trees, leftmost derivations, and rightmost derivations are
equivalent rotations, the following definitions are equivalent:

Definition: LetG = (N,T,P,S)beaCFG.
A string we L(G) s said to be “ambiguously derivable “if there are two or
more different derivation trees for that string in G.

Definition: A CFG given by G =(N, T, P, S) is said to be “ambiguous” if there
exists at least one string in L(G) which is ambiguously derivable. Otherwise it
is unambiguous.

Ambiguity is a property of a grammar, and it is usually, but not always
possible to find an equivalent unambiguous grammar.

An “inherantly ambiguous language™ is a language for which no
unambiguous grammar exists.

B Example 2.3.1: Prove that the grammar

S — aB|ab,
A— aAB |a,
B— ABb|b

is ambiguous.

E:lutlon

It is easy to see that “ab™ has two different derivations as shown below.
Given the grammar G with production

l.S—aB
2.S—ab
3. A— adB
4 A-a
5.B— ABb
6.B—b

Using (2)., S=ab
Using (1). S=aB = ab
and then (6).

| - Semester - FLAT Page 83

Sometimes we come across ambiguous sentences in the language we are using.
Consider the following sentence in English: “In books selected information is
given.” The word “selected” may refer to books or information. So the sentence
may be parsed in two ditferent ways. The same situation may arise in context-
free languages. The same terminal string may be the yield of two derivation
trees. So there may be two different leftmost derivations of w by Theorem 6.2.
This leads to the definition of ambiguous sentences in a context-free language.

Definition 6.6 A terminal string w € L(G) is ambiguous if there exist two
or more derivation trees for w (or there exist two or more leftmost derivations
of w).

Consider, for example. G = ({S). {a, b, +, #}, P. S), where P consists
of § = §+ 8|8+ S|a|b. We have two derivation trees for a + a = b given
in Fig. 6.10.

Fig. 6.10 Two derivation trees for a + a # b,

The leftmost derivations of @ + a * b induced by the two derivation trees
are
S=8§+8S=a+S=a+S5+«S=>a+a+S=>a+a+bh

S=85+«S=8+5«S=2a+S5-S=2a+a=S=>a+a=+b
Therefore. @ + a = b is ambiguous.

Definition 6.7 A context-free grammar & is ambiguous if there exists some
w & L(G), which is ambiguous.

EXAMPLE 6.4

If G is the grammar § — SbS|a, show that G is ambiguous.

Solution

To prove that G is ambiguous, we have to find a w € L(G), which is
ambiguous. Consider w = abababa € L(G). Then we get two derivation trees
for w (see Fig. 6.11). Thus. G is ambiguous.

Using (2), S =ab
Using (1), S =aB = ab
and then (6).

B4 Example 2.3.2: Show that the grammar S — S|S, § — aisambiguous.

In order to show that G is ambiguous, we need to find a we L(G), which is
ambiguous.

Assume w = abababa.
The two derivation trees for w=abababa is shown below in Fig. (a) and (b). Fig. 611 Two derivation trees of abababa for Example 6.4.
S
¢

b \ S \S
" I/‘I’ T/J’\

S
'

(a) (b)
Therefore, the grammar G is ambiguous.

¥4 Example 2.3.3: Show that the grammar G with production

S — aladb|abSh
A— adAb|bS

is ambiguous.

S = abSh ("2 S — abSh)
= abab (rS—>a)

Similarly,

S = adb (=S — adb)
= abSh (= A—> bS)
= abab

Since ‘abab’ has two different derivations, the grammar G is ambiguous.

| - Semester - FLAT Page 84

| - Semester - FLAT Page 85

| - Semester - FLAT Page 86

CFG minimization

03 October 2017

CFG minimization algorithm:
Repeat the following steps 1, 2 and 3 until there are no useless/null/unit productions in the given grammar.
1. Remove useless productions.
a) Eliminate variables that do not derive any terminal string.
b) Eliminate variables that are not reachable from the start variable.
2. Remove null productions.
3. Remove unit productions.

Minimize the following CFGs.

1. S>aS|A|C

A->a
B> aa

C—-acb

55>A

A->B
B->C
C->D
D->a

10S-> AB
A->a
B->Cl|b
cC->D
D->E|Bc
E->d|Ab

6S->aA | bB
A->aAla
B > bB

D—>ab | Ea
E->aC|d

11S->A0 | B

2.

S>alaA|B]|C
A->aB|A

B - Aa

C - cCD

D - ddd

7S->aA|a|Bb|cC

B>A|11
A>0]12

A->aB

B—>alAa
C->cCD
D - ddd

| B

| - Semester - FLAT Page 87

3. S aAa

A - Sb | bec | DaA

C->abb | DD
D - aDA
E->ac

85 -> ABCa | bD
A>BC|b
B>b|A
C>cl|A
D->d

12S>Aa|B|Ca

C->Dd|D

45> XY
X0
Y>27)1
Z>W
WcC
c>0

95 - BAAB
A->0A2|2A0 | A
B->AB|1B|A

13S->aSa | bSb | A
A - aBb | bBa
B—>aB|bB|A

Chomsky Normal Form (CNF)

03 October 2017 04:43 PM

ACFGG=(V,T,P,S)is said to be in CNF notation iff all the productions are in the form

A= BC
A->a

Where A, B,CeVandaeT
By definition, the right hand side of a production in CFG contains any no.of variables and terminals.
CNF reduces the length of right hand side of production to one or two symbols only.

If there are two symbols then both must be variables.
If there is only one symbol then it must be a terminal.

Note: Any CFG can be converted into CNF notation but the given grammar must not contain null productions and unit productions. If so, eliminate them.

1S->0A|1B 2S - Aba S—>bA|aB S->aSa|SSa|a
A->0AA|1S|1 A - aab A->bAA|aS|a
B->1BB | 0S |0 B> Ac B->aBB | bS |b

| - Semester - FLAT Page 88

Griebach Normal Form (GNF)

05 October 2017 09:39 AM

MAS513: Formal Languages and Automata Theory
Topic: Properties of Context-free Languages
Lecture Number 29 Date: October 18, 2011

1 Greibach Normal Form (GNF)

ACFG G = (V,T,R,5) is said to be in GNF if every production is of the form
A — an, where a € T and o € V*, Le.. o is a string of zero or more variables,

Definition: A production I & R is said to be in the form left recursion, if
U A— Ao for some A e V.

Left recursion in A can be eliminated by the following scheme:

o [f A — Aoyl Aag| .. [Ang [3] 3:] .. |3, then replace the above rules hy

(1) & = oyl Z, 1 <i<vand (i) A— &[FZ,1<i<s

o If 7 = (V. T, R, 5)isa CFG, then we can construct another CFG Gy = (V, T, Ry, 5)
in Greibach Normal Form (GNF) such that L{G) = L(G) = {¢}.

The stepwise algorithm is as follows:

1. Eliminate null productions, unit productions and useless symbols from the
grammar (& and then construet a G' = (V. T, /', §) in Chomsky Normal
Form (CNF) generating the language L(G") = L(G) — {¢}.

2. Rename the variables like A, Aq, ... A, starting with 5 = 4,.
3. Modify the rules in R so that if 4; — A;v € R then j =
4. Starting with A, and proceeding to A, this is done as follows:

(a) Assume that productions have been modified so that for 1 <@ < kA, —
Ajve Ronlyif j =i
by If A — A4 isaproduction with § < k. generate a new set of productions
i I J g I
substituting for the A; the body of each A; production.
[¢) Repeating (h) at most & — 1 times we obtain rules of the form A, —
Avp=k
(d} Replace rules A — Apy by removing left-recursion as stated above.
5. Modify the A; — Ay fori =n—1,n—2,., 1 in desired form at the same time
change the Z production rules.

| - Semester - FLAT Page 89

GNF was given by Sheila A. Griebach
in 1965. This normal form not only
put restrictions on the length of the
body of a production (like CNF) but
also put restrictions on the positions
in which terminals and non-terminals
appear in the body of production.

Using CNF, a string of length w can
be derived using 2w-1 steps.

Using GNF, a string of length w can
be derived using w steps because
each step produces a terminal
symbol of string.

Moreover, GNF is used to construct
PDA.

Any CFG can be converted into CNF
as well as GNF grammar.

Brief Procedure:

1. Minimize CFG. (useless, null
and unit productions deleted)

2. Convertinto CNF.

3. Rename variables as A1, A2, ..
Starting with S= Al.

4. Apply substitution rule for all
productions of the form:]
Ai---> Ajwhere i>juntili=j

5. Forall productionsi=j,
eliminate left recursion.

6. Again apply substitution rule,
to convert productions in GNF.

Example: Convert the following grammar & into Greibach Normal Form (GNF).

[S— XABB
| B—b|SB
[X =

|A—a

To write the above grammar G into GNF, we shall follow the following steps:

1. Rewrite & in Chomsky Normal Form (CNF)
It is already in CNF.
2. Re-label the variables
S with A,
XN with Az
A with Ay
B with Ay
After re-labeling the grammar looks like:
“’11 — {12A3|{1.111.1
Ay — b4 Ay
Ay — b
Ay —a
3. Identify all productions which do not conform to any of the types listed helow:
Ay — Ajrg such that j =i
Z; — Ay such that j < n
Ay — g such that wp € Vo0and a e T
4. A4, — A Ay L identified
5. Ay — Ay Ag|b
To climinate A, we will use the substitution rule A} — Az Ay A4,
Therefore, we have Ay — A A3 4| Ay A Aqlb
The above two productions still do not conform to any of the types in
step 3.
Substituting for Ay — b
Ay — A A AA A D

Now we have to remove left recursive production Ay — A, A,.4,

| - Semester - FLAT Page 90

Ay by Ay |blb A AL Z|bZ
Z s Ay A,4,2
G. At this stage our grammar now looks like

Al — Az Ay AsAy

Ay — bA A bbALALZ|DZ

Z s Ay A4, 2

:'12 — b

_4;\ -+

Al rules now conform to one of the types in step 3.
But the grammar is still not in Greibach Normal Form!

7. All productions for s, Ay and A, are in GNF
for Ay — AaAy| AL Ay

Substitute for Az and Ay to convert it to GNF
Ay = bA bAZALAL DA DA AL Z AYDZ Ay

for # — AyA | A A7

Substitute for Ay to convert it to GNF

Z — bAg A A DA A AZ A Z A bA A A Z|bAZ DA A Z A Z|bZAZ
&, Finally the grammar in GNF is

Ay — bAsIbA A AL DAL BASALZ AL DZ A,

Ay — bA A B|bAAZ|bE

Z — hAg A A DA b A AL Z AYZ A A A A Z| DAL Z DA A Z A Z|bZ AL

.‘12 — b

Ag—*ﬂ.

GNF Practice Problems:
1. S-—->aSb | aA,A---->Aa | Sa |a
2. S-=->XY1|0,X--->00X | Y, Y --->1X1
3. S--->01] 0S| 00S

| - Semester - FLAT Page 91

4.5.2 Greibach Normal Form (G.N.F.)

A Context free grammar is said to be in Greibach-normal form (G.N.F.) if all production have
the form

A — aX

where, a € T, x € N* means “X-can be null”.

Example Conuvert the following grammar in “Greibach normal form”.
S— AB
A — aA|bB|b
B—b

Answer Given grammar is not G.N.F.
By using the substitution

S — AB

g A — aA|bB|b
Put the all values of ‘A’
S — aAB|tBB|4B

| - Semester - FLAT Page 92

A — aA|bB|b
B—-a

(-» X may be null) This is in G.N.F.
Example Convert the grammar

Answer

S — abShlaa into G.N.F.
S — aBSB|aA

A—>a
B — b which is in G.N.F.

Example Convert the following grammar into G.N.F. (Greibach normal form)

S— aSh | ab
Answer S—aSbh|ab
Let B-ob
then S—>aSB|aB
B—oa

which is in G.N.F.

Example Convert the grammar

into G.N.F.
Answer
Let

which is in G.N.F.

S — ab|aS|aaS

S — ab| as| aaS
B—-b

A—>a
S—>aB|aS|aAS

A—>a
B—ob

Example Convert the grammar

S—>ABb |a
A—aaA|B
B—>bAb
into G.N.F.
Answer S—>ABb|a
We can put the value of
A —>aaA
then
S —>aadBb|a
Let P—b
Q—a
then
S - aQ ABP | a
P-b
Q-a

A Al R

| - Semester - FLAT Page 93

P-
Q-a
A — aaA | B
B — bAb
Therefore
A — aaA | bAb
A = aQA | bAP
(= P—= b Q- a
B — bAP
Final G.N.F. is '
S - aQABP | a
Pob
Q-a
A — aQA | bAP
B — bAP
ixample Convert the following grammar into G.N.F.
S — aAS
S—a
A — SbA
A—SS
A — ba
Answer S — aAS
S—>a
»oth are in G.N.F.
A — SHA
A —SS
A — ba
are not in G.N.F.
we will put the productions of ‘S’.

Therefore,
A — aASHA

A — abA

A — aASS

A — aS

A — ba
Let B—-b
then A — aASBA

A — aBA

| - Semester - FLAT Page 94

A = aASS
A - aS

A = ba
Coa

A - aASBA
A — aBA
A — aASS
A — aS

A - C
B-ob
C—oa

sl GNF. is

S — aAS
S—>a

A — a@ASEA
A — aBA
A — aASS
A — aS

A - iC

B-ob
C—oa

¥ote: Generally we see that A — Aa. | B type production in C.F.G., we can replace it by following two
roduction.

A->BA|B
A" > oA’ |a
Here, A’ is a new non-terminal by this way we actually remove left recursion from the
gammar.

| - Semester - FLAT Page 95

-
BELI®AD Convert the following grammar into GNF.

S —> AA/a
A — SS/b

Solution:

Step I: There are no unit productions and no null production in the grammar. The given grammar is in
CNF.

Step II: In the grammar, there are two non-terminals S and A. Rename the non-terminals as A, and A,
respectively. The modified grammar will be

A —>AA)/a
A —)AA/b

Step III: In the grammar, A, — A A, is not in the format A, - A V where i < j. Replace the leftmost A,
at the RHS of the productlon A, —> A A,. After replacing the modlﬁed A, production will be

A, > AAA faA /b

The production A, — aA /b is in the format A — B, and the production A, — A,A A, is in the format
of A— Aa. So, we can mtroduce a new non-terminal B, and the modified A, producnon will be (accord-
ing to Lemma II)

A, —aA /b

A,—aA B,

A, - bB,
And the B, productions will be

B,2>AA,

B - A A B

2 172

Step IV: All A, productions are in the format of GNF. In the production A —>AA/a A—aisinthe
prescribed format But the production A| — A A, is not in the format of GNF Replace the leftmost A, at
the RHS of the production by the prevnous A, productlons The modified A, productions will be

A, —aAA/bAJaA BA /bB A,

| - Semester - FLAT Page 96

the B, productions are not in GNF. Replace the leftmost A, at the RHS of the two productions by the
pmducnons The modified B, productions will be

B, —>aA A /bA /aA BA /bBA
B, >aA A B/bA B,aA B.A B/bB,A B,

for the given CFG, the GNF will be
Al — aA A,bA,/aA B,A /bB,A /a
A2 - aA /b/aA B,/bB,
B2 — aA A /bA /aA B,A /bB A,
B2 — aA A B,/bA B /aA B,A B,/bB,AB,

LR Convert the following CFG into GNF.

S - XY
X —=YS/h
Y — SX/a

Solution:
SepI: In the grammar, there is no null production and no unit production. The grammar also is in CNF.

Sep IT: In the grammar, there are three non-terminals S, X, and Y. Rename the non-terminals as A, A,,
2dA,, respectively. After renaming, the modified grammar will be

A—)AA
A —>AA/b
A—)AA_/a

Seep IT: Tn the grammar, the production A, — A A, is not in the format A; — AV wherei<j.

Replace the leftmost A, at the RHS of the productlon A, > AA, by the productlon A - A’A1 The
moduction will become A — A,A A, which is again not in the format of A —>AV whepedi j. Replace
%¢ leftmost A, at the RHS of the productlon A, = AA A, by the productlon A, - A,A /b. The modi-

fed Ajproducuon will be
A, —>AAAA/DAA

x ooy e

The production A, — bA,A /a is in the format of A — B, and the production A, — A;A A /A, is in
& format of A — Aa So, we can introduce a new non-terminal B and the modlﬁed A, production will

* (according to Lemma IT)

A, - bAJA2

3

A3
3—)bAAB

AJ—->aB

And B productions will be

B - A|A3A2
B—->AAAB

| - Semester - FLAT Page 97

Step IV: All the Aj productions are in the specified format of GNF.
The A, production is not in the specified format of GNF. Replacing A, productions in A, productiop,

the modified A, production becomes
A - bAsAZA]/aAI/bA_,AZBAl/aBA,/b
Now, all the A, productions are in the prescribed format of GNF.

The A, production is not in the prescribed format of GNF. Replacing A, productions in A, the moi
fied A productions will be

A, > bAA A A /aA A /bA A BA A /aBA A /bA,

All the A| productions are in the prescribed format of GNF.

But the B productions are still not in the prescribed format of GNF. By replacing the leftmost A, a
the RHS of the B productions by A, productions, the modified B productions will be

B — bA,A,A A /A A /aA AAA,/bAABAAAA/EBAAAA/DAAA,

B — bA,A,A AA A B/aA A AABbAABAAAABaBAAAABDAAAB.

| B e g

Now, all the B productions of the grammar are in the prescribed format of GNF.
So, for the given CFG, the GNF will be

A, - bA,A A A /aA A /bAABA A /aBA A /bA,
A, —>bA,A,A /aA /bA.A,BA /aBA /b
B — bA,A,A A, AA/aA AAA/DAABAAAA,/BAAAA/DAAA

L3732 | S S 3773 2
B — bA,A,A A A A B/aA A AABbAABAAAABABAAAABDAAAB

2 | ey e (e) "3 3 2 1773773072

SEL N ETRED Convert the following CFG into GNF.

S — AB/BC
A — aB/bA/a
B — bB/cC/b
C—oc

Solution:

Step I: In the previous grammar, there is no unit production and no null production. But all productions
are not in CNF. Let us take two non-terminals D, and D, which will be placed in the place of ‘a’ and ‘b’,
respectively. So, two new productions D, — a and D, — b will be added to the grammar

S — AB/BC
A — D B/D,A/a
B — D,B/CC/b
C—oec

D, —a

D,—b

Now all the productions are in CNF.

yg I: There are six non-terminals in the grammar. Rename the non-terminals as A, A, ..A,. After
Licing, the modified productions will be

A - AzASIAJA4
A,- AAJ/AA/a
AJ - A6A3KA4A4fb
A,—c

A, —>a

A,—b

The productions for A A _ and A are all in the faormat A. — AV where i < j. Replace A, and A,

| - Semester - FLAT Page 98

ol There are six non-terminals in the grammar, Rename the non-terminals as A, A, ..A,. After
sixcing, the modified productions will be

A > AA/AA,

A, > AA/AA/a
AJ — AﬁASIA'tAd!b
A,—c
A,—a
A,—b

The productions for A, A, and A, are all in the format A, — AV where i < j. Replace A, and A,
s the productions A, — AA and A, 5> AA byA, - bandA, —C, respectively. The modified A,

wductions will be
] A, > DbA /cA /b

All the productions are now in the format of GNF, ivel
Replace A and A, in the productions A,—>AA,and A —>AA,byA;—a and A, = b, respectively.
e modified A, productions will be

A, - aA /bA /ja

All the productions are now in the format of GNF. ;
The A, productions A, — A A /A A, are not in the format of GNF. Replace A, at the RHS of the

mduction A — A A,. The modified production will be
A, — aAA/bA A JaA,

Replace A, at the RHS of the production A, = A,A,. The modified production will be
A, —>bAA/AADA,

So, for the given CFG, the GNF will be

A - aA3A3fbA2A3faA3!bA3A4f'cA4A4fbA4
A, —>aA/bAja

A, = bA/cA J/b

A,—cC

A, —a

A,—b

| - Semester - FLAT Page 99

Pumping Lemma of CFL

15 September 2018 06:47 PM

3.3 PROPERTIES OF CONTEXT FREE LANGUAGES
3.3.1 Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong
to a language, then certain other strings must also belong to the language.

Let us discuss a Pumping Lemma for CFL.

We will show that, if L is a context-free language, then strings of L that are
at least “m’ symbols long can be “pumped™ to produce additional strings in L.
The value of “m" depends on the particular language.

Let L be an infinite context-free language. Then there is some positive
integer ‘m" such that, if S is a string of L of Length at least *m’, then

(1) S=uvwxy (for some u, v, w, x,)
(i) |vwx|<m
(i) |wx|=1
(iv) w'wx'yelL.

for all non-negative values of /.

It should be understood that

(1) If Sis sufficiently long string, then there are two substrings, v and

x, somewhere in S. There is stuff («) before v, stuff (w) between v
and x, and stuff (y), after x.

(i1) The stuff between v and x won't be too long, because | vwx | can’t
be larger than m.

(ii1) Substrings v and x won’t both be empty, though either one could
be.

(iv) If we duplicate substring v, some number (i) of times, and
duplicate x the same number of times, the resultant string will also
bein L.

3.3.2 Definitions

A variable is useful if it occurs in the derivation of some string. This requires
that

(a) the variable occurs in some sentential form (you can get to the
variable if you start from S), and

(b) astring of terminals can be derived from the sentential form (the
variable is not a “dead end”).

A variable is “recursive” if it can generate a string containing itself. For
example, variable A is recursive if
S=udy
for some values of « and y.
A recursive variable A can be either
(i) “Directly Recursive™, i.e., there is a production
A—> x Ax,
for some strings x,,x, € (T'U V) ., or
(i) “Indirectly Recursive™, i.c., there are variables x; and productions

A- X, ...

[

o Xgens
o K

w

X, -.
X,-.
Xy—
3.3.3 Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free
Grammar G that generates L. Suppose

| - Semester - FLAT Page 100

(1) L is infinite, hence there is no proper upper bound on the length of
strings belonging to L.
(i1) L does not contain A.
(ii1) G has no productions or A-productions.

There are only a finite number of variables in a grammar and the
productions for each variable have finite lengths. The only way that a grammar
can generate arbitrarily long strings is if one or more variables is both useful
and recursive.

Suppose no variable is recursive.

Since the start symbol is nonrecursive, it must be defined only in terms of
terminals and other variables. Then since those variabls are non recursive, they
have to be defined in terms of terminals and still other variables and so on.
After a while we run out of “other variables™ while the generated string is still
finite. Therefore there is an upperbond on the length of the string which can be
generated from the start symbol. This contradicts our statement that the
language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L.

If X is sufficiently long, then the derivation of X must have involved
recursive use of some variable A.

Since A was used in the derivation, the derivation should have started as

S = udy
for some values of v and y. Since A was used recursively the derivation must
have continued as
S = udy=> uvAxy

Finally the derivation must have eliminated all variables to reach a string

X in the language.
S = udy=> uvAxy=> uvwxy = x

This shows that derivation steps

A= vdx
and A= w
are possible. Hence the derivation

A :é vwx

must also be possible.

It should be noted here that the above does not imply that a was used
recursively only once. The * of = could cover many uses of A4, as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v, w and x without the use of recursion. Then there is a
number ‘m" such that | viwx | < m.

Since the grammar does not contain any A-productions or unit
productions, every derivation step either introduces a terminal or increases the

length of the sentential form. Since 4 = vAx, it follows that | vx|> 0.
Finally, since uvAxy occurs in the derivation, and 4 = vAx and 4 = ware
both possible, it follows that uv'wx' y also belongs to L.

This completes the proof of all parts of Lemma.

3.3.4 Usage of Pumping Lemma
The Pumping Lemma can be used to show that certain languages are not
context free.
Let us show that the language
L={a'b'c'|i>0)

is not context-free.

Proof: Suppose L is a context-free language.
If string X € L, where| X'|> m, it follows that X = wvwxy, where|vwx|< m.

Choose a value i that is greater than m. Then, wherever vwx occurs in the
string @'b'¢’, it cannot contain more than two distinct letters it can be all a’s,
all b’s, all ¢’s, or it can be a’s and b’s, or it can be b’s and ¢’s.

Therefore the string vx cannot contain more than two distinct letters; but
by the “Pumping Lemma” it cannot be empty, either, so it must contain at least
one letter.

Now we are readv to “pumn”.

| - Semester - FLAT Page 101

To prove that a Language is Not Context Free using Pumping Lemma (for CFL) follow
the steps given below: (We prove using CONTRADICTION)

me that A
to

gs

-> Assume that L is Context Free

-> L must have a pumping length (say P)

-> Now we take a string S such that S = aPbP cP
-> We divide S into parts uvxyz

Therefore the string vx cannot contain more than two distinct letters; but
by the “Pumping Lemma” it cannot be empty, either, so it must contain at least
one letter.

Now we are ready to “pump”.

Since uvwxy is in L, uv> wx?® ymust also be in L. Since v and x can’t both be
empty,

2 2
uv=wx”) > | uvwxy,

so we have added letters.

Both since vx does not contain all three distinct letters, we cannot have
added the same number of each letter.

Therefore, uv*wx’y cannot be in L.

Thus we have arrived at a “contradiction™.

Hence our original assumption, that L is context free should be false.
Hence the language L is not context-free. O

Ed Example 3.3.1: Check whether the language given by
L={a"b"

tmsn<2m)

is a CFL or not.

E’:Iution

Lets=a"h"c™", n being obtained from Pumping Lemma.

Then s = wvwxy, wherel €|vx|<n.

Therefore, vx cannot have all the three symbols a, b, ¢.

If you assume that vx has only a’s and b’s then we can shoose i such that
wv'wx'y has more than 2n occurrence of a or b and exactly 2n occurences of e.

Hence wv'wx' ye L, which is a contradiction. Hence L 1s not a CFL.

| - Semester - FLAT Page 102

-> L must have a pumping length (say P)
-> Now we take a string S such that S = aPb?cP
-> We divide S into parts uvxyz

Eg. P=4 So, S=a*b*c*

CaseI:

aaaabbbbcccc

Case IT
aaaabbbbcccc

L Y Y

Show that L = { ww | w € {0,1)"} is NOT Context Free

-> Assume that L is Context Free
-> L must have a pumping length (say P)

Now we take a string S such that S= o1 of1?

-> We divide S into parts uvxyz

Case 1: vxy does not straddle a boundary

Case 2a: vxy straddles the first boundary

I
00Q00' 11111
vV XY 2z

D000V |II\\NDOO 00001 (1L]

vxy straddles the midpoint
00000'11111'00000'11111,

So, $=0%150%1°

Example 3.3.4: Check whether the language given by
L= {we {a,b, c}‘ | n, (W)= n,(w)=n_(w)}

is not context-free.

Proof: 1f L is assumed to be context-free, then
LAL@' b’ ¢)y={a"b"c" | n20}.

which is also context-free.
But it is a fact that the latter is not context-free.
Therefore we conclude that

L={we {a, b.c}' [n, (w)=n,(w)=n_(w)}

is not context-free.

Example 3.3.5: Determine whether the language given
L=1{a" | n=1}is context-free or not.

Let us assume that

.ﬂ'=tu'”-

s = wvwxy, where 1 <[vx| < n. which is true

since, [vwx|<n (by Pumping Lemma)

Let|vx|=m, m<n.
. 2 2 >
By Pumping Lemma, uv " wx~ yisin L.
22 2
Since [eev=wx= y>n",
2 2 2
|uviwx® = k=.
where k 2n+1.
But|wv?wx? yi=n® +m<n® +2n+1.
Therefore, | uv?wx? 1 lies between n° and (n + 1)°.
Hence, uv-wx " ye L, which is a contradiction.

Therefore, {a™ : n 21} is not context-free.

| - Semester - FLAT Page 103

by

UNIT - IV

30 June 2017 07:14 PM

| - Semester - FLAT Page 104

PDA model

09 October 2017 06:06 AM

Input Tape
—_—
o1 |ofofrof1]1]o[
] e
==d 1
P% 9 0
) 0
(D i
Finite State Control 0
stack

Formal Definition:

A nondeterministic pushdown automaton or npda is a 7-tuple M = (Q, Z, I', &, qo, z, F),
where

Q is a finite set of states,

2 is a the input alphabet,

I" is the stack alphabet,

d 1s a transition function, has the form

d: Q X (Zuife}) XT — finite subsets of Q X IT'*
qo €Q is the initial state,

z € I' 18 the stack start symbol, and

F < Q is a set of final states.

| - Semester - FLAT Page 105

PDA Design

10 October 2017 11:59 AM

1L={a"b":n>=1}

2L={a"b": n>=0}

Input | Result
aabbbb Reject
aabbbbbb Reject
A Accept
aaaabbbb Accept

3 L={a"b?" : n>=0}

YA

7z b.a b 1 7
q0 2z ql b,a:a q3 Z:Z @

7

| - Semester - FLAT Page 106

Input

| Result

aabbbb
aabbbbbb
A

4L={a%b":n>=0}

Accept
Reject

Accept

Input | Result
aaaabb Accept
aab Accept
A Accept
aaabb Reject

5L={a"™b": n>=0}

| - Semester - FLAT Page 107

6 L={a"b"™!: n>=0}

7 L={a"?b" : n >=0}

8 L={wecw®:w e {0,1}*}

P m oo

PN o o
v R I R
RS EE=a"E

@ o

9L={wwRk:we{0,1}*}

| - Semester - FLAT Page 108

A, 2 7

ﬂ

E t::?i
b
pRe
mo

6=
[

Input | Result
abba Accept
aabbaa Accept
abaaaaba Accept

10L= {na(W) = nb(W) WE {alb}*}

| - Semester - FLAT Page 109

e LNE

CFG to PDA Conversion

15 October 2017 07:21 AM

Convert the given grammar into Griebach Normal Form (GNF).

We construct PDA with 3 states (q0, q1 and gf) as follows: (Assuming qO0 is initial state and gf is final state) (Also assume that Z is initial symbol on stack)
Push Start variable (S) into stack without reading input symbol and change state from g0 to q1. 8(q0, A, Z) = (g1, SZ)

For each production of the form: A - aa write the following PDA moves: &(q1, a, A) = (q1, o)

Finally, make a transition from state q1 to final state gf as : 6(q1, A, Z) = (qf, 2)

CFG to NPDA

For any context-free grammar in GNF, it is easy to build an equivalent
nondeterministic pushdown automaton (NPDA).

Any string of a context-free language has a leftmost derivation. We set up

the NPDA so that the stack contents “corresponds™ to this sentential form:
every move of the NPDA represents one derivation step.

The sentential form is

(The characters already read) + (symbols on the stack)
— (Fmal z (imitial stack symbol)

In the NPDA, we will construct, the states that are not of much

importance. All the real work 1s done on the stack. We will use only the
following three states, irrespective of the complexity of the grammar.

(1) start state g, just gets things initialized. We use the transition from
gp to g, to put the grammar’s start symbol on the stack.

6(qp, M Z)— {(g,,52)}

(1) State g, does the bulk of the work. We represent every derivation
step as a move from g, to g,.
(1) We use the transition from g, to g,to accept the string

8(q,.1.2) = 1(q,.2))

Example Consider the grammar G = ({S, 4, B}, {a, b}, S, P), where

P={§—aS—adB,A— ad,A— a,B— bB,B — b}

These productions can be turned into transition functions by rearranging

the components.

S — a AB

\

4 (gq.a,8) — {(g4, AB)}

Thus we obtain the following table:

| - Semester - FLAT Page 110

Thus we obtain the following table:

(Start) 6(qy. k. 2)— {(q,,52)}
S—a 6(q,,a,8)— {(q,, 1)}
S — aAdB 6(q,.a,8)— {(q,, 4B)}
A— ad 6(q,,a, A)— {(q,. A)}
A>a 6(g,,a. A)— {(q,. M)}
B— bB 6(q,,b,B)— {(q,.B)}
B—b 6(q,,b,B)— {(q,, 1)}
(finish) 6(g,, A 2)— g, 2))

For example, the derivation
S = aAB = aaB = aabB = aabb

maps into the sequence of moves

(QUr aabb? Z) I_ (ql 9 aabbn SZ)
- (q,,abb, ABz)

I_ ((]l,bb,BZ)
I_ (QIsbaBZ)
- (g1, A, 2)
I_ ((’hvla ?\')

| - Semester - FLAT Page 111

Construct a pda that accepts the language generated by a grammar with productions
S — aSbhb|a.

We first transform the grammar into Greibach normal form, changing the productions to

S — aSA |n.
A — bB,
B — b

The corresponding automaton will have three states {,, q,, ¢,}, with initial state g, and final state g,.
First, the start symbol S is put on the stack by

d(qo. A 2) = {(q1,52)}.

The production S — aSA4 will be simulated in the pda by removing S from the stack and replacing it
with S4, while reading ¢ from the input. Similarly, the rule § — a should cause the pda to read ana

while simply removing S. Thus, the two productions are represented in the pda by
d(q1,a,8)={(q1,5A), I:ql.,\)} .
In an analogous manner, the other productions give

5(q1,b.A) = {(q1.B)}.
6(q1.0,B) = {(q1.A)}.

The appearance of the stack start symbol on top of the stack signals the completion of the derivation
and the pda is put into its final state by

6 (q1. A 2) = {(g2. M)}

The construction of this example can be adapted to other cases, leading toa general result.

Example 7.7

Consider the grammar

S — aA,

A — aABC |bB|a,
B — b,

C — e

Since the grammar is already in Greibach normal form, we can use the construction in the previous
theorem immediately. In addition to rules

0 (g0, A 2) ={(q1,52)}

| - Semester - FLAT Page 112

and
0(q1, A 2) ={(gy.2)},
the pda will also have transition rules

= {(®1. 4)},

Mql a,A) = {(q1. ABC),(q1,A)},
o(ql b.A) = {(q1.B)}.
(q1,0.B) = {(q1.A\)}.
Mr[l(C) = {(q1.N)}.

The sequence of moves made by M in processing aaabc is
(qo.aaabe, z) F (g1, aaabe, Sz)
F (g1, aabe, Az)
F (g1, abe, ABCz)
F (q1,be, BCz)
F (q1,¢,C2)

F (g1, 7, 2)
F (grs A, 2).

This corresponds to the derivation

S = aA = aaABC = aaaBC = aaabC = aaabe.
Practice Problems
Construct an npda that accepts the language generated by the grammar
S — aSbb|aab.
Construct an npda that accepts the language generated by the grammar § — aSSS|ab.

Construct an npda corresponding to the grammar

S — aABBlaAA,
A — aBB|a,
B — bBB|A.

Construct an npda that will accept the language generated by the grammar G = ({S, 4},{a, b},S,P),
with productions S — A4 |a, A — SA| b.

| - Semester - FLAT Page 113

1.
2.
3.

PDA to CFG conversion

15 October 2017 07:21 AM

Given PDA, M =(Q, £, §, 0, F, T, Z) we have to find G= (V, T, P, S) as follows:
T=3 (all input symbols of PDA become terminal symbols of CFG)
Variables are triplet form: if there exists a PDA move as 6(qi, a, Z) = (qj, AZ) then variable corresponding to
this move is (qiZqj).
. Start variable: if g0, gf are initial and final states respectively, and Z is the initial symbol of stack then start
variable is (q0Zqf)
. To write productions, PDA moves must perform stack operation, either PUSH or POP. Otherwise, rewrite the
PDA move. For example, 5(qi, a, A) = (qj, A), (stack content is not modified after transition)
&(ai, a, A) = (gk, A)
8(ak, A,) = (aj, AZ)
. PDA moves for pop operations: §(qi, a, A) = (qgj, A)
(qiAqj) > a
. PDA moves for push operations: 5(qi, a, A) = (qgj, BC)
(qiAgk) - a (qjBql) (qlCqk) for all values of gk and ql.

PDA to CFG

As we have converted CFG to PDA, we can convert a given PDA to CFG. The general procedure

for this conversion is shown below:

The input symbols of PDA will be the terminals of CFG.

If the PDA moves from state to g to state g; on consuming the input a € £ when Z is the top of the
stack, then the non-terminals of CFG are the triplets of the form (q,Zqg;).

If qo is the start state and g is the final state then (goZq,) is the start symbol of CFG.
The productions of CFG can be obtained from the transitions of PDA as shown below:

a. For each transition of the form

&qi’ a, Z) . (qp AB)
introduce the productions of the form

(9Zq)) — a (q;Aq)(9:Bqy)
where g, and q, will take all possible values from Q.

b. For each transition of the form

g,a,Z) = (q,¥9)

introduce the production
(9Zq) — a

| - Semester - FLAT Page 114

Note: Using this procedure, we may introduce lot of useless symbols, which in any way can be
eliminated.

§ Example 5.22: Obtain a CFG for the PDA shown below:

89n2,Z) = (qnAZ)

¥goa,A) = (g A)
&qﬂv b’ A) = (qn E)
5((]h £7) = (g2 ©)

Note: To obtain a CFG from the PDA, all the transitions should be of the form

&q,a,Z) = (q,AB)

&qg,a,Z) = (g8

| - Semester - FLAT Page 115

In the given transitions except the second transition, all transitions are in the required form.
So, let us take the second transition

¥goa,A) = (g A)

and convert it into the required form. This can be achieved if we have understood what the transi-
tion indicates. It is clear from the transition that when input symbol a is encountered and top of
the stack is A, the PDA remains in state g, and contents of the stack are not altered. This can be
interpreted as delete A from the stack and insert A onto the stack.

So, once A is deleted from the stack we enter into new state q;. But, in state g, without consum-
ing any input we add A on to the stack. The corresponding transitions are:

&qgo.a,A) = (g8
qs e,Z) = (Qo,AZ)

So, the given PDA can be written using the following transitions:

qna,Z) = (gn,AZ)
8qoa,A) = (g8
g e,Z) = (9. AZ)
&% bv A) = (qlv £)
&g, e,Z) = (q8)
Now, the transitions

a(b. a, A) = (qfh e)
8(‘]0- bv A) = (qh 8)
&q» E, Z) - (q2' e)

can be converted into productions as shown below:

8qo.a,A) =(qs, €)
8(qo, b, A) = (g, 8) (goAq,) = b
&q,, €,Z) = (q,, &) (qZ4q,) €

| - Semester - FLAT Page 116

Now, the transitions

Hqoa,Z) = (qnAZ)
q:.8,Z) = (gnAZ)

can be converted into productions-using rule 4.a as shown below:

TR AT, TR e i o s

-hr“. h-‘; '.'-':“.5;-{0‘ g
dgaZ)=(gAB) | (

(qo, 2, 7Z) = (go, AZ) (90Zo) — a (QoAGo)(GoZao) | 2 (qAq:)(q:Z4q) |
a (goAQ2)(4:Zq0) | a (qoAQ5)(g:Z4q0)
(goZq,) — a (qoAGe)(qoZq,) | a (goAq,)(q:Zq,) |
a (goAq,)(q:Zq,) | a (qoAQ;)(q:7q,)
(90Z4,) — a (qoAGo)(eZay) | a (QoAq))(q:Zq,) |
a (qoAQ2)(q:Z4,) | a (QoAQ;)(q:Z4,)
(9oZqs) — a (qoAGe)(GoZas) | a (qoAQ;)(q:Zqs) |
a (qoAQ2)(:Z4s) | a (QoAQq;)(qsZ4s)

&g € Z) = (go, AZ) (9:Zq0) — (qoAGo)(GoZao) | (GoAq1)(q:Zqy) |
(90AG2)(q2Z4q0) | (9oAG3)(q:Z40)
(9:74q,) — (goAGo)(goZq,) ' (90Aq,)(q,Zq,) l
(90AQ2)(92Z4;) | (90AG:)(q5Z4q,;)
(9:74q,) — (9oAGQo)(goZq2) I (90Aq:)(q:Zq,) |
(90AQ2)(92Z4,) | (9oAG:)(q:Z4,)
(93Z4q3) — (goAGo)(GoZ4qs) | (90Aq1)(q:Z4q5) |
(90AQ2)(9:Z4;5) | (oAG:)(q:Z45)

The start symbol of the grammar will be qoZq,.

I Example 5.23: Obtain a CFG that generates the language accepted by PDA M = ({q,,q,},
{a,b}, {A,Z}, 8, g, Z, {q,}), with the transitions

gna,Z) = (qn,AZ)
&geb,A) = (g, AA)
dgea,A) = (g;,€)
Now, the transition
d(goa,A) = (q,¢)
| 4n be converted into production as shown below:
For 8 of the form Resulting Productions
&g, a, Z) = (q;, ©) (QZq) > a
¥qgoa, A) =(q,,®) (qAq)) > a

| - Semester - FLAT Page 117

| 4 he converted into production as shown below:

For 3 of the form Resulting Productions
(g, a, Z) = (q;, €) QZq) > a
&(qo.a,A) =(q,, €) (goAq;) > a
Now, the transitions
gn.2,Z) = (go,AZ)
3(ge b,A) = (go AA)

an be converted into productions using rule 4.a as shown below:

~ Bga?d)=(g,AB) (9Zqy) — a (qAq)(qgBq)

l 5Ge 2. 2) = (G0 AZ) | (QoZgo) — 2 (GoAGo)(GoZdo) | 2 (9oAq:X(:ZA0) (G6Z4q:) — 2 (GAGe)GeZq,) |
: a (goAq)(q:Zq,)

;ﬁ& g b, A) = (GAA) (GoAGo) — b(qoAGo)(QoAGo) | B(GoAQ:)(q:1AG)

a (QoAqQ)) = b(geAGo)(eAq)) | b(goAq:)(q:Ag,)

The start symbol of the grammar will be goZq,.

Example:

Construct PDA to accept if-else of a C program and convert it to CFG. (This does not accept
if —if —else-else statements).

Let the PDA P = ({q}, {1, e}, {X.Z}, 3, q, Z), where d is given by:
8(q. 1, Z) = {(q, XZ)}, 8(q, e, X) = {(q, &)} and 8(q, &, Z) = {(q, &)}
Solution:

Equivalent productions are:

S — [qZq]
[9Zq] — i[gXql[qZq]

[qXq] > ¢
[9Zq] > €

If [qZq] is renamed to A and [qX(q] is renamed to B, then the CFG can be defined by:

G=({S,A, B}, {i, e}, {SoA, A>iBA | &, B> e}, S)

| - Semester - FLAT Page 118

CFL Closure Properties

03 October 2018 08:34 PM

Closure Properties of CFL

Many operations on Context Free Languages (CFL) guarantee to produce CFL. A few do not
produce CFL. Closure properties consider operations on CFL that are guaranteed to produce
a CFL. The CFL’s are closed under substitution, union, concatenation, closure (star),
reversal, homomorphism and inverse homomorphism. CFL’s are not closed under
intersection (but the intersection of a CFL and a regular language is always a CFL),
complementation, and set-difference.

Theorem 8.3

The family of context-free languages is closed under union, concatenation, and star-closure.

Proof: Let L; and L, be two context-free languages generated by the context-free grammars G; = (V,
T, S;, Py and G, = (V,, T, S,, P,), respectively. We can assume without loss of generality that the
sets V; and V; are disjoint.

Consider now the language L (G3), generated by the grammar
(?3 = I'Fl U 1"2 J {.5'3 } ‘ T}_ J Tp_, .5'3, Pg) ,

where S; is a variable not in V1 U V2. The productions of G; are all the productions of GG; and G,,

together with an alternative starting production that allows us to use one or the other grammars. More
precisely

Py =P UP, U {.5'3 — 51 ‘Sg} .

Example

Let Ly ={a"b", n = 0}. Corresponding grammar G will have P: 51 — aAblab
Let Lz = { c™d™ , m = 0}. Corresponding grammar Gz will have P: S2 — cBb| €
Unionof Lyand Lz, L=Liulz={a"b"u{c™d™}

The corresponding grammar G will have the additional production 5 — 51| 52

| - Semester - FLAT Page 119

b. Closure under concatenation of CFL’s L] and L):
Let L={ab}, s(a)=L1 and s(b)=L». Then s(L)=L1L»>
How to get grammar for L1L3?

Add new start symbol and rule S — S1S2

The grammar for L1L2 is G=(V, T, P, S) where V=V U V2 U {S},S ¢ Vi U V2 and P
=Py uUPyuU {S —> S1S2}

Example:
L1 = {albn |n>0}, Ly = {bMalt |n >0} then L{Lp = {alb{ntm}am |n m >0}

Their corresponding grammars are
G1: Sy —>aSib|e,Gp:S» > bSpa | ¢

The grammar for L1L» is
G =({S, 81, S2}, {a, b}, {S > 5152, S| > aS1b | &, S2 —» bSpa}, S).

Example: L1={a"b" | n>=0} L2={c™d™ | n>=0}then L3 =L1.L.2={a"b"c™d™ | m,n >=0}is CFL.
c. Closure under Kleene’s star (closure * and positive closure ¥) of CFL’s Lj:
Let L= {a}* (or L= {a}™) and s(a) = L. Then s(L) =L * (ors(L) =L;™).
Example:

L1 ={albl|n>0} (L)*={ainlip{nl} _ a{nk}ip{nk} k>0 andni>0 forall i}
Ly = {ain?} |n> 1}, (Ly)* = a*

How to get grammar for (L)*:
Add new start symbol S and rules S — SS1 | &.

The grammar for (L1)* is
G=(V,T,P,S), where V=V] U{S},S ¢ V| P=P] U{S >SS | &}

| - Semester - FLAT Page 120

The family of context-free languages is not closed under intersection and complementation.
Proof: Consider the two languages

Ly={a"b"c™ :n>0,m >0}

or
and

L2 _ Jl..a.ubm.cm ‘n > 0.m > U} .

There are several ways one can show that L; and L, are context-free. For instance, a grammar for L,

is
S — 518,
.5'1 — (]'51b|.>\,
Sy — Sa|A.

Alternatively, we note that L, is the concatenation of two context-free languages, so it is context-free
by Theorem 8.3. But

LinLy={a"b"c" :n >0},

which we have already shown not to be context-free. Thus, the family of context-free languages is not
closed under intersection.

The second part of the theorem follows from Theorem 8.3 and the set identity

LinNLs = fl L IQ.

If the family of context-free languages were closed under complementation, then the right side of the
above expression would be a context-free language for any context-free L, and L,. But this
contradicts what we have just shown, that the intersection of two context-free languages is not
necessarily context-free. Consequently, the family of context-free languages is not closed under
complementation.m

6.3 Closure Properties of CFL

In chapter 3, we have seen that regular languages are closed under union,
concatenation and kleen closure. Now we will discuss closure properties of context
free languages. In the sense, we will, check which are those properties for them CFLs
are closed under. The context free languages are closed under some operation means
after performing that particular operation on those CFLs the resultant language is
context free language. These properties are as below.

1. The context free languages are closed under union.

2. The context free languages are closed under concatenation.

3. The context free languages are closed under kleen closure.

4. The context free languages are not closed under intersection.
5. The context free languages are not closed under complement.

We will discuss the above mentioned closure properties of CFL with the help of
proofs and examples.

| - Semester - FLAT Page 121

Theorem 1 : If L, and L, are context free languages then L = L, u L, is also context free.
That is, the CFLs are closed under union.

Proof : We will consider two languages L; and L, which are context free languages. We
can give these languages using context free grammars G; and G, such that G,€L; and
GZEL?_.TheGIcanbeg'ivenascl=W1,£,P],S]I|wherel’lcanbegivenas
Py ={
S, —+A; S5 A | BiSB| e
Ay —a
B, —b
}
Here V; = {5, A, By} and 5, is a start symbol.
Similarly, we can write G, = {V,, L, P, 5}

N, = {S;, A,, By} and 5, is a start symbol.

P, can be given as :
Py = |
S;—>aA Ay | bBy By
A, >b
B, —a
}
Now L = L, UL, gives G e L. This G can be written as

G-—-{V,Z.P;S}
V=15, Ay, By, Sy Ay By)
5 is a start symbol.
P=1{ S$-2518
S; > A5 A |BSB |
Al —a
Bl—’b
S, - aA;A, | bBB,
A; = b
By —a

]
Thus grammar G is a context free grammar which produces languages L which is
context free language.

Theorem 2 : If L) and L, are two context free languages then L L, is CFG. That means
context free languages are closed under concatenation.

Proof : Let L, is a context free language which can be represented by a context free
grammar G, such that G; € L, and

Gy =1{Vy, I, Py, §y)
Vy = (Sy, Ay, By)
L = {a, b}
S, is a start symbol and P, is a set of production rules.
Pi={ S;5A S A |BSBe
Ay —a
B, —»b

| - Semester - FLAT Page 122

Similarly, L, is a context free language which can be represented by a context free
grammar G,, such that G, € L, and
Gy = (V2 2, Py S))
Vi = {5y Ay By
L= (a b}
S, is a start symbol and P, is a set of production rules.
Po=1 S, —aA,| bB;B,
A, -b
B, —a
)
Now L = L, L, can be obtained by G such that G = G, - G,. Therefore
G=(V,X,P5)
V={S, Sy Ay B, Sy Ay, Byl
where S is a start symbol. The production rules, P can be given as,
P=(5555
S$1>A15 A | B 5B |
Ay —a
B,—b
S; = aAzA; | bBB,

A, >b

A, > b

By —a
)

As grammar G is context free grammar the language L produced by G is also
context free language. Hence context free languages are closed under concatenation.

Theorem 3 : If L, is context free language then L, is also context free. That means CFL is
closed under kleen closure.
Proof : Let, L, be a context free language represented by G, such that G, — ¢ L,.
The CFG G, can be given as,
Gy = (Vy, £, P, 5;} where §, is a start symbol.
Pr=l S >ASA | BSB, |e
Ay —a
31 —=b

Now L = L7 can be represented by a grammar G such that
G={ (V,£,P9)
V=155, A B}
and P=5-55]¢
S; > A5 A | B 5 B
A —a
B, —=b
}

Thus grammar G is a context free grammar and language L produced by G is also
context free language. Hence context free language are closed under kleen closure.

| - Semester - FLAT Page 123

Theorem 4 : If L, and L, are two CFLs then L = L; m L, may be CFL or may not be
CFL. That means L is not closed under intersection.

Proof : Let, L,={0"1"2'|n21,i21)
LL=0"1"2"nz,iz1)
The grammar for L, is

S — AB
A = 0A1 | 01
B—28B |2
Similarly L, can be represented by grammar.
S - AB
A—-CA|D
B —1B2 | 12

Now if we try to obtain

L = L; n L, then we get sometimes context free languages and sometimes non
context free languages, Thus we can say that CFLs are not closed under intersection.

Theorem 5: If L, is a CFL then L| may or may not be CFL. That means CFL is not
closed under complement.

Proof : Let L, and L, are two CFLs. We will assume that complement of a context free
language is a CFL itself. Hence L} and L), both are CFLs. We can also state that (L, u L))
is context free (since CFLs are closed under union). But (L] U L)) = Ly A L, ie.
L = L; n L, may or may not be CFL. The L, and L, are arbitrary CFLs, there may exist L]
and L, which are not CFL. Hence complement of certain language may be context free or
may not be. Therefore we can say that CFL is not closed under complement operation.

| - Semester - FLAT Page 124

UNIT -V

30 June 2017 07:14 PM

| - Semester - FLAT Page 125

Turing Machines

16 July 2018 09:56 PM

Turing Machine: Acceptor & Transducer

Oori .F i
Oori

OR

We have studied two types of languages from the Chomsky hierarchy: regular languages and context-free
languages. These languages can describe many practically important systems and so they are heavily
used in practice. They are, however, of limited capability and there are many languages that they can not
process. Here we are going to study the most general of the languages in Chomsky hierarchy, the phrase

structure languages (also called Type 0 languages), and the machines that can process them: Turing
machines.

N ——
Turing machines were invented of by the English mathematician Alan Turing as a model of human
“computation”. Later Alonzo Church says that any computation done by humans or computers can be

carried out by some Turing machine. This statement is known as Church’s thesis and today it is generally

accepted as true. Computers we use today are as powerful as Turing machines except that computers
have finite memory while Turing machines have infinite memory.

Turing Machines can be represented using a 7-tuple:

| - Semester - FLAT Page 126

Turing Machines can be represented using a 7-tuple:

TM as ACCEPTOR

A Turing machine halts when it no longer has any available moves. If it halts in a final state, it accepts its
input; otherwise, it rejects its input.

Turing machine accepts its input if it halts in a final state. There are two ways of rejecting the input string
in case of TM:

1. The Turing machine could halt in a nonfinal state, or
2. The Turing machine could never stop i.e hang (in which case we say it is in an infinite loop.)

L={1™ | m is odd}

The Transition 8(qg, 1) = 8(gs, 1, R) means Initially qg will read the input 1 from Tape, move to state q;,1 is

replaced by 1 and read/write head moves to right.

5(qo. 1) = 5(a1. 1. R)
5(q1, 1) = 6(qo, 1. R)
6(as, B) = 8(qf, B, L/R)

If Blank is reached in gy state then input string contain odd no. of 1's. because on reading odd 1's machine
moves to qq state.

| - Semester - FLAT Page 127

L={0™| m is even}
6(qp, 0) = 5(g1, 0, R)

6(q1,0) = 5(qp, 0, R)

6(qo. B) = 6(ar. B, L/R)

| - Semester - FLAT Page 128

L = {a"b"| n > 0}

There is no concept of minimal TM, change state only if needed. Do not think about € in TM.
Strings Accepted by language = {ab, aabb, aaabbb, ...}

6(qp. a) = (a1, %, R)

6(a1,a) = (a1,2,R)

5(q1.b) = (2., L)

5(qz. a) = (92, a, L)

5(q2.x) = (d0. % R)

5(a1.y) = (a1.v.R)

5(az.y) = (az. ¥, L}
5(qs. y
E'fﬂ.’ :

. Y% R

y) =

6{:QU ' } [q L YR
)=
B) =

(a3
(s, B, R/L)

| - Semester - FLAT Page 129

(g ‘LK)

TM as TRANSDUCER

A Turing machine can be used as a transducer. The most obvious way to do this is to treat the entire non-

blank portion of the initial tape as input, and to treat the entire non-blank portion of the tape when the
machine halts as output.

Qus 1: Design TM to calculate m — n, where m, n are positive integer and m > n.
f(mn)=m-n

Here suppose m is 5 and n is 3 then we can represent m by 5 o's and n by 3 o's. Both m and n are
separated by 1.

| - Semester - FLAT Page 130

The transition’s for this TM is as below —

8(qp. 0)
6(a1.
6(a1.
6(az.
6(az.
IGER
6(qs.
5(qa,
6(as,
6(as,
5(qs.
IGEY

=(91.B.R)
0)=(q1.0,R)
1)=(g92.1.R)
0) = (g2, 0,R)
B) = (as.B.L)
0) = (qs4.B. L)
0) = (q4.0,L)
1)=(as,1,1)
0) =(as,0,L)
B) = (g6. B R)
0) = (a1.B.R)

1) = (q¢. 0,L)

// when all 0's are over at q3, it receive 1 at end.

/f See Note 1 below

Note 1: Beginning of next cycle for cancellation of 0 by 0. This process continues till all 0’s in n are

cancelled by an equal no of 0's in m. In the next cycle a 0 is cancelled in m but n has no more 0's so

read/write head receives the separator 1 in g3 state and replace it with 0 and enters in final state gy.

| - Semester - FLAT Page 131

f)

\Qx—f

\‘
/)

.'

/

Qus 2: Design TM to calculate m + n, where m, n are positive integer
f(mn)=m+n

Here suppose m is 3 and n is 4 then we can represent mby 3 1's and n by 4 1's. Both m and n are
separated by 0.

+ =7
=1111111
The transition's for this TM is as below —

Logic: When 0 is encountered, it is changed to 1 and last 1 is replaced by B.

6(qo, 1) = (a0, 1. R)
8(qo. 1) =(g1. 1. R)
6(q1.1)=(a1. . R)
6(a1.8) = (a2.B.1)
6(qz, 1) = (a5, B, L)

| - Semester - FLAT Page 132

Turing Machines Introduction

10 October 2018 05:53 AM

In the early 1930s. mathematicians were trying to define effective computation.
Alan Turing in 1936, Alanzo Church in 1933, S.C. Kleene in 1935, Schonfinkel
in 1965 gave various models using the concept of Turing machines, A-calculus.
combinatory logic, post-systems and (-recursive functions. It 1s interesting to
note that these were formulated much before the electro-mechanical/electronic
computers were devised. Although these formalisms, describing effective
computations, are dissimilar, they turn to be equivalent.

Among these formalisms, the Turing’s formulation is accepted as a model
of algorithm or computation. The Church—Turing thesis states that any
algorithmic procedure that can be carried out by human beings/computer can be
carried out by a Turing machine. It has been universally accepted by computer
scientists that the Turing machine provides an ideal theoretical model of a
computer.

Turing machines are useful in several ways. As an automaton, the Turing
machine 1s the most general model. It accepts type-0 languages. It can also be
used for computing functions. It turns out to be a mathematical model of partial
recursive functions. Turing machines are also used for determining the un-
decidability of certain languages and measuring the space and time complexity
of problems. These are the topics of discussion in this chapter and some of the
subsequent chapters.

For formalizing computability, Turing assumed that, while computing,
a person writes symbols on a one-dimensional paper (instead of a two-
dimensional paper as is usually done) which can be viewed as a tape divided
nto cells.

One scans the cells one at a time and usually performs one of the three
simple operations, namely (i) writing a new symbol in the cell being currently

scanned, (i1) moving to the cell left of the present cell. and (iii) moving to the
cell right of the present cell. With these observations in mind, Turing proposed
his “computing machine.’

| - Semester - FLAT Page 133

Turing Machine Model

10 October 2018 05:57 AM

| - Semester - FLAT Page 134

9.1 TURING MACHINE MODEL

The Turing machine can be thought of as finite control connected to a R/W
(read/write) head. It has one tape which i1s divided into a number of cells. The
block diagram of the basic model for the Turing machine is given in Fig. 9.1.

é a4 18| ag bl b g

R/MW head Tape divided into cells
and of infinite length

i
|
i
1
|

Finite control

Fig. 9.1 Turing machine model.

Each cell can store only one symbol. The input to and the output from the finite
state automaton are effected by the R/W head which can examine one cell at
a time. In one move. the machine examines the present symbol under the
R/W head on the tape and the present state of an automaton to determine

(1) a new symbol to be written on the tape in the cell under the R/W head,
(1) a motion of the R/W head along the tape: either the head moves one
cell left (I.j. or one cell right (R),
(111) the next state of the automaton, and
(iv) whether to halt or not.

The above model can be rigorously defined as follows:

Definition 9.1 A Turing machine M is a 7-tuple, namely (Q, X, I', &. ;. b. F).
where

Q is a finite nonempty set of states,

I" is a finite nonempty set of tape symbols.

b e T 1s the blank.

2 is a nonempty set of input symbols and is a subset of ' and b ¢ X.
0 is the transition function mapping (g, x) onto (¢'. v, D) where D
denotes the direction of movement of R/W head: D = L or R according
as the movement is to the left or right.

qp € Q 1s the initial state, and

7. F ¢ Q is the set of final states.

P2 =

I

o

| - Semester - FLAT Page 135

Notes: (1) The acceptability of a string 1s decided by the reachability from the
initial state to some final state. So the final states are also called the accepting
states.

(2) 6 may not be defined for some elements of Q x T

| - Semester - FLAT Page 136

Turing Machine Representation

10 October 2018 06:02 AM

9.2.1 REPRESENTATION BY INSTANTANEOUS DESCRIPTIONS

‘Snapshots” of a Turing machine in action can be used to describe a Turing
machine. These give “instantaneous descriptions’ of a Turing machine. We have
defined instantaneous descriptions of a pda in terms of the current state. the
input string to be processed. and the topmost symbol of the pushdown store.
But the input string to be processed is not sufficient to be defined as the ID of
a Turing machine. for the R/W head can move to the left as well. So an ID of a
Turing machine is defined in terms of the entire input string and the current
state.

Definition 9.2 An ID of a Turing machine M is a string affy. where [is the
present state of M, the entire input string is split as . the first symbol of yis
the current symbol « under the R/W head and y has all the subsequent symbols
of the input string, and the string ¢ is the substring of the input string formed
by all the symbols to the left of a.

EXAMPLE 9.1

A snapshot of Turing machine 1s shown in Fig. 9.2. Obtain the instantaneous

description.
? b |a|ay|ayiaq|a | a|a{asa| blb f
[
R/W head
State
93
Fig. 9.2 A snapshot of Turing machine.
Solution

The present symbol under the R/W head is «,. The present state is g3. So ay
is written to the right of gs. The nonblank symbols to the left of ¢, form the
string aya,a,a,a~a», which is written to the left of ¢5. The sequence of nonblank
symbols to the right of a, is @sa-. Thus the ID is as given in Fig. 9.3.

343132813252 1 q3 61

! 3432

< 4
Left sequence / Right sequence

/

| - Semester - FLAT Page 137

[

Present Symbol under
state R/W head

Fig. 9.3 Representation of ID.

Notes: (1) For constructing the ID. we simply insert the cwrrent state in the
input string to the left of the symbol under the R/W head.

(2) We observe that the blank symbol may occur as part of the left or right
substring.

Moves in a TM

As in the case of pushdown automata. (g, x) induces a change in ID of the
Turing machine. We call this change in ID a move.

Suppose 6(q, x;) = (p. v, L). The input string to be processed is x1x2 . . . X,
and the present symbol under the R/W head is x;. So the ID before processing
X; 18

X1X2 oo XX - Xy
After processing x;, the resulting ID is
X1 owwe X PX)Xigy e Xy

This change of ID is represented by

XpXa oo X X oo X b X X DXy Vg - Xy
If i = 1. the resulting ID is pvx~xy ... x,.
If 8(g. x;) = (p. y. R), then the change of ID is represented by
XiXa oo X X oo Xy XX X Y DXy X
It i = n, the resulting ID is xjx» ... x,,ypb.
We can denote an ID by /; for some j. /; |— 1, defines a relation among IDs.
So the symbol = denotes the reflexive—transitive closure of the relation |—.

In particular, I; |~ [Also, if I; =~ I, then we can split this as [} }— I, |—
3= ... =1, for some IDs, I, ..., [,.,.

Note: The description of moves by IDs is very much useful to represent the
processing of input strings.

9.2.2 REPRESENTATION BY_TRANSIT!ON TABLE

We give the definition of 0 in the form of a table called the transition table. If
(g, a) = (¥, o B). we write affy under the a-column and in the g-row. So if

| - Semester - FLAT Page 138

(g, a) = (¥, o. B), we write affy under the a-column and in the g-row. So if

we get affy in the table, it means that o is written in the current cell, 3 gives
the movement of the head (L or R) and ydenotes the new state into which the
Turing machine enters.

Consider, for example, a Turing machine with five states ¢4, . . ., g5, where
g; 1s the initial state and ¢s is the (only) final state. The tape symbols are 0. 1
and b. The transition table given in Table 9.1 describes .

TABLE 9.1 Transition Table of a Turing Machine

Present state Tape symbol
b 0 1
-4 1Lg; 0Rg;
G2 bRqs OLg, 1Lg:
g3 bRq, bRqs
Qs 0Rgs 0Rg,4 1Rq,

@| 0Lg,

As in Chapter 3. the initial state is marked with — and the final state
with O.

EXAMPLE 9.2

Consider the TM description given in Table 9.1. Draw the computation
sequence of the input string 00.

Solution

We describe the computation sequence in terms of the contents of the tape and
the current state. If the string in the tape is qja> ... g;a;,; . . . a, and the TM
in state ¢ is to read a;y;, then we Write @ja> ... 4;q Gjuy - - . Gy,

For the input string 005, we get the following sequence:
— G001 }— bgs001 |— bbq,01 }— bbogdl |— bbglqyb
I bb010gs }— bb01g-00 |— bb0g,100 }— bbg-,0100
= 64200100 |— bbq30100 |— bbbg,100 |— bbb,¢400
- bbb10g,0 |— bbb100gb }— bbb1000gsh

I— bbb100G500 |— bbb10g-000 — bbb1g-0000
e AhhAa 10000 — Rhah10000 L ARBA 100N L. ARRAA-000N

| - Semester - FLAT Page 139

I— bbb100¢:00 |— bbb10g-000 |— bbb1g,0000
I— bbbg>10000 |— bbg>h10000 — bbbq;10000 |— bbbbqs0000

9.2.3 REPRESENTATION BY TRANSITION DIAGRAM

We can use the transition systems introduced in Chapter 3 to represent Turing
machines. The states are represented by vertices. Directed edges are used to

represent transition of states. The labels are triples of the form (o, B. y), where
a. f. € Tand ye {L. R}. When there is a directed edge from g; to ¢; with label
(o, 3. y). it means that
' olgi. o) = (g B. 7)

During the processing of an input string, suppose the Turing machine enters
g; and the R/W head scans the (present) symbol . As a result, the symbol 3
is written in the cell under the R/W head. The R/W head moves to the left or
to the right. depending on ¥ and the new state is g;.

Every edge in the transition system can be represented by a S-tuple (g,. @,
B. 7. q;). So each Turing machine can be described by the sequence of 5-tuples
representing all the directed edges. The initial state is indicated by — and any
final state 1s marked with O.

EXAMPLE 9.3

M is a Turing machine represented by the transition system in Fig. 9.4. Obtain
the computation sequence of M for processing the input string 0011,

(b, b, R)

{0 0o

Fig. 9.4 Transition system for M.

Chlirtine

| - Semester - FLAT Page 140

Fig. 9.4 Transition system for M.

Solution

The initial tape input is p0011b. Let us assume that M is in state ¢, and the
R/W head scans O (the first 0). We can represent this as in Fig. 9.5. The figure
can be represented by L |

b00115b
q1

From Fig. 9.4 we see that there is a directed edge from ¢; to g- with the label
(0. x, R). So the current symbol O 1s replaced by x and the head moves right.

The new state is ¢». Thus. we get

bx011b

-

| - Semester - FLAT Page 141

The change brought about by processing the symbol 0 can be represented as

0. R ¢
p0011h BV byl
41 q-

l |
b | oo | 1 1| b
i)
R/W head
State
q4

Fig. 9.5 TM processing 0011.

The entire computation sequence reads as follows:

i) __ i | !
boo11h R pyvo11h O0R S By011h
qi {q» q>
l J - \
bxOvib (00D o pxOy1h R bxOvlb
i3 44 41
4 l
(O.x. R (v R v.L)
——— bxxvlb ———> bxxvlb ——m—a bxxvyyb
G2 - g3

fy.v.Lh *L (x.x.R) *L {v.v.R) \L
——— > bxxyvh ———— bxxyvbh ————bxxyvh

qs qs . qs
I
(v.v.R} 4 (h.b.R) he
———— > bxxvvh ——— bxxvvbb
s 6

| - Semester - FLAT Page 142

Design of TM

10 October 2018 05:35 AM

9.4 DESIGN OF TURING MACHINES
We now give the basic guidelines for designing a Turing machine.

(1) The fundamental objective in scanning a symbol by the R/W head is
to "know" what to do in the future. The machine must remember the
past symbols scanned. The Turing machine can remember this by
going to the next unique state.

(i1) The number of states must be minimized. This can be achieved by
changing the states only when there is a change in the written symbol
or when there is a change in the movement of the R/W head. We shall
explain the design by a simple example.

EXAMPLE 9.5

Design a Turing machine to recognize all strings consisting of an even number
of I's.
Solution

The construction is made by defining moves in the following manner:
{a) g, 1s the initial state. M enters the state ¢, on scanning 1 and writes b.
(b) If M 1s in state g~ and scans 1, it enters ¢. and writes b.
(c) g, 1s the only accepting state.

So M accepts a string if it exhausts all the input symbols and finally is in
state ¢;. Symbolically,

M = ({q,. ¢}, {1. b}, {1, B}, 6. q, b. {q\})
where 0 is defined by Table 9.3.

TABLE 9.3 Transition Table for Example 9.5

Present state 1
—)l@l DG’QR
Gz bgiR

Let us obtain the computation sequence of 11. Thus, g, 11 |—bg~1 |— bbq,,
As gy is an accepting state. 11 is accepted. g, 111 - bg-11 t— bbg,1 |— bbbqs.
M halts and as ¢- is not an accepting state, 111 is not accepted by M.

| - Semester - FLAT Page 143

EXAMPLE 9.6

Design a Turing machine over {1, b} which can compute a concatenation
function over £ = {1}. If a pair of words (wy. w») is the input. the output has
to be win-.

Solution

Let us assume that the two words wy and w, are written initially on the input
tape separated by the symbol b. For example. if w; = 11, w-> = 111, then the
input and output tapes are as shown in Fig. 9.6.

;b1 1 bg 2&)111 1 11 bbg

Fig. 9.6 Input and output tapes.

.‘_...___: n_.
o
e
-3

We observe that the main task is to remove the symbol b. This can be done
in the following manner:

(a)y The separating symbol # is found and replaced by 1.

| - Semester - FLAT Page 144

(b) The rightmost 1 is found and replaced by a blank b.
(¢) The R/W head returns to the starting position.

A computation is illustrated in Table 9.4.

TABLE 9.4 Computation for 11bk111

Go11h11 = 1g01b111 |- 11geb111 — 111g: 111
— 1111g:11 = 11111g41 — 111111g4b | 111111k
— 1111ga1bb — 111ga11bb — 11ga111bb |— 1g31111hb
— g311111bb — qab11111bb F— bg,11111bb

From the above computation sequence for the input string 115111, we can
construct the transition table given in Table 9.5.
For the input string 151, the computation sequence is given as

Golbl |— lgobl |— 11gi1 |— 11ig,b |— 11g:b |— lg;1bb
|— q511bb |— 3b11bb |— bl 1bb.

TABLE 9.5 Transition Table for Example 9.6

Present state Tape symbol
1 b
—(s 1Ra, 1Rgq;
g1 1Rg, bLa,
G bLgs —
qa 1L4g; bRgs
@ — —

| - Semester - FLAT Page 145

EXAMPLE 9.7

Design a TM that accepts

{0"1"|n 2 1}.

Solution
We require the following moves:

(a) If the leftmost symbol in the given input string w is 0, replace it by x
and move right till we encounter a leftmost 1 in w. Change it to y and
move backwards. |

(b) Repeat (a) with the leftmost 0. It we move back and forth and no 0 or
1 remains. move to a final state.

(c) For strings not in the form 0"1". the resulting state has to be nonfinal.

| - Semester - FLAT Page 146

Keeping these ideas in our mind, we construct a TM M as follows:

M=(0, % T, 6 gy b. F)

where
O = {40 91> 425 9 q;)
F= {Qf}
2 =1{0. 1}

I'=1{0, 1. x. v, b}

The transition diagram is given in Fig. 9.7. M accepts {071"|n 2 1}. The moves
for 0011 and 010 are given below just to familiarize the moves of M to the
reader.

Fig. 9.7 Transition diagram for Example 9.7.

400011 }— xq,011 |— x0q;11 |— xg,0y1
— g-x0v1 |— xqOy1 }— xxgvl |— xxyg 1
= XXG2VY = XGaxyy f— xxqoyy |— -ti'}-'cfay
— xxvygs = xxvvgsb = xxyybqub
Hence 0011 is accepted by M.

40010 |— x¢;10 }— g>xy0 — xgoy0 |— x50
As &(gs. 0) is not defined, M halts. So 010 is not accepted by M.

| - Semester - FLAT Page 147

--EXAMPLE 9.8

Design a Turing machine M to recognize the language
11273 n 2 1}.

Solution

Before designing the required Turing machine M, let us evolve a procedure for
processing the input string 112233, After processing, we require the ID to be
of the form bbbbbbg-. The processing is done by using five steps:

Step 1 g, is the initial state. The R/W head scans the leftmost 1, replaces 1
by b, and moves to the right. M enters g-.

Step 2 On scanning the leftmost 2, the R/W head replaces 2 by b and moves
to the right. M enters ¢s.

Step 3 On scanning the leftmost 3. the R/W head replaces 3 by b, and moves
to the right. M enters g,.

Step 4 After scanning the rightmost 3, the R/W heads moves to the left until
it finds the leftmost 1. As a result, the leftmost 1. 2 and 3 are replaced by b.

Step 5 Steps 14 are repeated until all 1's, 2°s and 3’s are replaced by blanks.
The change of IDs due to processing of 112233 is given as

q,112233 | — bg~12233 |— blg~2233 |— b1bq:233 | — b1D2¢:33
b— b1b2bg,3 |— blb~qsh3 |— blbgs2b3 |— blqsb2b3 |— bgs162b3
= qeb1b2b3 | — bq; 16203 |— bbg:b2b3 |— bbbg,2b3
|— bbbbg:b3 |- bbbbbg3 |— bbbbbbqb |— bbbbbg;bb
Thus.
g1 112233 = ¢7bbbbbb

As ¢- is an accepting state. the input string 112233 1s accepted.
Now we can construct the transition table for M. It is given in Table 9.6.

TABLE 9.6 Transition Table for Example 9.7

Present state Input tape symbol
| 2 3 b
. quL =
az TRq; bRqs bRq;
s 2Raq; bRq, hRa;

| - Semester - FLAT Page 148

az 1Rq; bRqs bRq;

s 2Rqy bRy bR,

Q4 3LQs Lg;

ds 1Lgs 2Lgs bLgs

Gs 1Lgs bRq,
Y

It can be seen from the table that strings other than those of the form 0"1"2"
are not accepted. It 1s advisable to compute the computation sequence for

-

strings fike 1223, 1123, 1233 and then see that these strings are rejected by M.

9.6 TECHNIQUES FOR TM CONSTRUCTION

In this section we give some high-level conceptual tools to make the
construction of TMs easier. The Turing machine defined in Section 9.1 is called
the standard Turing machine.

9.6.1 TURING MACHINE WITH STATIONARY HEAD

In the definition of a TM we defined 6(q. a) as (¢, y. D) where D = L or R.
So the head moves to the left or right after reading an input symbol. Suppose,
we want to include the option that the head can continue to be in the same cell
for some input symbol. Then we define d(g, @) as (¢’. v. S). This means that
the TM, on reading the input symbol a, changes the state to ¢” and writes y in
the current cell in place of @ and continues to remain in the same cell. In terms
of IDs,
wqax f— wq'yx

Of course, this move can be simulated by the standard TM with two moves,

namely
wqax — wyq'x |— wq'yx

That is, 8(g. a) = (7', v. S) is replaced by 8(g. a) = (¢”. v, R) and 5(¢”. X) =
(g . v. L) for any tape symbol X.

Thus in this model 6(g. a) = (¢’. v. D) where D = L, R or S.

9.6.2 STORAGE IN THE STATE

We are using a state, whether 1t 1s of a FA or pda or TM, to ‘remember’ things.
We can use a state to store a symbol as well. So the state becomes a pair
(¢, a) where ¢ is the state (in the usual sense) and a is the tape symbol stored
in {g. a). So the new set of states becomes O X T.

| - Semester - FLAT Page 149

in {(g. a). So the new set of states becomes O x I.

EXAMPLE 9.9

Construct a TM that accepts the language 0 1% + 1 0%,

Solution

We have to construct a TM that remembers the first symbol and checks that it
does not appear afterwards in the input string. So we require two states. ¢g. ¢;.
The tape symbols are 0. 1 and 5. So the TM, having the ‘storage facility in
state’. is

M = ({go. g1} x {0. 1. b}, {0, 1} {0, 1. b}, 0. Lgo. D). {lg1. b1}

We describe 6 by its implementation description.

. In the initial state, M is in ¢ and has b in its data portion. On seeing
the first symbol of the input sting w, M moves right, enters the state
¢, and the first symbol, say a, it has seen.

M is now in [g,. a]. (1) If its next symbol is b, M enters [¢;. b], an
accepting state. (i1) If the next symbol is a. M halts without reaching
the final state (i.e. 0 is not defined). (iii) If the next symbol is «

J

(a =0ife=1and a =1 if a =0). M moves right without changing
state.

3. Step 2 is repeated until M reaches [¢;. b] or halts (0 is not defined for
an input symbol in w).

9.6.3 MuLTIPLE TRACK TURING MACHINE

In the case of TM defined earlier, a single tape was used. In a multiple track
TM. a single tape is assumed to be divided into several tracks. Now the tape
alphabet is required to consist of A-tuples of tape symbols, k being the number
of tracks. Hence the only difference between the standard TM and the TM with
multple tracks is the set of tape symbols. In the case of the standard Turing
machine. tape symbols are elements of T'; in the case of TM with multiple track,
it is T'*. The moves are defined in a similar way.

9.6.4 SUBROUTINES

We know that subroutines are used in computer languages, when some task has
to be done repeatedly. We can implement this tfacility for TMs as well.

First, a TM program for the subroutine is written. This will have an initial
state and a ‘return’ state. After reachine the return state. there is a tfemnorarv

| - Semester - FLAT Page 150

First, a TM program for the subroutine is written. This will have an initial
state and a ‘return’ state. After reaching the return state. there is a temporary
halt. For using a subroutine, new states are introduced. When there is a need
for calling the subroutine. moves are effected to enter the initial state for the
subroutine {when the return state of the subroutine 1s reached) and to return to
the main program of TM.

We use this concept 1o design a TM for performing multiplication of two
positive integers.

EXAMPLE 9.10

Design a TM which can multiply two positive integers.

Solution

The mput (m. n), m. n being given. the positive integers are represented by

0"10". M starts with 0"10" in its tape. At the end of the computation,

0" (mn in unary representation) surrounded by b's is obtained as the ouput.
The major steps in the construction are as follows:

0"10"1 is placed on the tape (the output will be written after the

——

rightmost 1).

2. The lettmost O is erased.

3. A block of n 0's is copied onto the right end.

4. Steps 2 and 3 are repeated m times and 10710™" is obtained on the
tape. |

5. The pretix 101 of 10710™ is erased. leaving the product mn as the
output.

For every 0 in 0", 0" is added onto the right end. This requires repetition
of step 3. We define a subroutine called COPY for step 3.

For the subroutine COPY. the inital state is ¢; and the final state is gs. O
15 given by the transition table (see Table 9.7).

TABLE 9.7 Transition Table for Subroutine COPY

State Tape symbol
0 1 2 b
as g:2R gulL — —_
Gz q0R 1R — q;0L
ds g:0L gs1L g12R -
Qa — gs1R q40L —
as — — — -

The Turing machine M has the initial state ¢p. The initial ID for M is

T e R S Fant - ~ * ERl s | . . i [T

| - Semester - FLAT Page 151

goU 1071, Un seemng U, the rollowing moves take place {gq 1S a state ot M).
qo0"10"] = bg 0" 110" - b0 g 1071 I bO"'14,0"1. g, is the initial state

of COPY. The TM M, performs the subroutine COPY. The following moves
take place for M;: q,0"1 |— 2¢-0""'1 == 20" 1gsb }— 20" ¢510 | 24,0"710.
After exhausting 0's. ¢, encounters 1. M, moves to state g, All 2's are
converted back to 0's and M, halts in ¢s. The TM M picks up the computation
by starting from ¢s. The g, and g4 are the states of M. Additional states are
created to check whether each O in 0" gives rise to 0" -at the end of the
rightmost 1 in the input string. Once this is over, M erases 10”1 and finds 0™
in the mput tape.
M can be defined by

M = ({(}O Gis + v s ‘qll}* {0 1} {O l: 23 b}\ 5 qos b! {QJ;‘},}
where ¢ is defined by Table 9.8.

TABLE 9.8 Transition Table for Example 9.10

0 1 2 b
Qo qsbR — — —

5 g:0R q/1R — —
s g-0L — — —
q: — gL — —
4z qs0L - — q1cbR
Qe qs0L — — GobR
Qi — g:1bR — -
G- gubR g12bR — —

Thus M performs multiplication of two numbers in unary representation.

Increment a number //unary operators
Decrement a number
1's Complement a number
2's Complement a number (when you scan input string from right to left, copy the symbol as it is until you
see first 1, and from then onwards 1's complement the symbol for eg. 10010100 for this 2's complement is
01101100)
Copy the string
Addition of two numbers // binary operators
Substraction of two numbers (Always assume that first number is greater than second number)
Multiplication of two numbers (Repeated Addition)
9. Division of two numbers (Repeated Substraction)
10. TM as acceptor
11. TM as transducer
12. TM as DPDA (L=wcwR}
13. TM as NPDA (L=wwR) (even length palindromes)
14. TM accepting non-CFL like L={anbncn:n>=1} etc.

hPwhpe

| - Semester - FLAT Page 152

Universal TM

10 October 2018 07:47 AM

A Universal Turing Machine

Consider the following argument against Turing’s thesis: “A Turing machine
as presented in Definition 9.1 is a special purpose computer. Once 4§ is
defined, the machine is restricted to carrying out one particular type of
computation. Digital computers, on the other hand, are general purpose
machines that can be programmed to do different jobs at different times.
Consequently, Turing machines cannot be considered equivalent to gencral
purpose digital computers.”

This objection can be overcome by designing a reprogrammable Turing
machine, called a universal Turing machine. A universal Turing machine
M, is an automaton that, given as input the description of any Turing
machine M and a string w, can simulate the computation of M on w. To
construct such an M,,, we first choose a standard way of describing Turing
machines. We may, without loss of generality, assume that

('2 = {Qlt q2' reey Qn} 3

with ¢; the initial state, g2 the single final state, and

I' = {(Ll,GQ, meey a-m} 3

where a; represents the blank. We then select an encoding in which ¢ is
represented by 1, g is represented by 11, and so on. Similarly, a; is encoded
as 1, ag as 11, etc. The symbol 0 will be used as a separator between the 1’s.
With the initial and final state and the blank defined by this convention,
any Turing machine can be described completely with § only. The transition
function is encoded according to this scheme, with the arguments and result
in some prescribed sequence. For example, §(g1,as) = (g2, a3, L) might
appear as

-10110110111010---.

| - Semester - FLAT Page 153

Control unit

of M,
R i [y L
|
v ,- = .
| |] S N—— L L]
Description of M ‘ Internal state of M

Tape contents of M

It follows from this that any Turing machine has a finite encoding as a string
on {0, 1}+, and that, given any encoding of M, we can decode it uniquely.
Some strings will not represent any Turing machine (e.g., the strong 00011},
but we can easily spot these, so they are of no concern.

A universal Turing machine M, then has an input alphabet that in-
cludes {0, 1} and the structure of a multitape machine, as shown in Figure
10.16.

For any input M and w, tape 1 will keep an encoded definition of M.
Tape 2 will contain the tape contents of M, and tape 3 the internal state
of M. M, looks first at the contents of tapes 2 and 3 to determine the
configuration of M. It then consults tape 1 to see what M would do in this
configuration. Finally, tapes 2 and 3 will be modified to reflect the result
of the move.

It is within reason to construct an actual universal Turing rmachine
(see, for example, Denning, Dennis, and Qualitz 1978), but the process is
uninteresting. We prefer instead to appeal to Turing’s hypothesis. The
implementation clearly can be done using some programming language; in
fact, the program suggested in Exercise 1, Section 9.1 is a realization of a
universal Turing machine in a higher level language. Therefore, we expect
that it can also be done by a standard Turing machine. We are then justified
in claiming the existence of a Turing machine that, given any program, can
carry out the computations specified by that program and that is therefore
a proper modcl for a general purpose compulter,

The observation that every Turing machine can be represented by a
string of 0's and 1's has important implications. But before we explore
these implications, we need to review some results from sct theory.

I - Semester - FLAT Page 154

Church-Turing Thesis

10 October 2018 02:10 PM

!' i 4 e

In the earlier sections, we saw a mathematical model namél}'r fUﬁ;“é";";‘F
chine that can carry out complex tasks such as acceptance :af language, com .‘Pr ut-.
ng functions and gem.eral Purpose computations. At the beginﬁinsﬁf the 20th .
century, the mathematician D. Hilbert asked. “Whether there exists an ﬂsm '
that can prove any well-stated mathematical formula”. In 1931, K.Godel showed
that such an algorithm cannot exist. In 1936, AM. Turing proposed Turing ma-
chine as a computational model and suggested that the definition of an algorithm |
can be based on this model. The mathematician and logician, Alonzo church
proposed an alternative formalization for the notion of algorithm in 1936, known
as Church-Turing thesis. This conjecture is stated in number of ways by different

writers. Some of the equivalent statements of Church-turin g thesis are as follows :

1. “Any computation that can be carried out by mechanical means can
be performed by some Turing machine.”

2. “Anything that is inituitively computable can be computed by a
Turing machine.”

3. “The turing machine that halts on all inputs is the precise formal
notion corresponding to the intuitive notion of an ‘algorithm’.”

4. “Given any problem which can be solved with an effective algo-
rithm, there is a TM that can solve this problem.”

5. “Any general way to compute is to compute only the partial-recur-
sive functions or equivalently what TMs can compute.”

6. “‘There is no formalism to model any mechanical calculus that is
more powerful then TMs and equivalent formalisms.”

| 7 A number-theoretic function is computable by an algorithm if and
" only if it is Turing computable”.

The word “thesis” is used instead of the word “theorem” as it is nqt a
mathematical result. It is based on the intuitive notipn of .what mc-ed'tal:lcal
ith a mathematical idea, i.e., “algorithm”. In

computations” are and equates it w _ .
fact %lhzr:l:ST uring thesis is non-provable. It is supported only by previous expe-

rience and by intuitive evidences given as follows :

Jlternative models have been proposed for mechanical

tever i
1. So far wha ot foun d to be more pQWerful than the Tumg

computations are n
2. There exists no problem which is solvable by an effective algonthm

teemd Taer TAA

| - Semester - FLAT Page 155

A problem which is solvable by an effective algorithm

adelie ait
to model discrete computing d

The Church-Turing thesis is now universally accepted and thus, we have

accepted the TM as the ultimate computational model. ’ :
The term 'T”mecham'cal calculus” (i.e., mechanical computation) used in
statement 1 may be defined as a computation which can be Performed by some
TM. This statement suggests that ““Do not try to solve mechanically what cannot be
solved by TMs”'. Statement 3 suggests that an “algorithm’” must eXCl‘:l‘.le TMS tha:
may not halt on some inputs. The statement 4 uses the term “effective H{S‘mm’”
which is informal and imprecise. However, any problem should be considered to
be effectively solvable if it can be solved using a computer with a program and
using an unlimited amount of memory. The term “number-theoretic function” of
statement 7 refers to functions from a subset of N¥ into N for any k2 1. Let Tbe a
turing machine and o be a string of tape symbols. Let T (o) = B, i.e., T eventually
_halts with a string B in the tape. We can now think of T as computing number-
~ theoretic function, by letting a string of 1’s of length n + 1 as the unary represen-
tation of the non-negative integer n. T

| - Semester - FLAT Page 156

