

M.Tech Syllabus- Scheme 2017 (Communications & Signal Processing)

Page **1** of **39**

TWO YEAR M.TECH DEGREE COURSE (SCHEME – 2017)

Scheme of instruction and Examination

(Effective from 2017-18)

M.Tech I Semester

COMMUNICATIONS AND SIGNAL PROCESSING

S.	Course			Scl Inst perie	neme tructi ods/w	of ion veek	Scheme of Examination			
•	No.	Course Title	Credits	L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks	
1.	EC801	Detection & Estimation Theory (DET)	3	3	-	-	60	40	100	
2.	EC802	Adaptive Signal Processing (ASP)	3	3	-	-	60	40	100	
3.	EC803	Advanced Digital Communications (ADCM)	3	3	-	-	60	40	100	
4.	EC804	Mobile Communications (MCN)	3	3	-	-	60	40	100	
5.		Elective –I	3	3	-	-	60	40	100	
6.		Elective –II	3	3	-	-	60	40	100	
7.	AU101	Technical English	-	2	-	-	-	-	-	
8.	EC813	Advanced Comm. Lab (ACP)	2	-	-	3	50	50	100	
		TOTAL	20	20	-	3	410	290	700	

M.Tech II Semester

COMMUNICATIONS AND SIGNAL PROCESSING

S.	Course	Course Title	Cr	Sch Inst perio	neme tructi ods/w	of ion veek	Scheme of Examination			
No.	. No. Course little		its	L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks	
1.	EC901	Digital Image processing and Pattern Recognition.(DIPPR)	3	3	-	-	60	40	100	
2.	EC902	Optical Communications (OCN)	3	3	-	-	60	40	100	
3.	EC903	Statistical Signal Processing (SSP)	3	3	-	-	60	40	100	
4.	EC904	Microwave Communications (MWC)	3	3	-	-	60	40	100	
5.		Elective-III	3	3	-	-	60	40	100	
6.		Elective-IV	3	3	-	-	60	40	100	
7	AU102	Research Methodology (RM)	-	2	-	-	_	-	_	
8.	EC913	Advanced DSP. Lab (ADSPP)	2	-	-	3	50	50	100	
		TOTAL	20	20	-	3	410	290	700	

M.Tech III & IV Semester

COMMUNICATIONS AND SIGNAL PROCESSING

S.	Course			p	Scheme Instruct eriods/v	of ion veek	Scheme of Examination			
No.	No.	Course Title	Credits	L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks	
1.	EC914	Dissertation	12	-	-	-	50	50	100	

List of Subjects for Electives

Description	Subject title	Code
	Coding Techniques (CTH)	EC805
Elective I	Applied Mathematics for Communication Engineers (AMCE)	EC806
Elective-i	Microwave Integrated Circuits (MIC)	EC807
	Advanced 3G & 4G Wireless Communications (3G&4G)	EC808
	Radar Signal Processing (RSP)	EC809
Elective II	Speech Processing (SP)	EC810
Elective II	Neural Networks & Fuzzy Logic (NNFL)	EC811
	Wavelet Transforms and Applications (WTA)	EC812
	Internetworking with TCP/IP (TCP/IP)	EC905
Elective III	Cognitive Radio (CR)	EC906
	Wireless Communications and Networks (WCN)	EC907
	High Speed Networks (HSN)	EC908
	System Modeling & Simulation (SMS)	EC909
Elective W	Artificial Intelligence (AI)	EC910
	Advanced Operating System (AOS)	EC911
	Design of Digital Processing Systems (DDPS)	EC912

DETECTION & ESTIMATION THEORY (DET)

I Semester : CSP						Scheme	: 2017					
Course Code	Hours	/Week		Credits	ts Maximum Marks							
					Continuous							
EC801	L	Т	Р	С	Internal	End Exam	TOTAL					
				2	Assessment	(0)	100					
	3	-	-	3	40	<u>60</u>	100					
Sessional Exam Dura	$\operatorname{tion}: 2$	Hrs			End Exa	m Duration: 3	Hrs					
Course Outcomes • At	the end	of the c	ourse	the studer	t will be able to							
CO1: Understand the l	pasic pro	or the e	of est	imators								
CO2: Understand Det	ection Tl	heory &	detec	tion of sig	nals in noise.							
CO3: Understand Line	ear & No	onlinear	Estin	nations.								
Introduction												
Properties of estimators, Finding good estimators, Estimation of spectrum from finite duration observations.												
Detection theory												
Binary decisions - Single	observa	tion. Ma	aximu	ım likeliho	od decision criterio	on; Neymann-Pe	earson					
criterion; Probability of error criterion; Bayes risk criterion; Minimax criterion; Robust detection;												
Receiver operating characteristics. Multiple observations.												
Detection of Signals in Noise1												
Minimum probability of Error criterion, Neyman-Pearson criterion for Radar detection of constant and												
variable, amplitude signals.												
Matched Filters optimum	n formul	ation d	cuon atactiv	on of rando	<u>In Noise</u> m signals, simple t	problems there	n with					
multisample cases	li ioimui	ation, u	electio		nii signais, simple j	problems mereo	ni witti					
inditisumple cuses.		Estir	natio	n of signal	s in Noise							
Linear mean squared esti	mation,	non-line	ear est	timates, M	AP and ML estimat	es, maximum li	kelihood					
estimate of parameters of	linear s	ystem, s	imple	e problems.		,						
Text Books :		-	-									
1. Alan V.Oppenheim ar	nd Ronal	d W.Scl	haffer	, Digital S	ignal Processing, P	HI,3 rd edition,2	002					
2. J.G.Proakis, DSP Prin	nciples, 1	Algorith	ms ar	ıd Applicat	ions, PHI,3 rd editio	n,2002						
3. Harry L. Van Trees,	"Detecti	on, Esti	matio	on and Moo	dulation Theory, Pa	art 1", John Wi	ley & Sons,					
edition, 2001.												
Reference Books :	1 0	. 1	n .:		1 4 1	NT 1	· · · 1					
I. Steven. M. Kay, Mc	odern Sp	pectral I	Estim	ation, The	ory and Applicatio	ons, New age I	International					
2 Shanmugam and Brei	inchl D	ataction	of Sid	nals in No	ise and Estimation	John Wiley &	Sons 2004					
2. Shannugani and Dich 3. Mischa, Schwartz, J	Shaw	Signal	$\frac{OJSIE}{Prov}$	cassina. I	ise una Estimation. Discrete Sprectral	Analysis Det	sons, 2004.					
Estimation Mc Gray	Hill	Signai	1700	Lessing. L	nscreie sprecirui	Indiysis, Dei	ecnon, ana					
Web References:	1100											
1) www.sanfoundry.com	/best-ref	erence-t	ooks	-digital-sig	nal-processing-app	lications						
2) www.dspguide.com/pdfbook.htm												
3) www.pearsonhighered.com/Digital-Signal-Processing-4th/PGM258227.htm												
Question Paper Pattern	:											
Internal Assessment: T	he quest	ion pap	er sha	ll consist o	of Six questions out	t of which the s	student shall					
answer any Four questio	ns	.	-									
End Exam: The questio	n paper	shall co	nsist	of Eight q	uestions out of whi	ch the student	shall answer					

ADAPTIVE SIGNAL PROCESSING (ASP)

I Semester :CSP						Scheme	: 2017			
Course Code	Hours/	Week		Credits	Max	imum Marks				
					Continuous					
FC802	L	Т	Р	С	Internal	End Exam	TOTAL			
					Assessment					
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion : 2	Hrs			End Exar	n Duration: 3	Hrs			
Course Outcomes : At	the end	of the c	ourse	the studen	t will be able to					
CO1: Understand the fur	damenta	uls of Ac	laptiv	e Filters						
CO2: Analyze the conce	pt of Dis	crete tir	ne rar	ndom proce	ess					
CO3: Understand linear	predictor	s and L	attice	Predictors	of Wiener Filter.					
CO4: Analyze Linear FI	R Adapti	ve Filte	rs usi	ng steepest	descent and Least	square approac	hes.			
CO5: Analyze the Linear	r Adaptıv	e filters	s usin	g kalman F	filtering Algorithm.					
		Intro	luctio	on to Adap	tive Filters	·11 A	1			
Adaptive filters, Filter structures, Approaches to the development of Adaptive Filter theory, Applications										
		Discret	tim	e Stochast	ic Processes	<u> </u>	D			
Stochastic Process, Static	onary Pro	icess, W	ide S	ense Statio	onary process, Strict	Sense Stationa	ry Process			
Spectrum Analysis, Eiger	n Analys	1S.		4 D T	D T*14					
Linear Optimum FIR Filtering										
Weiner Filters – Linear Predictors, Lattice predictors. Method of steepest descent, Mean squared error,										
Least mean square Adaptive algorithm, Gradient Adaptive lattice Algorithm.										
Standard Recursive Leas	t sauares	estima	tion	compariso	n of RLS and LMS	algorithms E	est recursive			
algorithm Adaptive Forv	t squares	Backw	ard lir	ear perditi	on Fast Transversa	l Filters	ist recursive			
argorithm, reaptive rorv		Duckwa	Kal	man Filte	ing	ir i nicis.				
Introduction, Recursive	Mean S	auare E	Estima	tion Rand	om variables. Stat	ement of Kalm	nan filtering			
problem, Filtering, Initial	conditio	ons, Var	iants	of Kalman	filtering, Extend K	alman filtering.	0			
Text Books :		,								
1. Bernard Widrow and	Samuel I	D. Stear	ns, ".	Adaptive S	Signal Processing"	, Pearson Educ	ation (Asia)			
Pte. Ltd., 2001.				-						
2. Simon Haykin, "Adap	tive Filt	ers", Pe	earsor	n Education	n (Asia) Pte. Ltd, 4t	h edition, 2002.				
3.J.G. Proakis, C.M. Ra	der, F. I	Ling, C	.L. N	ikias, M.	Moonen and I.K. I	Proudler, "Algo	orithms for			
Statistical Signal Proces	ssing"									
Reference Books :										
1. Monson H. Hayes, " (Asia) Pte. Ltd., 2002.	Statistic	al Digit	tal Si	gnal Proc	essing and Model	ling" , John Wi	iley & Sons			
2. Dimitris G. Manolaki Processing: Spectral E	s, Vinay stimatio	K. Ingl n, Sign	e, and al M	d Stephen odelling,	M. Kogon, '' Statis Adaptive Filtering	tical and Adaj g and Array F	otive Signal Processing",			
McGraw-Hill Internation	nal Editio	on, 2000).	0/	•	,	8 /			
3.Adaptive Signal Proces	sing - Be	ernard	Widr	ow, Samu	el D. Strearns, 200	5, PE				
Web References:				,						
1.nptel.ac.in/syllabus/syl	labus_pd	f/11710	5026	.pdf						
2.https://books.google.co	.in/book	s?isbn=	04705	575743						
3.https://www.spsc.tugra	z.at/cour	ses/adaj	otive							
Question Paper Pattern	:									
InternalAssessment: Th	e questic	on pape	r shal	l consist o	f Six questions out	of which the s	student shall			
answer any Four questio	ns									
EndExam: The question	paper sl	hall con	sist o	f Eight qu	estions out of whic	the student s	shall answer			
any Five questions										
							Dago E of 20			

ADVANCED DIGITAL COMMUNICATIONS (ADCM)

I Semester : C	SP				Sche	me : 2017						
Course Code	Ho	urs/We	eek	Credits	Maximur	n Marks						
EC803	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL					
20000	3	-	-	3	40	60	100					
Sessional Exam	n Dura	ation : 2	2 Hrs		End Exam Duration	: 3 Hrs	1					
Course Outc	omes :	At the	end of	the course the	e student will be able to							
CO1: Unders Transr	stand th nultiple	e conce exers	epts of	Digital Com	munication model, MSK, GI	MSK and						
CO2: Analyz	ze the o	peratio	n of E	qualizers in d	esigning optimum receivers							
CO3: Thoro	ughly u	ndersta	ind the	concept and o	operation of MSAT networks	8						
CO4: Implement the knowledge of Mobile data communications in the design of wireless networks.												
CO5: Under	CO5: Understand the concepts of GSM, GPRS network architecture.											
			0									
Digital commu	nightion	aveton	ove n modo	Communic	ation channels characteristic	and Modela	MSK and					
GMSK Transn	nultinle	i systen vers	II IIIoue	i, Communic	auon channels characteristic	s and models	, MSK allu					
GMSK, Transmultiplexers.												
Optimum recei	ver stru	uctures	for A	WGN channe	el. Signal design for band l	imited and p	ower limited					
channels, powe	r and b	andwic	lth effi	ciency tradeo	off. ISI and equalization-Lin	ear equalizat	ion, Decision					
feedback equal	zation,	Turbo	equaliz	ation, Self re	covering equalization, Adap	tive linear eq	ualization.					
			G	lobal Mobil	e Satellite Systems							
MSAT networks, Operating environment, concept, CDMA network, Iridium, Global star and Teledesic												
systems and the	eir com	parison	s.									
XX7' 1 X A X X	IDDD	000 11	1.11	Mobile Data	Communications							
Wireless LANS	– IEEE	802.11	and H	IPERLAN, M	obile IP, Mobile multimedia,	WATM, Blue	etooth, W1-F1.					
Global System	for M	lohile (Commi	$\frac{GSW}{100}$	A GERS SM) system overview- GS	M Architect	re Mobility					
management N	Jetwork	signal	ling G	eneral Packet	Radio Services (GPRS)- (FRS Archite	ecture GPRS					
Network Nodes												
Text Books :												
1. S. Haykin - <i>I</i>	Digital o	commu	nicatio	n, Wiley 199	9.							
2. Tri T.H.A -L	igital S	Satellite	e Comm	unications by	y, Mc Graw Hill 2 nd edition 2	2009.						
3. Raj Pandya-	Mobile	and Pe	ersonal	Communicat	ion Systems and Services, IE	EEE Press, 20	004.					
4. William Stal	lings- V	Vireless	s Comn	nunication an	d Networks, PHI, 2007							
5. T.S. Rappape	ort-Wire	eless C	ommun	ications Prin	<i>ciples and Practice</i> , 2 nd Ed, 1	PHI, 2005.						
Reference Boo	<u>ks :</u>		•		a 11 11 a aaa							
1. John G. Proa	$\frac{\text{kis} - D}{D}$	igital C	ommur	ication ,Mc-	Graw Hill, 2000							
2. A.J. Viterbi -	Princip	oles of I	Digital	communicati	on,Mc Graw Hill							
2. http://www.youtube.com/watch?v=1F02l9tZAuQ&hst=FLAJIM/CHIMIT0150502lp0vLX4Zw0Fg01												
3. nptelvideos	55.10(p.1)		<u></u>		anno/111101L/002.11_AICIII	ceture.pur						
Ouestion Pane	/ / /	2/12/dio	rital-co	mmunication	html							
Internal Assessment: The question paper shall consist of Six questions out of which the student shall												
Question Paper Pattern: Internal Assessment: The question paper shall consist of Six questions out of which the student shall												
Internal Asses answer any For	r Patte ssment: ir quest	2/12/dig ern: : The q tions	uestion	paper shall o	html consist of Six questions out o	of which the	student shall					
Internal Asses answer any For End Exam: T	r Patte sment: ir quest he quest	2/12/dig rn: The q tions tion pa	uestion	paper shall of a state	html consist of Six questions out of Eight questions out of which	of which the	student shall shall answer					
Internal Asses answer any For End Exam: The any Five question	r Patte ssment: sment: nr quest ne quest ons	2/12/dig rn: The q tions tion pa	uestion per sha	paper shall of l	.html consist of Six questions out o E ight questions out of which	of which the	student shall shall answer					

MOBILE COMMUNICATIONS (MCN)

I Semester : C	SP				Sche	me : 2017					
Course Code	Ho	urs/W	eek	Credits	Maximur	n Marks					
EC804	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL				
	3	-	-	3	40	60	100				
Sessional Exam	n Dura	ation : 2	2 Hrs		End Exam Duration	a: 3 Hrs					
Course Outc	omes :	At the	end of	the course the	e student will be able to						
CO1: Unders	stand th	ne signi	ficance	of the 3G an	d 4G mobile networks.						
CO2: Analyz	ze abou	t the ch	noice of	proper mobi	le components to meet the de	esign require	ments of				
advanc	ed netv	vorks.			De l'anna a chan						
		earn the	$\frac{c}{c}$ conce		e Radio propagation.						
CO5: A palyza the concepts of directional enterna errory and anesa diversity schemes											
CO5: Analyze the concepts of directional antenna array and space diversity schemes.											
Evolution of m	obilo ra	dio cor	nmunic	Introdu	cuon le radio systems around the y	vorld Trends	in cellular				
radio and perso	nal con	munic	ation. F	First generatio	on (1G). Second generation (2G). Third g	eneration				
(3G) and Fourth generation(4G) mobile radio networks, personal area networks.											
Mobile Radio Environment											
Representation of a mobile radio signal, caused propagation path loss, causes & types of fading,											
Reciprocity pri	Reciprocity principle, cumulative probability distribution, Correlation and power spectrum, Delay										
spread and coherence bandwidth, False alarm rate and word-error rate.											
Free space propagation model Log-distance path loss model Log-normal shadowing Outdoor											
propagation m	odels.	Longle	v-Rice	model, Du	rkin's model. Okumura m	nodel, Hata	model, PCS				
Extension to Ha	ata mod	lel, Wa	, lfisch a	nd Bertoni m	odel.	,	,				
			Frequ	ency plans a	nd associated schemes						
Frequency reus	se, FDI	M, TD	M, Spi	read spectrum	n and frequency hopping,	cellular con	cept, spectral				
efficiency and c	cellular	scheme	es.	sign factors	of mobile systems						
Antenna locatio	ons, ant	enna si	pacing.	Antenna spa	cing heights, mobile unit sta	anding still a	nd in motion.				
sampling rate,	directio	onal an	tennas,	frequency d	ependency, antenna connect	ions and loc	ations on the				
mobile unit.			,	1 7	1 57						
Text Books :					nd						
1. William C.Y	.Lee - 1	Mobile	<u>Commi</u>	<i>inications De</i>	esign Fundamentals, 2 nd Edit	ion, John wil	ey,1992.				
2. T.S.Rappapo	rt- Wire	eless co	ommuni	cations, 2 rd I	Edition, PHI, 2005.						
1 William C Y	KS: Lee —	Mohile	Collulo	ar Telecomm	unications 2 nd Edition Mc G	FrawHill 190	95				
2. Gordon L.stu	iber- Pr	rinciple	s of Mo	obile commun	<i>vication</i> .Springer.2012.	Jiawiiii, 177					
3. William Stall	lings -	Wireles	s Com	nunication a	nd Networks, PHI, 2007.						
Web Reference	es:										
1. https://ww	ww.you	tube.co	om/wate	ch?v=whYljs	e4Abc						
2. nptel.ac.i	n/cours	es/117	102062	/4	· 1 · 1						
3. nptelvide	3. hptelvideos.in/2012/12/wireless-communication.ntml										
Untermal Assessment: The question pener shall consist of Siv questions put of which the student shall											
answer anv For	ir quest	tions	aconoli	paper shall	Consist of SIA questions out (Student shall				
End Exam: Th	ne ques	tion pa	per sha	ll consist of	Eight questions out of which	n the student	t shall answer				
any Five questi	ons	-			_						
							Page 7 of 39				

TECHNICAL ENGLISH (TE)

I Semester: C	Common for All Programmes	M.Tee	ch				Sch	eme: 2017			
Course Code	Category	Hou	rs/Wee	k	Credits	Maxim	mum Marks				
AU101	Audit Course	L	Т	Р	TOTAL						
		2	-	-	-	-	-	-			
Sessional Exa	m Duration: -				End Exan	n Duration: -					
Course Outco	omes: At the end	l of the	course	stu	dents will l	be able to					
CO 1: write	Technical Repor	rts, Jou	rnal Pap	ers	and Projec	t Reports.					
CO 2: write	Job Applications	s, Resui	nes and	Sta	tements of	Purpose.					
Course Conte	ent										
1. Technical F	Reports –Formats	s and St	yles								
a) Feasibili	ty Report										
b) Factual 1	Report										
c) Project I	Reports										
2. Journal Pap	ers- Formats										
3. Paper Prese	ntation Strategie	es									
4. Statement o	f Purpose for In	ternship	s and A	ppro	enticeships						
5. Letter Write	ing- Job Applica	tions, R	lesume l	rep	aration						
6. Common E	rrors in Research	n Papers	8								
Kelerence Bo	OKS:	Michao	Commu	mia	tion Chill	for Engineers and Se	viontista				
1. Saligeeta Si	arilla & Dillou I	viisiira,	Commu	inica	ation Skins	s for Engineers and Sc	cientists,				
2 M Ashrof I	lg Flivate Lillio Dizvi Effective '	eu. Tachnia	al Com	20110	instion To	to MaCrow Hill Dubl	iching				
Company L	td., 2005.	rechnic	ai Colli	nun	ication, 1a	ita MCOTAW-TIIII F UDI	isiiiig				
3. Thomas S.	Kane , The Oxfo	ord Esse	ntial Gu	ide	to Writing	, OUP, 2010					
4. Joan van Er	nden, A Guide t	o Techr	ical Rep	oort	Writing						
http://scisw	eb.ulster.ac.uk/~	project	s/guide-	to-te	echnical-w	riting-1.pdf					

ADVANCED COMMUNICATIONS LAB (ACP)

1 Semester : CSP						Schem	e:2017					
Course Code	ximum Marks											
EC813	L	Т	Р	С	Continuous End Exam TOTAL Internal End Exam TOTAL							
	-	-	3	2	50	50	100					
End Exam Duration: 3	3 Hrs											
Course Outcomes : A	t the end	of the c	ourse t	he student	will be able to							
CO1: Perform BER ana	lysis of Q	PSK ar	d DPS	K commun	ication links, Ma	ximum likeliho	od sequence					
estimator, decisio	on feedba	ck and 1	linear e	qualizers.								
CO2: Analyze the performance of convolution encoding and Viterbei decoding.												
CO3: Model and estimate frequency selective and flat fading channels.												
CO4: Perform BER analysis of diversity techniques and multicarrier modulation system.												
CO5: Demonstrate the fundamental concepts of optical communications on Optical Fiber communications trainer kit.												
		LIS	TOF	EXPERIM	IENTS							
1. SIMULATION OF Q	PSK COI	MMUN	ICATI	ON LINK.								
2. BER ANALYSIS OF	DPSK T	RANSN	1ITTEI	OVER R	AYLEIGH FADI	NG CHANNE						
3. BER PERFORMANC	CE OF DI	FFERE	NT EQ	UALIZER	S.							
4. CONVLOUTION EN	CODINC	AND	A CONVLOUTION ENCODING AND VITEDDEL DECODING									
5. MODELING OF FRE	4. CONVEQUITION ENCODING AND VITERBEI DECODING.											
J. MODELING OF FREQUENCI SELECTIVE CHANNEL.												
6. MODELING OF FLA	EQUENC	Y SELE	VITER ECTIVI ANNEI	BEI DECC E CHANNI	DDING. EL.							
6. MODELING OF FLA 7. BER ANALYSIS OF	EQUENC AT FADI DIVERS	Y SELE	ECTIVI ANNEI CHNI	BEI DECC E CHANNI L QUES	DDING. EL.							
6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX	EQUENC AT FADIA DIVERS XR.	Y SELE NG CHA ITY TE	ECTIVI ANNEI CHNI	BEI DECC E CHANNI L QUES	DDING. EL.							
6. MODELING OF FLA7. BER ANALYSIS OF8. CDMA TXR AND RX9. BER ANALYSIS OF	EQUENC AT FADIN DIVERS XR. MULICA	Y SELE NG CHA ITY TE	CTIVI ANNEI CHNIC	BEI DECC E CHANNI QUES	DDING. EL.							
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMATION 	EQUENC AT FADI DIVERS XR. MULICA ATION	Y SELE NG CHA ITY TE ARRIEF	CTIVI CTIVI CHNIC	BEI DECC E CHANNI QUES PULATION	DDING. EL.							
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMA 11. OPTICAL COMMU 	EQUENC AT FADI DIVERS XR. MULICA ATION NICATIO	Y SELE NG CHA ITY TE ARRIEF	ECTIVI ANNEI CHNIC	BEI DECC E CHANNI QUES ULATION BLISHING	DDING. EL. ANALOG AND	DIGITAL CON	MM.LINK)					
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMA 11. OPTICAL COMMU 12. OPTICAL COMMU 	EQUENC AT FADI DIVERS XR. MULICA ATION NICATIO NICATIO	Y SELE NG CHA ITY TE ARRIEF DNS-I (DNS-II	ECTIVI ANNEI CHNIC MOD ESTAI (FIND)	BEI DECC E CHANNI QUES ULATION BLISHING	DDING. EL. ANALOG AND ES IN OFC)	DIGITAL CON	MM.LINK)					
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMA 11. OPTICAL COMMU 12. OPTICAL COMMU Text Books / Reference 	QUENC T FADI DIVERS XR. MULICA ATION NICATIO NICATIO Books :	Y SELE NG CHA ITY TE ARRIEF DNS-I (DNS-II	CTIVI ANNEI CHNIC CHNIC CHNIC CHNIC CHNIC	BEI DECC E CHANNI QUES ULATION BLISHING ING LOSS	DDING. EL. ANALOG AND ES IN OFC)	DIGITAL CON	MM.LINK)					
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMA 11. OPTICAL COMMU 12. OPTICAL COMMU 12. OPTICAL COMMU 12. OPTICAL COMMU 12. NET BOOKS / Reference 1. T.S.Rapparot, Wir 	EQUENC AT FADI DIVERS XR. MULICA ATION NICATIO NICATIO Books : eless com	Y SELE NG CHA ITY TE ARRIEF DNS-I (DNS-II DNS-II	CTIER CTIVI ANNEI CHNIC CHNIC CHNIC ESTAI (FIND)	BEI DECC E CHANNI QUES ULATION BLISHING ING LOSS 2 nd Edition,	DDING. EL. ANALOG AND ES IN OFC) PHI, 2005.	DIGITAL CON	MM.LINK)					
 6. MODELING OF FLA 7. BER ANALYSIS OF 8. CDMA TXR AND RX 9. BER ANALYSIS OF 10. CHANNEL ESTIMA 11. OPTICAL COMMU 12. OPTICAL COMMU 12. OPTICAL COMMU 12. OPTICAL COMMU 12. OPTICAL COMMU 2. William C.Y.Lee 	QUENC T FADIN DIVERS XR. MULICA ATION NICATIO NICATIO Books : eless com - Mobile	Y SELF NG CHA ITY TE ARRIEF DNS-I (DNS-II munica Commu	CTIVI ANNEI CHNIC CHNIC CHNIC CHNIC CHNIC CHNIC ESTAI (FIND) tions, 2 nicatio	BEI DECC E CHANNI QUES PULATION BLISHING ING LOSS 2 nd Edition, <i>ns Design I</i>	DDING. EL. ANALOG AND ES IN OFC) PHI, 2005. Fundamentals, 2 nd	DIGITAL COM	MM.LINK) wiley,1992					

DIGITAL IMAGE PROCESSING AND PATTERN RECOGNITION (DIPPR)

II Semester : CSP						Scheme	: 2017			
Course Code	Hours	/Week		Credits	Max	ximum Marks				
EC901	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : At	the end	of the c	ourse	the studer	t will be able to					
CO1: Understand the l	basic cor	icepts of	f 2-D	image acq	uisition and quantiz	zation.				
CO2: Analyze the pro	perties 11	mage tra	instor	ms.	alaanithana an dia	:4.1 :				
CO4: Understand image compression and image segmentation methods										
CO5: Understand the design concern of pattern recognition system										
Intr		n to dig	ital ir	nage proc	essing and fundan	ientals				
Digital image processing	o definit	tion and		application	s, fundamentals or	f digital image	processing.			
components of an image	processi	ng syste	m. in	nage samp	ing and quantization	on. some basic i	relationships			
between pixels, array	versus	matrix	opera	ations, line	ear versus nonlin	ear operations	, arithmetic			
operations, set and logic	operation	ns.	1			Ĩ				
			Ima	ge Transfo	orms					
Study analysis with exam	ples of l	Fourier	transf	forms, Wal	sh transform, Hada	mard transform	, Discrete			
cosine transform, Hotelli	ng transf	form and	l Hou	igh transfo	m					
Image Enhancement and Restoration										
specification, fundament frequency domain filterin Image Restoration :Deg Wiener filter, constrained	als of s ig fundation radation l least sq	patial fi mentals, /Restora juare res	lterin smo ation torati	g, smooth othing and model, algo ion.	ng and sharpening sharpening frequer ebraic approach to	g spatial filters acy domain filte restoration, invo	, smoothing ers. erse filtering			
	In	nage Co	ompr	ession and	Segmentation					
Image Compression: F coding, LZW coding, bit Image Segmentation: processing, regional proc region based segmentation	undamen plane co Detectio cessing, g on.	ntals, so oding, bl n of d global p	ome t ock t iscon roces	pasic comp ransform c tinuities, e sing via H	ression models- H oding and predictive odge linking and ough transform and	Huffman coding e coding. boundary dete l graph theoreti	g, arithmetic ection- local le technique,			
	. 1		tern :	recognitio	n system	• • •				
Basic concepts, fundam methodologies, character clustering seeking algorit	ental pr recogni hm, may	tion, spe	in p eech i stance	ecognition e algorithm	finger print recog and k-means clust	esign, design og gnition, clusteri ering algorithm	ng concept and ng concepts,			
1. R. C. Gonzalez an	d Richa	rd E. Wo	oods.	Digital Ima	ge Processing, 3 rd	edition. pearson	education.			
2. A. K. Jain, Funda	mentals	of digita	al Ima	age process	ing, 2^{nd} edition, Pr	entice Hall of Ir	ndia.			
Reference Books :		0		0 1	<i>U</i> , ,					
1. J.T. Tou and R.C. Gonzalez, "Pattern recognition principles", 2 nd edition Wesley Publishing company.										
2. Richard O. Duda publishing comp	Peter E. any.	Hart an	d Dav	vid G. Storl	x, "Pattern classific	ation', 2 nd editi	on Wiley			
3. S. Jayaraman, S. I Hill Education Pv	Esakkira t. Ltd	jan and	T. Ve	eerakumar	' Digital Image Pro	ocessing", Tata	McGraw			
4. S.Sridhar, "Digita	ıl Image	Process	ing",	2 nd edition	, Oxford University	y Press.				

Web References:

1. https://stanford.edu/class/ee368/

2. http://nptel.ac.in/courses/117105079/

3. https://engineering.purdue.edu/~bouman/ece637

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

OPTICAL COMMUNICATIONS (OCN)

II Semester : CSP						Scheme	: 2017				
Course Code	Hours/	Week		Credits	Max	imum Marks					
					Continuous						
EC002	L	Т	Р	С	Internal	End Exam	TOTAL				
EC902					Assessment						
	3	-	-	3	40	60	100				
Sessional Exam Dura	tion:2	Hrs			End Exar	m Duration: 3	Hrs				
Course Outcomes : A	t the end	of the c	ourse	the studer	nt will be able to						
CO1: The students will	l be able	to unde	rstand	l the conce	pts of signal propag	ation through o _l	otical fiber.				
CO2: The students wi	ll be able	to unde	erstan	d the work	ting principles of op	otical componer	nts like				
couplers, isolate	ors, circu	lators, i	nterfe	erometers a	and amplifiers.						
CO3: The students wi	ll be able	to unde	erstan	d the conc	epts of modulation	and demodulati	on in				
in an optical communication system.											
CO4: The students will be able to understand the concepts of transmission engineering like system											
model, power p	enalty, d	ispersio	n lim	itations and	d compensation tecl	hniques.					
CO5: The students will	ll be able	to unde	rstand	the eleme	ents of optical netwo	orks and their are	chitectures.				
	S	ignal p	ropag	gation in C	Optical Fibers:						
Geometrical Optics appr	oach and	Wave '	Theor	y approacl	h, Loss and Bandwi	dth, Chromatic	Dispersion,				
Non Linear effects- Stin	mulated	Brilloui	n and	d Stimulat	ed Raman Scatterin	ng, Propagation	n in a Non-				
Linear Medium, Self-Pha	ase Modu	ilation a	ind Ci	ross Phase	Modulation, Princip	ple of Solitons.					
Optical components:											
Operating Principles of Couplers, Isolators, Circulators, Mach-Zehnder Interferometer, EDFA and SOA											
	11.	Modu	latio	n and Den	nodulation:		1 1 4				
Signal formats for Mo	dulation,		rrier	Modulatio	n and Multiplexin	g, Optical Mo	dulations –				
Duobinary, Single Side B	and and	Multile	vel mo	odulation, I	Ideal and Practical r	eceivers for Dei	nodulation.				
Tronomicaion avatam an	ainaanin	I ransn		n System	Engineering:	itten Dessiver	Chromotia				
Dianarcian Limita and C	gineering	g: Syste	III III(ohnia	buel, Powe	er penaity, Transmi	luer, Receiver,	Chromatic				
Dispersion Linnis and C	ompensa	uion re	Onti	ues.	nlza.						
SONET/SDH Multipley	ving SC	NET/S	י עס ו עס	Lavore V	CAT and ICAs	SONET Fram	a Structure				
Flements of SONET/SD	H infrasti	nicture		Layers, V	CAT and LCAS,	SONET Train	e Suuciule,				
Text Books ·	11 mnasu	lucture.									
1 Optical Networks: A	Practica	l Persne	ective	- Raiiv R	amaswami and Ku	mar N Sivaraia	an 2nd Ed				
2004 Elsevier Morg	n Kaufn	ann Pu	hlishe	ers (An Im	orint of Elsevier)	innar 19.51varaje	in, 2nd Ed.,				
2. Optical Fiber Commu	nications	– Gerd	Keise	er. 3rd Ed.	2000. McGraw Hil	11					
Reference Books :	linearions	0014	110150	<i>, 514 Ed.</i> ,	2000, 110 0140 111						
1. Optical Fiber Com	municati	ons: Pri	nciple	es and Prac	ctice – John M.Seni	or. 2nd Ed., 200)().				
2. P. E. Green, "Opt	ical Netv	vorks".	Prent	tice Hall. 1	994.	01, 2110 201, 201					
Web References:		, , , , , , , , , , , , , , , , , , , ,									
1. http://nptel.ac.in/co	ourses/11	710100	2/								
2. http://nptel.ac.in/co	ourses/11	710412	7/								
3. http://nptel.ac.in/co	ourses/10	610508	1/9								
Question Paper Pattern	:										
Internal Assessment: T	he quest	ion pap	er sha	ll consist o	of Six questions out	of which the s	student shall				
answer any Four question	ons				-						
End Exam: The question	n paper s	shall co	nsist (of Eight q	uestions out of which	ch the student	shall answer				
any Five questions											

STATISTICAL SIGNAL PROCESSING (SSP)

II Semester :CSP						Scheme	: 2017			
Course Code	Hours	/Week		Credits	Max	imum Marks				
EC903	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : At	t the end	of the c	ourse	the studen	t will be able to					
CO1: Understand the con	ncept of	Discrete	Tim	e random H	Processes.		. 1			
and stochastic models.	and stochastic models.									
CO3: Analyse the properties of Levinson Recursion.										
CO4: Analyse Spectrum Estimation Using parametric and Non Parametric methods.										
			• •							
		Discre	te Tii	me Rando	m Processes					
Introduction, random va	riables, processe	random s.	proc	esses, filte	ring random proce	sses, spectral f	actorization,			
			Sig	nal Model	ing					
Introduction, The least squares method, The Pade approximation, Prony's method: Pole zero modeling, Shank's method, All-pole modeling, Linear prediction, Application: FIR Least squares inverse filters, Iterative prefiltering, and Finite data records Stochastic Models										
iterative premiening, and	T linte d	Levi	inson	- Durbin H	Recursion					
Introduction, The Levins	on -Durl	oin Rec	ursior	n, The Levi	nson Recursion, Th	ne Split Levinsc	on Recursion			
,	Ν	Non- Pa	rame	tric Specti	al Estimation	1				
Introduction: Properties duration observations, P Blackman-Tukey Spectra Estimators. Minimum V estimator.	of Estin Periodogr al Estim Tariance	nators, l ram, Av ator, Per Spectral	Findin verage rform Esti	ng good es ed periodog ance Chara mator, Neg	stimators, Estimatio gram, Windowing acteristics of Non-F yman Peoarson Cri	on of spectrum of periodogra Parametric Pow iterion for dete	from finite m via FFT, er Spectrum ction, Bay's			
		Paran	netrio	c Spectral	Estimation					
Time series models, relat Yule-walker, Burg and S models for power spectru estimator.	ionship Sequentia 1m estim	between al estima ator, Ma	auto ation aximu	-correlation methods, s im entropy	and the model par election of AR mo spectral estimator,	rameters, AR Pa odel order, MA Minimum varia	arameters by and ARMA ance spectral			
Text Books :										
1. "Lessons in Estimation	1. "Lessons in Estimation Theory for Signal Processing, Communication and Control," Jerry M.									
2 "Ontimum Signal Proc	essing "	Sonhoo	les J	Orfanidis	2ndedn McGraw	Hill 1988				
2. Optimum Signal Processing, Sophocles J. Ortamuls, 21(dedit., McGraw Hill, 1988. 3 "Statistical Digital Signal Processing and Modeling " Monson H. Haves, John Wiley & Sons Inc. 1996										
5. Suusteur Digitur Signur i rocessing und modering, monson in mayes, john whey & Sons IIIC., 1770.										
Reference Books :										
1. "Decision and Estimation Theory," James L. Melsa and David L. Cohn, McGraw Hill, 1978.										
 2. "Detection and Estima 3. "Statistical Signal Proc Prentice Hall Inc., 1998. 	tion," D cessing:	imitri Ka Vol. 1: l	azako Estim	s, P. Papar ation Theo	toniKazakos, Com ry, Vol. 2: Detectio	puter Science P n Theory,"Stev	ress, 1990. en M. Kay,			

Web References:

1. http://nptel.ac.in/courses/117104127/

2.www.aerosmith-songs.com/solution-manual-statistical-signal-processing-estimation-ka.

3. http://nptel.ac.in/courses/106105081/9

Question Paper Pattern:

InternalAssessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

EndExam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

MICROWAVE COMMUNICATIONS (MWC)

II Semester : CSP						Scheme	: 2017					
Course Code	Hours/	Week		Credits	Maximum Marks							
					Continuous							
EC904	L	Т	Р	С	Internal	End Exam	TOTAL					
20,01					Assessment	<u> </u>	100					
	3	-	-	3	40	<u>60</u>	100					
Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs												
Course Outcomes : At the end of the course the student will be able to												
Coll: Understand the (Concents	$\frac{\text{of the c}}{\text{s of Mic}}$	rowa	ve Propaga	tion and the Micro	wave Radio Sve	tem					
CO2: Understand the	Satellite	frequen	cv rat	nges and th	e concepts of Satel	lite links and its	s Services					
CO3: Understand the	Concepts	s of Eart	h stat	tion design	and different track	ing techniques						
CO4: Understand the concepts of Tropospheric Propagation												
Microwaya Dadia System												
Types of propagation lin	e of sigh	t transn	nissio	n Radio H	orizon Microwaye	links Repeater	°S					
Diversity, Frequency and	space d	iversity	syste	ms. Fading	. System gain and i	path losses. Noi	se and					
Absorption in Microwave	e links.	i verbieg	59500		,, System gam and j	pacif 105505, 1101	se una					
I I I I I I I I I I I I I I I I I I I	- 1			Satellite	Links							
Frequency ranges, orbits,	up link,	transpo	nders	, downlink	s, satellite system	oarameters, mul	tiple access,					
system noise ratio G/T ra	tio, calci	ulation of	of sys	tem noise	temperatures, Noise	e figures, Desig	n of satellite					
links for specified (C/N),	Radio a	ttenuati	on mo	odel.								
				Satellite S	Services							
MSAT service, BSAT ser	rvice, RA	ADARS	AT se	ervice, SAl	R SAT service, INT	TEL SAT servic	e, INMAR					
SAT service, VSAT serv	ice				_							
	1	•		Earth Sta	ation	. 1 .	• 1					
Earth station design for	low syst	tem nois	se ten	nperature,	linear apertures, re	ctangular apertu	lites, circular					
apertures, tracking technic	lues, low	noise ai		vo Tronos	ower amplimers, terr		distribution.					
Introduction to OTH (Ove	er The H	orizon)	syster	ns Tropos	pheric forward-scat	∎ ter radio link Bl	ock diagram					
of Troposcatter Commun	ication l	ink. Tra	nsmis	sion interfe	erence and signal da	mping, derivati	on of LOS					
communication range, der	rivation f	for field	stren	gth of a Tro	opospheric wave, Fa	ading in troposp	here and its					
effect on Troposcatter pro	pagation	ı		0		0 1 1						
Text Books :												
1. Roddy D, Microwave	Techono	logy, Re	ston	Publicatior	18							
2. Chatterjee R, Microwa	ve Engir	neering,	East	West Press	5.							
3. Kulkarni M, Microway	ve Radar	· Engine	ering	, Umesh P	ublications							
Reference Books :												
1. Tomasi M, Advanc	ed Elect	ronic C	ommi	inication S	ystems, Prentice Ha	<u>ill.</u>						
2. Combes,Graffewil a	and Saute	erean, M	icrow	vave Compo	onents, Devices and	Active Circuits,	John wiley					
3 Annapurna Das, Se	sr1 . K.D	as, <i>Mic</i>	rowa	ve Enginee	ering, Tata Mc Grav	wH1ll						
1 https://www.voortul			1- X	71:22/11:2								
1. https://www.youtu	$\frac{117102}{117102}$	$\frac{vatch (V)}{062/4}$	_wn i	1JSE4ADC								
2. npte1.ac.1n/courses/11/102062/4												
Internal Assessment T	he quest	ion nan	er sha	Il consist o	of Six questions out	t of which the	student shall					
answer any Four question	ns quest	ion pap	JI 5110		r or questions ou	tor which the s	stadoni shan					
End Exam: The question	n paper :	shall co	nsist	of Eight a	uestions out of whi	ch the student	shall answer					
any Five questions	r r			ə 1								
· · ·												

RESEARCH METHODOLOGY (RM)

II Semester : CSP				Scheme : 2017					
Course Code	Hours/Week			Credits	Max	imum Marks			
EC1012	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
Soccional Evan Dura	$\frac{4}{100 \cdot 2}$	- Urc	-	-	- Fnd Ever	- n Duration: -	-		
		1115				II Duration			
Course Outcomes : At	the end	of the c	ourse	the studer	t will be able to				
CO1: Understand overvie	w of rese	earch pr	ocess	, state the 1	research problem ar	nd conduct a lite	erature		
review of the conce	pts com	orising t	he re	search que	stions.				
CO2: Study the data collection methods and process the data statistically.									
CO3: Understand the basic properties of estimators, analyse the estimated data and interpret the data in									
a research paper.									
Meaning, Objective and Motivation in Research									
Types of Research, Research Approaches, Research Process, Validity and Reliability in Research. Features of Good Design, Types of Research Design, Basic Principles of Experimental Design, Steps in Sampling Design, Characteristics of a Good Sample Design, Random Samples and Random Sampling Design									
	Μ	easure	ment	and Scalin	ng Techniques				
Errors in Measurement,	Tests of	f Sound	l Mea	asurement,	Scaling and Scale	• Construction	Techniques,		
Forecasting Techniques,	Time Ser	ries Ana	alysis	, Interpolat	ion and Extrapolati	on.			
		Met	thods	of Data C	ollection				
Primary Data, Questionna	aire and	Intervie	ws, C	Collection of	of Secondary Data,	Cases and Sche	dules.		
		l.	Statis	tical Proc	essing				
Correlation and Regres	ssion A	nalysis,	Met	hod of L	east Squares, Re	gression Vs.	Correlation,		
Correlation Vs. Determin	ation, T	pes of	Corre	lation and	Their Specific App	lications.			
		-	Hyp	othesis Te	sting				
Tests of Hypothesis, Para Statistical Techniques for Test, Analysis of Varianc	metric V Testing te and Co	's. Non∙ Hypoth ovarianc	Paran Paran	metric Test Sampling ultivariable	s, Procedure for Te Distribution, Sample Analysis	sting Hypothes ling Theory Ch	is, Use of i-Square		
		1	nterp	retation o	t Data				
Data interpretation, Layo	Data interpretation, Layout of a Research Paper, Techniques of Interpretation.								
1. C.R. Kothari, <i>Re</i> Publishers.	Books : esearch	Method	lolog	y (Method	ls & Techniques)	, New Age I	International		
2. R.Cauvery, V.K.S	udha Na	yak, M.	Girija	, Research	Methodology, S.C	hand Publishers	8.		

ADVANCED DSP LAB (ADSPP)

II Semester : CSP						Schem	e: 2017			
Course Code	Hours/	Week		Credits	Ma	ximum Marks				
					Continuous					
FC013	L	Т	Р	С	Internal	End Exam	TOTAL			
LC915					Assessment					
	-	-	3	2	50	50	100			
End Exam Duration: 3	Hrs									
Course Outcomes : A	t the end	of the c	ourse t	he student	will be able to					
CO1: Design digital IIR	and FIR	filters f	or DSP	applicatio	ns.					
CO2: Analyze the effect of sampling rate conversion and design multirate FIR filters.										
CO3: Apply parametric	and non-p	paramet	ric met	hods for po	ower spectrum est	timation.				
CO4: Demonstrate thei	r abilities	s towar	ds TM	S320C674	8 DSP processor	r based implen	nentation of			
digital signal processing	concepts.	•								
CO5: Demonstrate real t	ime appli	ication	on TMS	S320C6748	B DSP processor.					
		LIS	T OF I	EXPERIN	IENTS					
$\frac{\text{CYCLE} - I(\text{MATLAB})}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$										
1. A) DESIGN OF BUT	TERWO	KTH II	K FILT	ERS						
B) DESIGN OF FIR F	DOWN			DOW MEI	HOD					
2. UPSAMPLING AND		SAMPL	$\frac{1}{N}$							
3. SAMPLING RATE C	UNVERS	SION B	Y FAC	TOK L/M.						
4. MULTIKATE IMPLE		ATION (JF FIK	FILTERS.	DAMETDIC MI					
5. POWER SPECTRUM		ATION		G NON-PA	TETDIC METUO		r			
(TMS220C6748)	ESTIN	ATION	USIIN	J PARAM	ETRIC METHO	DSCICLE - II	L			
$\frac{(1M3320C0746)}{7 \text{ LINEAD CONVOLU'}}$	TION									
8 CIPCULAR CONVOLU	LITION									
Q IMPLII SE RESPONS	EUTION F									
10 DIFFERNCE FOUA	L TION									
11 N-POINT DFT										
	(INTER	RIIPT		POLUNG	METHODS)					
13 AVERAGE FILTER				OLLING	WILTHODS)					
14 IMPLEMENTATION	N OF FIR		R							
15 FACE DETECTION	14. IVIT LEWIENTATION OF THETER 15. FACE DETECTION									
Text Books / Reference Books ·										
1. John G.Proakis. Di	mitrisG.N	Manolal	cis. Di	igital Sign	al Processing.	Principles.Algo	orithms and			
Applications. Pearson	n Educati	on Indi	$a.4^{th} Ec$	dition.2007						
2. Monson H.Hayes, Stati	stical Dig	gital Sig	nal Pro	cessing and	<i>l Modeling</i> , John V	Wiley and Sons,	1991.			

CODING TECHNIQUES (CTH)

I Semester : CSP						Scheme	: 2017			
Course Code	Hours/	Week		Credits	Max	imum Marks				
					Continuous					
EC805	L	Т	Р	С	Internal	End Exam	TOTAL			
(Elective-I)					Assessment		100			
~	3	-	-	3	40	60	100			
Sessional Exam Dura	tion : 2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : At	t the end	of the c	ourse	the studer	it will be able to		1 1'			
COI: Main objective the c	$\frac{1}{1}$	to provic	$\frac{1}{1}$	ght about ir	htroduction to source	coding and chai	nnel coding.			
CO2: To provide the des	sign of th	e linear	block	$\frac{1}{2}$ codes and	cyclic codes for ei	ncoding and dec	coding.			
CO3: To familiarize the	design of	f BCH,	Reed	Solomon c	codes.	1 1'				
CO4: To familiarize the	design of	f Convo	lutior	n codes for	both encoding and	decoding.				
Mathamatical madala fa		- 4	50		ng:	4:	a nal Mastaral			
Mathematical models for information. A logarithmic measure of information. Average and Mutual										
information and Entropy, Information measures for continuous random variable. Coding for discrete										
sources: Coding for disc	crete me	mory le	SS SO	urces disc	rete stationary sour	rce, Snannon-F	ano coding,			
Hullman code, Hullman	code app	oned for	pair	of symbols	s, efficiency calcula	tions, Lemper-2	Liv codes.			
Lineer Block Codes: Sys	tomotic 1	inoor oo		nd optimu	mg: m decoding for the	Pinory Symmo	ric chancel			
concreter and parity choo	lemane i		ues a	na optinu dogodina	on Symmetric Cha	nnole Uemmin	a Codos			
Cyclic codes: Algebrai	A manie	re of		codes F	Sinary Cyclic cod	nineis, Haininni a properties E	g Coues. Encoding in			
systematic and non systematic	matic fo	rm Enc	oder	$\frac{1}{1}$) hit shift register	Syndrome Com	nutation and			
Fror detection Decodin	g of Cyc	lic Code	ouci	using (II-K) on shint register, c	Syndrome Com	putation and			
	g of Cyc.		ی. R	CH Code	C •					
Idempotent and Mattson	– Solor	non Pol	vnom	vials Reed	-Solomon Codes	Iustin Codes N	ADS Codes			
Alternate Goppa and Ge	neralized	BCH (odes"	Snectral	properties	Justin Codes, h	indis codes,			
Themate, Coppe and Ce	meranzee		codir	of BDH	Codes:					
Berlekamp's decoding al	gorithm	Massey	v's m	inimum sh	ift register synthesi	s technique and	t its relation			
to Berlekamp's algorithm	n. A fast	Belekar	np-M	assey algo	rithm.					
			Conv	volutional	Codes					
Encoding of Convolution	nal codes	, Structi	iral p	roperties o	f Convolutional coo	les, state diagra	m, Tree			
diagram, Trellis Diagram	n, Maxim	um Lik	elihoo	od decodin	g of Convolutional	codes. Wozenc	raft's			
sequential decoding algo	rithms, F	ann's a	gorit	hm and oth	her sequential decod	ling algorithm.				
Text Books :					•					
1. R.E. Balabut, Theory a	and prace	tice of E	rror	Control Co	odes, Addison Wesl	ey, 1983.				
2. Bernard sklar,"Digital	Commu	nication	s-Fur	ndamental a	and Application", P	earson Education	on, Asia.			
Reference Books :										
1. F.J. MacWillans and N	J.J.A. Slo	one, The	Theo	ory of Erro	r Correcting Codes	, Nort Holland	, 2006.			
2. K. Sam Shanmugam, '	'Digital a	and Ana	log C	ommunica	tion Systems", Wis	ley Publication	S.			
3. John D Proakis, Digita	al Comm	unicatio	ns, 3 ^r	^d Ed, Mc C	Graw Hill, 2008.					
Web References:										
1. https://www.youtube.c	com/watc	h?v=wh	nYljse	e4Abc						
2. nptel.ac.in/courses/117102062/4										
3. nptelvideos.in/2012/12	3. nptelvideos.in/2012/12/codingtechniques.html									
Question Paper Pattern	ı:									
Internal Assessment: T	he quest	ion pape	er sha	ll consist o	of Six questions out	t of which the s	student shall			
answer any Four questio	ons									
End Exam: The question	on paper	shall co	nsist (of Eight q	uestions out of whi	ch the student	shall answer			
any Five questions										
							Page 18 of 39			

APPLIED MATHEMATICS FOR COMMUNICATION ENGINEERS (AMCE)

I Semester : CSP				Scheme : 2017						
Course Code	Hours	/Week		Credits	Max	imum Marks				
EC806 (Elective-I)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	n Duration: 3	Hrs			
Course Outcomes : At	Course Outcomes : At the end of the course the student will be able to									
CO1: Students will ab	le to kno	w about	t all t	he Bessel t	function matrix theo	ory, random var	iables for			
one and two dimensional	and mo	dels and	Appl	lications.						
		SI	PECL	AL FUNC	TIONS					
Bessel's equation – Besse	el functio	on – Rec	urren	ce relation	s - Generating func	tion and orthog	onal			
property for Bessel funct	property for Bessel functions of first kind – Fourier-Bessel expansion									
MATRIX THEORY										
Some important matrix fa	actorizat	ions – T	he Cl	nolesky de	composition – QR f	actorization – I	Least			
squares method – Singula	ar value	decomp	ositio	n – Toepli	tz matrices and som	e applications.				
	ONE I	DIMEN	SION	AL RAN	DOM VARIABLE	S				
Random variables - Prob	ability fu	inction -	– mor	nents – mo	ment generating fu	nctions and the	ir properties			
– Binomial, Poisson, Geo	metric,	Uniform	ı, Exp	onential, O	Gamma and Normal	distributions –	Function			
of a Random Variable.										
	TWO	DIMEN	SION	AL RAN	DOM VARIABLE	S				
Joint distributions – Marg	ginal and	l Condit	ional	distributio	ns – Functions of tw	vo dimensional	random			
variables – Regression C	urve – C	orrelatio	on							
		Q	UEU	EING MO	DELS					
Poisson Process – Marko	vian que	eues – Si	ingle	and Multi-	server Models – Lit	ttle's formula -	Machine			
Interference Model – Ste	ady State	e analys	is – S	elf Service	queue					
Text Books :										
1. Moon, T.K., Sterling	, W.C.,	Mathem	natical	l methods	and algorithms for	signal processi	ng, Pearson			
Education, 2000.										
2. Richard Johnson, Mi	ller & Fi	reund. P	robał	oility and S	statistics for Engine	ers. 7th Edition	n. Prentice –			
Hall of India Private	Itd Ne	w Delh	i (200	(7)			-,			
Defenence Deelys	Ltu., 10		1 (200	()						
1 Taba II A Operation	na Daga	anah A	n inte	advation	7th adition Deamon	n advastion ad	itiona Asia			
1. Tana, Π .A., Operatio	ons Rese	arcii, A	11 11111	oduction,	/iii euitioii, realso	ii education eu	nions, Asia,			
New Delni, 2002.										
2. Donald Gross and Ca	arl M. H	arris, Fi	ından	nentals of	Queueing theory, 2	nd edition, John	n Wiley and			
Sons, New York (198	35)									
Web References:										
1. https://www.youtube.com/watch?v=whYljse4Abc										
2. nptel.ac.in/courses/117102062/4										
Question Paper Pattern:										
Internal Assessment: The question paper shall consist of Six questions out of which the student shall										
answer any Four questio	answer any Four questions									
End Exam: The questio	n paper	shall co	nsist	of Eight q	uestions out of which	ch the student	shall answer			
any Five questions										

MICROWAVE INTEGRATED CIRCUITS (MIC)

I Somoston + CSD						Sahama	. 2017		
Course Code	Hours	Wook		Credita	Mov	imum Morka	. 2017		
Course Code	Hours/	vv eek		Creatts		Imum Marks	[
EC907	т	т	D	C	Untinuous	End Exam	ΤΟΤΑΙ		
(Elective I)	L	1	I	C	Accessment	Enu Exam	IUIAL		
(Elective-1)	2			2		60	100		
Sessional Evam Dura	13	- Hrs	-	5	Fnd Ever	n Duration · 3	100 Hrs		
		11.5					1115		
Course Outcomes · A	t the end	of the c	ourse	the studer	t will be able to				
CO1: Able to acquire the	e knowle	dge abo	ut all	basic micr	rowave devices				
CO2: Able to know about	it the all	microw	ave fi	ibes and in	tegrated circuits				
The to know about the an interowave tabes and integrated chearts									
	Introd	uction	to Mi	icrowave l	ntegrated Circuits	2			
MMIC- technology, adv	antages a	nd appli	catio	ns. Active	device technologies	s, design approa	iches.		
multichip module techno	logy, sub	ostrates.	cullo			, design upprot			
	108, 500		Passi	ve Compo	nents				
Inductors, capacitors, res	istors. m	icrostrit	o com	ponents, c	oplanar circuits, mu	ltilaver techniq	ues.		
micromachined passive components, switches & attenuators, filter design									
		,		Amplifiers	, <u> </u>				
Stability & gain anal	ysis, m	atching	tech	iniques, r	eactively matched	amplifier de	sign, LNA		
OSCILLATORS Design	principle	es. activ	ve de	vice CAD	techniques for larg	e signal oscilla	tors design.		
phase poise MMIC VC	\cap mixer	e	e ac		teeninques for harg	e signal oseine	design,		
phase noise, whithe_ve	Integrat	tod ont	nnoc	and moor	uromont toohnigu	00			
Integrates antenna select	ion phot	onic bar	ninas nd gai	n antennas	micro machined ar	tenna micro el	lectro		
mechanical system anten	nas test	fixture i	ne gaj measi	rements r	robe station measu	rements therm:	al and		
cryogenic measurements	experim	nental fi	eld ni	robing tech	niques	rements, therm	ur und		
Text Books :	, experim				inques.				
1. Ravender Goval "Mo	nolithic N	MIC [.] Te	chno	logy & De	sign" Artech House	e 1989			
2 Gunta K C and Amar	iit Singh	" Micro	wave	e Integrate	d Circuits" John W	ilev New York	1975		
	<u>n Singn,</u>	101101	s man	e megrate			, 1770		
Reference Books :									
1. Hoffman R.K. "H	[andbook	of Mic	roway	ve Integrat	ed Circuits". Artech	House, Bostor	n. 1987.		
2. Ulrich L. Rohde a	and David	d P.N., '	'RF	/ Microway	e Circuit Design fo	or Wireless Apr	olications".		
John Wiley, 2000)					FI FI			
3. C. Gentili, "Micr	owave A	mplifie	rs and	d Oscillator	rs", North Oxford A	cademic, 1986			
Web References:					,	,			
1. https://www.youtu	be.com/v	vatch?v	=wh}	/ljse4Abc					
2. nptel.ac.in/courses	/1171020)62/4							
Question Paper Pattern	ı:								
Internal Assessment: T	he quest	ion pap	er sha	ll consist o	of Six questions out	of which the s	student shall		
answer any Four question	ns				-				
End Exam: The question	on paper s	shall co	nsist	of Eight q	uestions out of which	ch the student	shall answer		
any Five questions									

ADVANCED 3G & 4G WIRELESS COMMUNICATIONS (3G & 4G)

I Semester : CSP						Scheme	: 2017			
Course Code	Hours/	Week		Credits	Max	imum Marks				
EC808 (Elective-I)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : A	t the end	of the c	ourse	the studer	t will be able to					
CO1: Understand the wi	reless ch	annel, fa	ading	and divers	ity					
CO2: Understand the bro	bad band	wireles	s cha	nnel model	ing					
CO3: Understand the con	ncept of	frequen	cy ret	ise and mu	Itiple access techno	ologies				
CO4: Analyze the conce	pt of CD	MA, OI	FDM,	<u>, MIMO &</u>						
COS: Analyze the conce	COS: Anaryze the concept of 5G and 4G whereas standards									
	Window Communications and Diversity									
Introduction to 3G/4G St	andards	Wireles	ss Ch	annel and I	Fading Rayleigh Fa	ading and BER	of Wired			
Communication BER for Wireless Communication Introduction to Diversity Multi-antenna Maximal										
Ratio Combiner, BER with Diversity, Spatial Diversity and Diversity Order										
Broadband Wireless Channel Modelling										
Wireless Channel and Delay Spread, Coherence Bandwidth of the Wireless Channel, ISI and Doppler										
in Wireless Communicat	ions, Doj	ppler Sp	oectru	m and Jake	es Model					
		Ce	ellula	r Commu	nication					
Introduction to Cellular (Commun	ications	, Frec	quency reus	se, Multiple Access	Technologies,	Cellular			
Processes - Call Setup, H	landover	etc., Te	eletraf	fic Theory						
Interation to CDMA	W 7-1-1			MA & OF			DAKE			
Receiver, CDMA Receiver, CDMA Receiver, CDMA Receiver, CDMA Receiver, Cyclic Prefix, Channel r	iver Syn nodel an	chroniz d SNR	ation, perfo	, introduct ormance, O	ion to OFDM, M FDM Issues – PA	ulticarrier Mod PR, Frequency	lulation and and Timing			
]	MIMO	& U	WB (Ultra	wide Band):					
Introduction to MIMO, MIMO Spatial Multiple OFDM, UWB Definitio Pulse Train, Bit-Error Ra	MIMO xing – V n and Fe te Perfor	Channe V-BLAS eatures, rmance	l Cap ST, M UWI of UV	oacity, SVI /IMO Div B Wireless VB.	D and Eigenmodes ersity – Alamouti Channels, UWB	s of the, MIMO , OSTBC, MR Data Modulatio) Channel , T, MIMO - on, Uniform			
		3 G ar	nd 4G	Wireless	Standards					
Architectures of WCDM	IA, LTE,	WiMA	Х							
Text Books :1. Principles of MPublisher-McGraw Hill.	Iodern	Wirele	SS	Communic	ation Systems-A	ditya K. Ja	agannatham,			
2. Fundamentals of Wireless Communications – David Tse and PramodViswanath, Publisher - Cambridge University Press.										
3. Wireless Communications: Andrea Goldsmith, Cambridge University Press.										
Keterence Books :	·	1. 1								
1. WIREless Communicat	ions: Pril	icipies a	and P	ractice – Il	neodore Kappaport	- Prentice Hall.				
2. IVITIVIO W Ireless Com	nunicati	ons – Ez	210B1	gneri – Cai	norage University	rress.				

Web References:

1. https://www.youtube.com/watch?v=-ymnQ5rpcYA

2. www.nptelvideos.in/2012/11/advanced-3g-and-4g-wireless-mobile.html

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

RADAR SIGNAL PROCESSING (RSP)

I Semester : CSP						Scheme	: 2017			
Course Code	Hours	/Week		Credits	Max	imum Marks				
					Continuous					
EC809	L	Т	Association End Exam							
(Elective-II)					Assessment					
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : A	t the end	of the c	ourse	the studer	nt will be able to					
CO1: Able to know about	t the all r	adar syst	tems,	design of r	adar systems and rec	uirements of rad	dar systems			
CO2: Able to characteriz	ze the per	rforman	ce of	radar syste	em					
CO3: Able to analyze Ph	nase, Fre	quency	and L	inear FM (Coding Techniques					
			I	ntroductio	n					
Radar functions and application, target, detection, resolution and clutter, Basic surveillance Radar -										
implementation.										
Radar Range Performance										
Radar Range equation – p	paramete	rs, loss f	factor	s, Radar de	tection with noise J	amming, volum	e clutter and			
area clutter. Detection pr	obability	, false a	larm	sensitivity	and introduction to	CFAR techniq	ue, basics of			
CACFAR processor, Res	olution c	ell and r	neasu	rement acc	curacy, Ambiguities	in Range and D	Doppler.			
	Sign	al Proc	essin	g & Wave	form Selection-I					
Introduction, matched fil	ter proce	essing M	latche	ed filter rec	eiver, matched filte	er and correlation	on function,			
efficiency of practical fil	ters, effe	ct of tra	nsmit	ted wavefo	orm, correlation det	ection – cross c	orrelation			
receiver. Detection criter	ia – Ney	man – P	Pearso	on observer	, ideal observer, see	quential observe	er,			
likelihood ratio, Maximu	m likelil	100d fur	nction	, Inverse p	robability criterion.	Uncertainty re	lation.			
	Signa	l Proce	ssing	& Wave f	form selection – II					
Transmit waveforms – ty	vpes, desi	ign crite	ria, R	adar Ambi	iguity function – pr	inciples, proper	ties, expels,			
Radar environmental dia	gram, op	timizati	on, de	esirability	of range- Doppler A	Ambiguities.				
		Pł	ase c	coding tecl	hniques	1 2 22				
Principles, Random bina	ry coding	g, binary	/ perio	odic seque	nces, ambiguity fun	ction for PR se	quences,			
maximal length binary co	odes, per	fect woi	ds an	d codes, p	oly phase codes. De	ecoding techniq	ues –			
analog and digital schem	es. Noise	e and clu	itter p	performanc	es.					
		ar FM a	nd fr	requency c	oding Techniques		1 11 .			
Principles, linear FM p	ulses, ge		n and	decoding	, distortion effects	on LFM sign	als, discrete			
frequencies – waveform	analysis,	capabil	ities.	Resolution	properties of frequ	ency coded pul	ses.			
Tert De che :										
I EXT BOOKS :	1		G	·						
I. M.I.SKOINIK, Intro	oduction	to Rade	Ir Sys	$\frac{tems}{MC}$	Jraw-Hill, 3 editio	on.				
2. M.I.Skolnik, Raa	ar Hana	<i>BOOK</i> , 2	E E G	, McGraw-	-n111.					
Keierence Books :	Declar	D.:	<u> </u>	1.D	· 1E ·	1St T.I.M.	C			
1. F.E.Nathanson, Radai	r Design	Principi	$es, Si_{\overline{\delta}}$	gnal Proce	ssing and Environm	<i>tent</i> , 1 th Ed, Mc	Graw Hill.			
2. Ramon Nitzberg, <i>Ra</i>	dar Sign	al Proce	essing	g and Adap	tive Systems, Artec	n. House.				
web References:	1 /	4 1 0	1 3	71' / 4 1						
1. https://www.youtube.com/watch?v=whYIjse4Abc										
2. npte1.ac.1n/courses/11/102062/4										
Question Paper Pattern:										
internal Assessment: 1	ne quest	ion pap	er sha	ui consist (or Six questions out	t of which the s	student shall			
answer any Four questio	IIS	a h a 11		of Ti-1 4	mation C 1'	ah 4h4- 1 4	ah all			
End Exam: The question	on paper	snall co	nsist (or Eight q	uestions out of white	cn the student	snam answer			
any rive questions							D 00 (0-			
							Page 23 of 39			

SPEECH PROCESSING (SP)

I Semester : CSP						Scheme	: 2017			
Course Code	Hours/	/Week		Credits	Max	imum Marks				
					Continuous					
EC810	L	Т	Р	С	Internal	End Exam	TOTAL			
(Elective-II)					Assessment					
	3	-	-	3	40	60	100			
Sessional Exam Dura	ation:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : A	t the end	of the c	ourse	e the studer	nt will be able to					
CO1: Understand the me	echanism	of spee	ech pr	oductions	and speech models	and time domai	n models			
CO2: Analyze the modu	lation scl	hemes o	of spe	ech wavefo	orms and Short Tim	e Fourier analys	sis			
CO3: Understand the pro-	operties o	of Home	omor	phic speech	n processing					
CO4: Analyze the Linea	r Predict	ive Cod	ing o	f speech ar	d their applications					
Digital Models for the Speech Signal										
The process of speech production, Acoustic theory of speech production, Lossless tube models, and										
digital models for speech signals										
	Time domain models for speech processing									
Time dependent processi	ing of spe	eech, sh	ort tiı	ne energy	and average magnit	ude, zero crossi	ng rate,			
pitch period estimation,	pitch period estimation, short time auto-correlation function, median smoothing and speech processing									
Digital representation of speech waveform										
Quantization, instantaneo	ous and a	daptive	delta	modulatio	n, DPCM, compari	son of systems.				
		Sho	rt tin	ne Fourier	Analysis					
Basic model for short tin	ne analys	is and s	ynthe	esis of spee	ch, implementation	of filter bank s	ummation			
method using FFT, pitch	detection	n, analy	sis-by	y- synthesi	s. Analysis – synthe	esis systems.				
		Homo	morp	ohic speech	n processing					
complex cepstum approa	ich, pitch	detecti	on, Fo	ormat detec	ction, homomorphic	e vocoder				
		Linear	Pred	ictive codi	ng of speech					
Principles of linear pred	lictive an	alysis,	soluti	ion of LPC	C Equation; Predict	ion error signa	l, frequency			
domain representation o	f LPC ar	alysis;	Relat	ion betwee	en the various spee	ch parameters,	synthesis of			
speech from LP parameter	ers and a	pplicati	ons.							
	6	1.	<u> </u>	beech Codi	ng	1 . 1 . 1				
Sub-band coding, trans	storm co	oding,	chann	iel Vocod	er, Formant Voco	der, ceptral V	ocoder, LP			
Vocoders. Vector quanti	zer codei	rs. Man	-mach	nine comm	nunication, speaker	recognition sys	stem, speech			
recognition systems.										
Text Books :										
1. L.R.Rabiner & R.W.	Schafer,	Digital	proc	essing of S	peech Signals, PHI	, 2005				
2. Paramichalis, Practic	al Appro	oach to S	Speec	h Coding,	PHI, 2006.					
Reference Books :										
1. Owens, Signal Proce	ssing of S	Speech,	2003	•						
2. Dellar & Proakis, Di	igital Spe	ech Pro	ocessi	n, 2007.						
Web References:										
1. https://www.youtu	be.com/v	vatch?v	=whY	ljse4Abc						
2. nptel.ac.in/courses/117102062/4										
Question Paper Pattern:										
Internal Assessment: 7	The quest	ion pap	er sha	all consist of	of Six questions out	t of which the s	student shall			
answer any Four question	ons									
End Exam: The question	on paper	shall co	nsist	of Eight q	uestions out of whi	ch the student	shall answer			
any Five questions										
							Page 74 of 20			
							1 46C 27 01 33			

NEURAL NETWORKS AND FUZZY LOGIC (NNFL)

I Semester : CSP						Scheme	: 2017	
Course Code	Hours	/Week		Credits	Max	imum Marks		
EC811 (Elective-II)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
	3	-	-	3	40	60	100	
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs	
Course Outcomes : At	$\frac{t \text{ the end}}{1}$	of the c	ourse	the studer	it will be able to	• • • • • • • • • •	1 1	
COI: Understand organ	nization	01 010 01	logica	al neural	networks, characte	eristics of artif	icial neural	
CO2: Understand basics of learning and training algorithms and applications of various Neural								
Networks such as Perceptron. Counter Propagation Networks. Recurrent Networks. BAM and ART								
CO3: Understand funda	mentals	of Fuz	zy Sy	ystems, re	lations, measures a	and various Fu	zzy System	
architectures								
		Bio	logic	al Neural I	Network	~		
Organisation of human b computers and human bra	rain, Net ains	aron fun	ction	s-cell body	y, Dendrites, Axon,	Cell membrane	2,	
		Art	ificia	l Neural N	letworks			
Characteristics, single lay	yer and r	nulti-lay	yer A	rtificial Ne	ural Networks, Tra	ining: objective	, supervised	
and unsupervised training	g, overvi	ew	Т)	-			
nercentron representation	learnin	a traini	r ng ali	corithm a	S lyanced algorithms	and application	15	
perception representation	i, icariiii	g, traim	Neu	ral Dvnar	nics	and application		
Counters propagation N Kohonen and Grossberg	letworks lavers, fi	: Introc	luctio	on, Networ opagation	k structure, Norm	nal operation,	training the	
			Stati	istical Met	hods			
Training, applications, ap training	oplicatio	ns to no	n-line	ear optimis	ation problems, Ba	ck propagation	and Cauchy	
			Hop	field Netw	orks			
Recurrent network config	gurations	, applic	ations	5				
]	Bi-direc	tiona	l Associat	ive Memories		1 111	
BAM structure, retrievi continuous, adaptive and	ng a st competi	ored as tive BA	socia M	tion, enco	ding the associa	tions, Memory	capability,	
		Ada	ptive	Resonance	e Theory			
ART architecture and im	plementa	ation tra	ining	example, o	characteristics.			
Crien acts notation hasi		Intro	ducti	on to Fuzz	y Systems	tions Comple		
and Intersection	c concep	ts, class		ogic, Fuzz	v logic, Fuzzy opera	ations -Complet	ment, Union	
		1.0.1	Fu	zzy Relati	ons		1.	
Binary relations, Equivalence and Similarity relations, compatibility relation, Orderings, morphisms								
Belief and plausibility me	Fuzzy Measures Belief and plausibility measures, probability measures, possibility and necessity measures							
		Fuzz	zy As	sociative I	Memories			
Fuzzy and Neural function as mappings, Fuzzy hebbo system Architecture	on estim b FAMs:	ators, N The B	eural i-dire	vs Fuzzy ctional FA	representation of sta M, theorem, superi	ructured knowle mposing FAM	edge, FAMs rules, FAM	

Text Books :

1. Bart Kosko, Neural Networks and Fuzzy Systems, PHI.

Reference Books :

1. Phillip D. Wasserman – Van Nostrand Reinhold, Neural Computing, Theory and Practice, 2002

2. George I Klir and Tina A. Folger, *Fuzzy sets, uncertainty and Information*, PHI, 2001.

Web References:

1. https://www.youtube.com/watch?v=whYljse4Abc

2. nptel.ac.in/courses/117102062/4

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

WAVELET TRANSFORMS AND APPLICATIONS (WTA)

I Semester : CSP						Scheme	: 2017			
Course Code	Hours	/Week		Credits	Max	imum Marks				
					Continuous					
EC812	L	Т	Р	С	Internal	End Exam	TOTAL			
(Elective-II)					Assessment		100			
	3	-	-	3	40	<u>60</u>	100			
Sessional Exam Dura	tion: 2	Hrs of the a	01100	the studer	End Exal	m Duration: 3	Hrs			
Course Outcomes : A	understan	of the wa	volot	transforms	lt will be able to & wavelet filters in ir	nage processing	applications			
CO2: Students are able to	o apply S	STFT C	WT	& DWT fo	r analyzing signals	in Spatial doma	applications			
CO3: Students are able t	o apply i	the wave	elet tr	$\frac{\alpha}{\alpha}$ ansforms f	for analyzing speech	1 & Music sign	als. SONAR			
Spectral analysis, image	compres	sion, fra	ictal s	ignal analy	vsis and denoising c	of signals.				
	1	,	I	ntroductio	n	U				
Vector spaces- properties	s-dot pro	duct- ba	asis-d	imension,	orthogonality and o	orthonormality-	relationship			
between vectors and signals- signal spaces-concept of convergence- Hilbert spaces for energy signals-										
Generalized Fourier Expansion	ansion									
		<u></u>	Fou	irier Anal	ysis		<u> </u>			
Fourier transform- Draw	backs o	f Fourie	er ana	alysis- Sho	ort –time Fourier T	ransform (STF	T) analysis-			
Spectrogram plot –pnas	se- spac	e plot	111 til	me-frequei	icy plane, lime a	and frequency	limitations,			
Oncertainty principle, 1	inng of t	Conti		s Wavelet	Transform					
Wavelet Transform-definition and properties – concept of scale and its relation with frequency –										
Continuous Wavelet Transform (CWT)- Scaling function and wavelet functions (Debauchis, Haar.										
Coilfet, Mexican, Hat, Si	nc, Gaus	sian, B	i-orth	nogonal)- T	iling of time- scale	plane for CWT	······································			
Discrete Wavelet Transform										
Discrete wavelet transfo	orm (DV	VT)- Fi	lter E	Bank and	sub band coding p	principles- Mul	ti-resolution			
analysis – time scale dif	ference	equation	ns for	wavelets	ad scaling functio	ns- Wavelet Fi	lters – scale			
variation in the Discrete	domain	– Malla	at's al	lgorithm fo	or DWT – Inverse I	DWT computat	ion by filter			
banks- Multi- band Wave	elet trans	forms.		mulication	-					
Case study I · Sub band	coding	of spee	A A	ppiication	18 Case study II · Mu	ulti hand wavel	et transform			
based SONAR spectral	classific	of spee	d Tr	ansient det	ection Case study	III-Dalid waver	compression			
using 2- D DWT. Case s	tudv-IV	: Fracta	l sign	al analysis	. Case study-V: De	noising of signa	als			
Text Books :			- ~-0	J~-~	,					
1. Strang G, Nguyen	T, Wave	elets and	l Filte	er Banks, V	Vellesley Cambridg	ge Press, 2007.				
2. Vetterli M, Kovac	evic J, V	Vavelets	and S	Sub-band (Coding, Prentice Ha	ll, 2006.				
3. Mallat S, Wavelet	t Signal I	Processi	ing, A	Academic F	Press, 2005.					
Reference Books :										
1. Meyer Y.et. al, W	Vavelet T	<i>oolbox</i>	Manu	ial (MATL	AB). Mathworks inc	2005				
2. Wornell GW, Sig	nal Proc	essing v	vith F	Fractals: A	Wavelet Based App	proach, Prentice	e hall, 2006			
3. Rao. R.M and A.S.	S Bopard	likar, W	avelei	t Transform	n, Addison Wesley,	2006				
Web References:										
2. nptel ac in/courses/117102062/4										
Ouestion Paper Pattern	•	JU2/4								
Internal Assessment: T	he auest	ion pap	er sha	all consist of	of Six questions out	t of which the	student shall			
answer any Four questio	ns	Pap	5110							
End Exam: The question	n paper	shall co	nsist	of Eight q	uestions out of whi	ch the student	shall answer			
any Five questions										
							Daga 37 of 30			

INTERNETWORKING WITH TCP/IP (TCPIP)

II Semester : CSP					Scheme	: 2017			
Course Code	Hours/	Week		Credits	Max	Maximum Marks			
					Continuous				
EC905	L	Т	Р	С	Internal	End Exam	TOTAL		
(Elective-III)					Assessment				
	3	-	-	3	40	60	100		
Sessional Exam Duration : 2 HrsEnd Exam Duration: 3 Hrs									
Course Outcomes : At the end of the course the student will be able to									
CO1: Students acquire	knowle	dge abo	ut late	est Protoco	is in the field of Ne	thms used in			
communication and Netw	vorking I	lige abo	ut end	cryption an	id decryption argon	unins used in			
communication and iverv	vorking i	Int	rodua	rtion and a	verview				
Review of underlying net	twork tea	chnolog	ies. Ir	ternetworl	king concept and ar	chitectural mod	el		
			Inte	rnet addre	esses		.01		
Mapping Internet address	ses to phy	vsical a	ddress	s (ARP), de	etermining and Inte	rnet address at	startup		
(RARP)	···· ·· ···	,		. (),			F		
			Inte	ernet Prot	ocol				
Connectionless datagram	n service	, Routir	ng IP	datagram,	error and control	messages (ICM	IP), Internet		
multicasting (IGMP) Sub	onet and a	superne	t addr	ess extensi	ons				
			Us	er Datagra	am				
Protocol, Reliable stream	transpor	rt servic	e (TC	CP), TCP S	tate machine, core	routers, peers, C	GGP, SPF		
protocols, Routing on an	autonom	ious sys	tems	(EGP)					
	11.0	•	TCP	P/IP over A		· ·			
Networks, Client server i	nodel of	interact	.10n, t	he socket 1	nterface, DHCP, D	omain name sys	stem (DNS)		
			٨	nulication					
Remote Login FTP T	ETD NE	S Elec	A	c mail (S)	IS MTD MIME) Int	arnat managam	ont SNMP		
SNMPV2 Internet Secur	ity and F	Firewall	desio	n features	of IPV6	emet managem			
Text Books :	ity and I	newan	debig	, 11, 1000010 5	0111 10.				
1. Douglas E.Comer. Inte	ernetwor	king wit	th TC	P/IP. Vol-I	. 3 rd Ed. PHI.				
Reference Books :				, ,	, , .				
1. TCP/IP Illustrated, V	olume 1	: The F	rotoc	ols, W. Ri	chard Stevens, W.	Richard Steve	ens, Pearson		
Education Asia, 2002.									
2) High Performance TC	CP/IP Net	tworkin	g-Ma	hbub Hass	an, Raj Jain, PHI, 2	005			
Web References:									
1. https://www.youtu	be.com/v	vatch?v	=whY	ljse4Abc					
2. nptel.ac.in/courses/	/1171020)62/4							
Question Paper Pattern		•		11 • .					
Internal Assessment: T	he quest	ion pap	er sha	III consist o	of Six questions out	t of which the s	student shall		
End Exam: The question	IIS	shall oo	noist	of Fight a	lastions out of whi	ch the student	shall answer		
any Five questions	n paper	shall CO	11515t (or Eight q	uestions out of will		siiaii aiiswel		
any rive questions									

COGNITIVE RADIO (CR)

II Semester : CSP			Scheme : 2017						
Course Code	Hours	/Week		Credits	Max	Maximum Marks			
	_		_		Continuous				
EC906	L	Т	Р	C	Internal	End Exam	TOTAL		
(Elective-III)	2			2	Assessment	(0)	100		
Soccional Evam Dura	5	- Hrs	-	3	40 End Eve	00 m Duration: 3	100 Hrs		
	1011 . 2	1115				III Duration. 5	1115		
Course Outcomes : A	t the end	of the c	ourse	the studer	nt will be able to				
CO1: gain knowledge on multi rate systems.									
CO2: develop the ability to analyze, design, and implement any application using FPGA.									
CO3: be aware of how signal processing concepts can be used for efficient FPGA based system design									
CO4: understand the r	apid adv	ances ir	n Cog	nitive radio	o technologies.				
CO5: explore DDFS,	CORDIC	C and its	appli	ication.					
		SOFT	WAR	RE DEFIN	ED RADIO				
Basic SDR – Software ar	ıd Hardw	vare Arc	chitec	ture of an S	SDR – Spectrum M	lanagement – M	anaging		
unlicensed spectrum – N	oise Agg	gregation	1						
	SDR AS	S PLAT	FOR	M FOR C	OGNITIVE RAD	10			
Introduction – Hardwar	e and S	Software	e arc	hitecture -	- SDR developme	ent process and	d Design –		
Application software –	Compor	ient dev	/elopi	ment – w	averorm developm	ient – cognitiv	e wavelorm		
development	C	DCNIT	IVF	RADIO T	FCHNOLOGY				
Introduction – Radio fle	exibility	and cap	ability	v – Aware	– Adaptive – Comr	parison of Radic)		
capabilities and Propertie	es – Avai	ilable Te	echno	ologies – IE	EEE 802 Cognitive	Radio related ac	ctivities –		
Application.				0					
	(CR- TE	CHN	ICAL CH	ALLENGES				
Design Challenges assoc	ciated w	ith CR	– Ha	rdware rec	uirements – Hidde	en primary use	r problem –		
detecting spread spectrur	n primar	y users -	– sens	sing durati	on and frequency –	security			
		SI	PECT	FRUM SE	NSING				
Overview – Classificatio	n - Mato	ched filt	er – v	waveform l	based sensing – cyc	clo stationary ba	ased sensing		
- Energy detector based	sensing -	- Radio	Ident	ifier – Coo	perative sensing- o	ther sensing me	thods		
	0	FDM B	ASE	D COGNI	TIVE RADIO				
A Basic OFDM System	1 Model,	, OFDN	1 bas	ed cogniti	ve radio, Cognitiv	e OFDM Syste	ems, MIMO		
channel estimation, M	ulti-banc	1 OFD	M, N	MIMO-OF	DM synchronizati	on and freque	ency offset		
estimation. Spectrum se	insing to	o detect	Spec	cific Prima	iry System, Spectr	rum Sensing 10	r Cognitive		
Text Books ·									
1 I H Reed "Software	- Radio"	Pearso	n 200	02					
2. U. Meyer – Baese, "I	Digital Si	gnal Pro	n, 200	ng with FF	GAs". Springer. 20	004.			
3. H. Arslan "Cognitive	Radio. S	Software	e Def	ined Radio	and Adaptive Wire	eless Systems".	University		
of South Florida, US	A, Spring	ger, 200	7.		1	5	5		
Reference Books :		-							
1. S. K. Mitra, "Digital S	ignal pro	ocessing	", Mo	cGrawHill,	1998				
2. K.C.Chen, R.Prasad,	"Cogniti	ve Radio	o Net	works" , W	/iley, 2009-06-15.				
3. T. W. Rondeau, C.W.I	Bostian, '	"Artific	ial Int	telligence i	n Wireless Commu	inications",2009).		
4. Tusi, "Digital Techniq	ues for V	Wideban	ld rec	eivers", Ai	tech House, 2001.				
5. T. Darc Chiueh, P.Yun	Tsai," OF	FDM bas	sebano	d receiver d	esign for wireless co	mmunications",	Wiley,2007		
6. Recent literature in Cognitive Radio									

Web References:

- 1. http://www.radio-electronics.com/info/rf-technology-design/cognitive-radio-cr/technology-tutorial.php
- 2. https://www.youtube.com/watch?v=hzxgDyXbpt4

3. https://www.youtube.com/watch?v=hzxgDyXbpt4

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

WIRELESS COMMUNICATIONS & NETWORKS (WCN)

II Semester : CSP					Scheme	: 2017			
Course Code	Hours	ours/Week Credits Maximum Marks							
EC907 (Elective-III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
	3	-	-	3	40	60	100		
Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs									
Course Outcomes : At the end of the course the student will be able to									
CO1: Understand Wireless Channel Specifications, Fading & Diversity Schemes.									
CO2: Understand the	Spread	Spectru	m C	ommunica	tion Systems, MI	MO Systems	& Channel		
Constant Con	rda in aa	Ilulor M	abila	Communi	action & Wirelass	Adhaa Natwark			
	rus in ce	inular M	oblie	Communi	cation & wireless A	Adnoc Network	.8		
			Fadi	ng & Dive	rsitv				
Evolution, Examples of Wireless Communication systems, Evolution, Examples of Wireless Communication systems. Small-Scale Fading and Multipath, Impulse Response Model of a Multipath Channel, Small-Scale Multipath Measurements, Parameters of Mobile Multipath Channels, Types of Small-Scale Fading, Rayleigh and Rican Distributions, Statistical Models for Multipath Fading Channels, Repetition coding and Time Diversity- Frequency and Space Diversity, Receive Diversity- Concept of diversity branches and signal paths- Combining methods- Selective diversity combining - Switched combining- maximal ratio combining- Equal gain combining-									
performance analysis for	Rayleig	llular	Com	municatio	n and CDMA				
introduction to Cellular Networks, Multiple Access: FDM/TDM/FDMA/TDMA. Direct sequence spread spectrum- Frequency Hopping systems, Time Hopping Rake Receiver- Performance analysis. Spread Spectrum Multiple Access, CDMA Systems- Interference Analysis for Broadcast and Multiple Access Channels, Capacity of cellular CDMA networks. Fading Channel Capacity Capacity of Wireless Channels- Capacity of flat and frequency selective fading channels, Multiple									
Input Multiple output (M	IMO) sy	/stems- (capac	ity of MIN	lo Channels.				
Drief diagnosien enerifier	Cellu	llar Wil	eless		Ication Standards		Intro de otion		
to Multicarrier Communi	cation (USM, U DEDM	DMA	A, W-CDM 7DMA)	A, 50, 40, LIE, W	/1-шах, w1-г1.	Introduction		
			rolog	$\frac{1}{2}$ $\frac{1}$	otworks				
Wireless Adhoc Networks Introduction, Issues in Ad hoc wireless networks, Ad hoc wireless internet. MAC Protocols, Routing Protocols, Transport Layer Protocols & Security of Wireless Adhoc Networks									
Interpretation of Data and	Doport	Writing		port write	ng Maarah Dapar, Taab	niques o f Inter	mratation		
	1 Keport	vv Hulle	<u>,</u> Lay	out of a Ke	search raper, rech	inques o i intel	pretation.		
Interpretation of Data and Report Writing, Layout of a Research Paper, Techniques of Interpretation. Text Books : 1. "Wireless Communications" by Andrea Goldsmith, Cambridge University press. 2. "Modern Wireless Communications" by Simon Haykin and Michael Moher, Person Education. 3. "Wireless Communication, principles & practice" by T.S. Rappaport, PHI, 2001. 4. "Principles of Mobile Communications" by G.L Stuber 2 nd edition, Kluwer Academic Publishers 5. "Wireless digital communication" by Kamilo Feher PHI, 1995.									

Reference Books :

- 1. "Introduction to Spread Spectrum Communication" by R.L Peterson, R.E. Ziemer and David E. Borth, Pearson Education.
- 2. "CDMA- Principles of Spread Spectrum" by A.J.Viterbi, Addison Wesley, 1995.
- 3. "Ad Hoc Wireless Networks: Architectures and Protocols" by C. Siva Ram Murthy, and B. S. Manoj, Prentice Hall Professional Technical Reference, 2008.
- 4. "Ad Hoc & Sensor Networks: Theory and Applications" by Carlos De Morais Cordeiro, Dharma Prakash Agrawal, World Scientific Publishing Company, 2006.

Web References:

1. nptelvideos.in/2012/12/wireless-communication.html

2. http://wireless.ictp.it/school_2002/lectures/ermanno/HTML/802.11_Architecture.pdf

3. nptelvideos.in/2012/12/digital-communication.html

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

HIGH SPEED NETWORKS (HSN)

Course Code				Scheme : 2017										
	Hours/	Week		Credits	Max	Maximum Marks								
					Continuous									
EC908	L	Т	Р	С	Internal	End Exam	TOTAL							
(Elective-III)					Assessment									
	3	-	-	3	40	60	100							
Sessional Exam Dura	ation:2	Hrs			End Exa	m Duration: 3	Hrs							
Course Outcomes : At the end of the course the student will be able to														
CO1: Understand the layered architectures, working principles & services provided by various														
networks like BISDN, A	TM and	TCP/IP.												
CO2: Analyze the perfor	rmance o	f High s	speed	networks b	based on QOS para	meters								
CO3: Understand the	concepts	s of Si	gnaliı	ng, Routir	ng and Switching	the information	on between							
interconnected networks			_											
	Net	work Se	ervice	es & Layei	red Architecture									
Traffic characterization a	and quali	ty of sei	vice,	Network s	services, High perfo	rmance networ	ks, Network							
elements, Basic network	mechani	sms, lay	red	architectur	re.									
		1 77	ISE	DN & B-IS										
Over view of ISDN, ISL	N chann	els, Use	er acc	ess, ISDN	protocols, Brief his	story of B-ISDN	N and ATM,							
ATM based services and	l applicat	ions, pr	incipl	es and buil	lding block of B-IS	DN, general are	chitecture of							
B-ISDN, frame relay														
		• • • •	AI	M Netwo	rks		1 1 1							
Network layering, switch	hing of v	irtual cl	hanne	els and virt	ual paths, applicati	ons of virtual c	hannels and							
connections.			00	a										
	1 .	A 7		S parame	ters									
QOS parameters, traffic	descript	tors, Al	IM se	ervice cate	egories, ATM cell	header, ATM	layer, ATM							
adaptation layer.		T												
Later de ction Doursen I	NT - 4		ercon	nection N	etworks	Dete	h e a D e a e a							
Introduction, Banyan I	h three of	s, Rout	ing a	algorithm	& blocking pher	nomenon, Batt	Introduction, Banyan Networks, Routing algorithm & blocking phenomenon, Batcher-Banyan							
networks, crossbar switch, three stage class networks.														
,	Rearrangeable Networks													
Deemengeehle eless netw	vorte fol	Re ding als		ngeable No	etworks	with m								
Rearrangeable class netw	vorks, fol	Re ding alg	arran gorith	ngeable No m, bens ne	e tworks twork, looping algo	orithm.								
Rearrangeable class netw	vorks, fol ATM	Re ding alg Signali	arrai gorithi ing, R	ngeable Normann m, bens ne Routing Ar	etworks twork, looping algo ad Traffic Control	prithm.								
Rearrangeable class network ATM addressing, UNI si	vorks, fol ATM ignaling,	Re ding alg Signali PNNI si	arran gorith ing, R ignali	ngeable Normann, bens ne Routing Ar ng, PNNI 1	etworks twork, looping algo nd Traffic Control routing, ABR Traff	orithm. ic management.								
Rearrangeable class network ATM addressing, UNI si	vorks, fol ATM gnaling,	Re ding alg Signali PNNI si	arran gorith ing, R ignali TCI	ngeable Normann, bens ne Routing Ar ng, PNNI 1 P/IP Netwo	etworks twork, looping algo nd Traffic Control routing, ABR Traffiorks	prithm. ic management.	and Header							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI	vorks, fol ATM ignaling, P applica	Re ding alg Signali PNNI si ation an	arran gorith ignali TCI d Ser	ngeable Normanne m, bens ne Routing Ar ng, PNNI 1 P/IP Netwo rvices, Mo	etworks twork, looping algo nd Traffic Control routing, ABR Traff orks tivation, TCP, UD	prithm. ic management. P, IP services	and Header							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking	vorks, fol ATM ignaling, P applica g, TCP c	Re ding alg Signali PNNI si tion an ongestic	arran gorith ing, R ignali TCI d Ser on con	ngeable Norm, bens ne Routing Ar ng, PNNI 1 P/IP Netwo rvices, Mo ntrol, Queu	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ue management: Pa	orithm. ic management. P, IP services assive & active.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated	vorks, fol ATM ignaling, P applica g, TCP c and integ	Re ding alg Signali PNNI si ation an ongestic grated se	arran gorith ing, R ignali TCI d Ser on con prvice:	ngeable Normann, bens ne Routing Ar ng, PNNI 1 P/IP Netwo rvices, Mo ntrol, Queu s	etworks twork, looping algo nd Traffic Control routing, ABR Traff orks tivation, TCP, UD ue management: Pa	orithm. ic management. P, IP services assive & active.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books :	vorks, fol ATM gnaling, P applica g, TCP c and integ	Reding alg ding alg Signali PNNI si tion an ongestic grated se	arran gorith ing, R ignali TCI d Ser on con crvices	ngeable Normality of the second state of the s	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ae management: Pa	orithm. ic management. P, IP services assive & active,	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i>	Re ding alg Signali PNNI si ation an ongestic grated se	arran gorith ignali TCI d Ser on con rvices	ngeable Normann, bens ne Routing Ar ng, PNNI 1 P/IP Netwo rvices, Mo ntrol, Queu s h Frame R latuerts, T	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ue management: Pa elay, PHI, 2005	orithm. ic management. P, IP services assive & active.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated a Text Books : 1. William Stallings 2. Leon Garcia widj	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> aja, <i>Com</i>	Re ding alg Signali PNNI si ation an ongestic grated se <i>B</i> -ISD munica	arran gorith: ing, R ignali TCH d Ser on con crvices <u>N with</u> tion N	ngeable Normanne m, bens ne Routing Ar ng, PNNI n P/IP Netwo vices, Mo ntrol, Queu s h Frame R Networks, T	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ae management: Pa <i>elay</i> , PHI, 2005 CMH, 2006.	orithm. ic management. P, IP services assive & active	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, AT	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> faja, <i>Com</i> <i>M Fundo</i>	Reding alg ding alg Signali PNNI si tion an ongestic grated se <i>B B</i> - <i>ISD</i> <i>munical</i>	arran gorith ing, R ignali TCI d Ser on con prvices N with tion N s, Adv	ngeable Norm, bens ne Routing Ar ng, PNNI n Prices, Mo ntrol, Queu s h Frame R Networks, T venture Bo	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ae management: Pa <i>elay</i> , PHI, 2005 TMH, 2006. oks Publishers, 200	orithm. ic management. P, IP services assive & active.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated a Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, AT	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> aja, <i>Com</i>	Reding alg ding alg Signali PNNI si ation an ongestic grated se <i>b B-ISD</i> <i>munical</i>	arran gorith ignali TCI d Ser on con rvices N with tion N s, Adv	ngeable Normann, bens ne Routing Ar ng, PNNI 1 P/IP Netwo rvices, Mo ntrol, Queu s h Frame R letworks, T venture Bo	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD a management: Pa <i>elay</i> , PHI, 2005 TMH, 2006. oks Publishers, 200	orithm. ic management. P, IP services assive & active.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, AT Reference Books :	vorks, fol ATM gnaling, P applica g, TCP c and integ <u>s, ISDN &</u> aja, <i>Com</i> <i>M Fundo</i>	Reding alge ding alge Signali PNNI si tion an ongestic grated se <i>b B-ISD</i> munical mentals	arran gorith ing, R ignali TCI d Ser on con ervices N with tion N s, Adv	ngeable Normanne m, bens ne Routing Ar ng, PNNI 1 P/IP Netwo vices, Mo ntrol, Queu s h Frame R letworks, T venture Bo	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ae management: Pa <i>elay</i> , PHI, 2005 CMH, 2006. oks Publishers, 200	orithm. ic management. P, IP services assive & active, 5	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, AT Reference Books : 1) High Performance TC	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> jaja, <i>Com</i> <i>TM Fundo</i>	Re ding alg Signali PNNI si ation an ongestic grated se <i>B-ISD</i> <i>munica</i> <i>munica</i> <i>munica</i>	arran gorith ignali TCI d Ser on con ervices N with tion N s, Adv	ngeable Normann, bens nervices, Monard Market Marke	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ue management: Pa <i>elay</i> , PHI, 2005 TMH, 2006. oks Publishers, 200 an, Raj Jain, PHI, 2	orithm. ic management. P, IP services assive & active. 5 005.	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, <i>AT</i> Reference Books : 1) High Performance TC 2) ATM Networks-Rain	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> aja, <i>Com</i> <i>M Funda</i> CP/IP Ne er Hande	Red ding alg Signali PNNI si tion an ongestic grated se B-ISD munical umentals tworking el. Manf	arran gorith ignali TCI d Ser on con rvices N with tion N s, Adv	ngeable Normality of the second state of the s	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD a management: Pa <i>elay</i> , PHI, 2005 TMH, 2006. oks Publishers, 200 an, Raj Jain, PHI, 2 Stefan Schroder, Pea	orithm. ic management. P, IP services assive & active, 05 005. arson Edu, 2002	and Header , QOS in IP							
Rearrangeable class netw ATM addressing, UNI si History of TCP/IP, TCI formats, Internetworking networks: differentiated Text Books : 1. William Stallings 2. Leon Garcia widj 3. N. N. Biswas, AT Reference Books : 1) High Performance TC 2) ATM Networks-Rain	vorks, fol ATM gnaling, P applica g, TCP c and integ s, <i>ISDN &</i> faja, <i>Com</i> <i>M Fundo</i> CP/IP Ne er Hande	Red ding alg Signali PNNI si tion an ongestic grated se & B-ISD munical umentals tworking el. Manf	arran gorith ing, R ignali TCI d Ser on con prvices N with tion N s, Adv g-Ma red n.	ngeable Normanne m, bens ne Routing Ar ng, PNNI 1 P/IP Network rvices, Mo ntrol, Queu s h Frame R Networks, T venture Bo hbub Hassa . Hubber, S	etworks twork, looping algo ad Traffic Control routing, ABR Traff orks tivation, TCP, UD ae management: Pa <i>elay</i> , PHI, 2005 TMH, 2006. oks Publishers, 200 an, Raj Jain, PHI, 2 Stefan Schroder, Pea	orithm. ic management. P, IP services assive & active. 05 005. arson Edu, 2002	and Header , QOS in IP							

Web References:

1. nptelvideos.in/2012/12/highspeednetworks.html

2. http://wireless.ictp.it/school_2002/lectures/ermanno/HTML/802.11_Architecture.pdf

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

SYSTEM MODELLING & SIMULATION (SMS)

II Semester : CSP					Scheme	: 2017			
Course Code	Hours	/Week		Credits	Max	imum Marks			
					Continuous				
EC909	L	Т	Р	С	Internal	End Exam	TOTAL		
(Elective-IV)					Assessment		100		
	3	-	-	3	40	60	100		
Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs									
Course Outcomes a At the and of the source the student will be able to									
Course Outcomes : At the end of the course the student will be able to									
CO2: Students will be able to work with Poisson process in real time									
CO3: Students will be	able to 1	model a	$\frac{\text{IIII}}{\text{nd sir}}$	nulate mod	els				
		Basic Si	mula	tion Mode	ling, Systems				
Models and Simulation	, Discre	te Ever	nt Sii	mulation,	Simulation of sing	gle server que	ing system,		
Simulation of Inventory S	System, 1	Alternat	ive ap	oproach to	modeling and simu	lation.			
			Simu	lation Soft	ware				
Comparison of simulat	ion pac	kages	with	Programm	ing languages, C	lassification o	f Software,		
Desirable Software featu	res, Gen	eral pur	pose	simulation	packages - Arena,	, Extend and ot	hers, Object		
Oriented Simulation, Exa	imples of	f applica	ation	oriented sin	nulation packages				
	• 1		ding	Simulatio	n Models		1. 1. 1		
Guidelines for determin	ing leve	els of n	nodel	detail, Te	echniques for incre	easing model v	validity and		
credibility		Mada	ling '	Fime Driv	on Systems				
Modeling input signals d	elave S	vstem ir	nng . Iteora	tion Lines	r Systems Motion	control models	Numerical		
Experimentation	iciays, 5	ystem n	negra	LIOII, LIIICO	i Systems, Wouton	control models.	, ivumeneai		
		Exog	enous	s Signals A	nd Events				
Disturbance signals, State	e Machir	nes, Petr	i Net	s & Analys	is, System encapsu	lation.			
		,	Ma	rkov Proc	ess				
Probabilistic systems, I	Discrete	Time 1	Marko	ov process	es, Random walk	s, Poisson pro	ocesses, the		
exponential distribution,	simulati	ng a poi	son p	rocess, Cor	ntinuous-Time Mar	kov processes.			
]	Event	Driven M	lodels				
Simulation diagrams, Qu	eing theo	ory, sim	ulatin	g queing s	ystems, Types of Q	ueues, Multiple	e servers.		
Crustom Identification C		Alaba	Syste	m Optimiz	ation	ntimization M	adaling and		
System Identification, So Simulation methodogy	earcnes,	Alpha/	beta t	rackers, N	Iutualmensional O	pumization, M	odening and		
Text Books ·									
1. Frank L. Severand	ce. John	Wiley &	z Son	s. System I	Aodeling & Simula	tion. An Introd	luction		
2 Averill M Law V	V David	1 Kelton	Sim	ulation Ma	delling and Analys	is 3rd Ed TME	4		
Reference Books :	··· Duvik	. 11011011	, 0111		activity and marys	, 514 124, 1111	1.		
1. Geoffery Gordon,	Systems	s Simula	tion.	PHI, 2005.					
Web References:	2		,	,					
1. nptelvideos.in/2012/12	2/system	modelin	ngand	simulation	.html				
2. http://wireless.ictp.it/s	chool_2	002/lect	ures/e	ermanno/H	TML/802.11_Arch	itecture.pdf			
Question Paper Pattern	:								
Internal Assessment: T	he quest	ion pap	er sha	ll consist o	of Six questions out	of which the s	student shall		
answer any Four question	ns	1 11	• .			1 .1 . 1 .	1 11		
End Exam: The question	n paper	shall co	nsist (of Eight q	uestions out of which	cn the student s	snall answer		
any rive questions									

ARTIFICIAL INTELLIGENCE (AI)

II Semester : CSP			Scheme : 2017						
Course Code	Hours/Week Credits Maximum Marks								
	_		_	~	Continuous		monte		
EC910	L	T	Р	С	Internal	End Exam	TOTAL		
(Elective-IV)	2			2	Assessment	(0)	100		
Sectional Evam Dura	$\frac{3}{100}$	- Urc	-	3	40 End Ever	00 m Duration: 3	100 Urs		
Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs									
Course Outcomes : At the end of the course the student will be able to CO1: The student will be able to understand various artificial network and models and the applications of these models to solve engineering problems.									
An overview of prolog- an example program: defining family relations, Extending the example program by rules, A recursive rule definition, declarative and procedural meaning of programs. Syntax and Meaning of prolog programs - Data objects, matching. Lists, operators, Arithmetic - Representation of lists, some operations on lists, operator notation, and arithmetic. Using Structures: Example Programs - Retrieving information from a database. Doing data abstraction. Artificial Intelligence The AI problems, the underlying Assumption, What is an AI Technique? The level of the model, Criteria for success Problems, problem spaces, and search - defining the problem as a state space.									
design of search program	ms, prol	blem ch	aracte	Search T	echniques	naracteristics, 1	ssues in the		
Generate and test- travel constraint satisfaction, M	lling sale	es man s analys	probl is	em, Hill c	limbing, Best first	search, probler	n reduction,		
	· ·	Kn	owled	lge Repres	sentation				
Representations and map Predicate logic - Represen	ppings, a ting simp R	approach ple facts (eprese i	ies to in log iting	knowledg gic, Represe Knowledg	te representation, 'I enting Instance and I te Using Rules	The Frame Prolosa relationships	blem. Using , Resolution.		
Procedural versus declarative knowledge, logic programming, forward versus backward reasoning, matching. WEAK SLOT AND FILLER STRUCTURES - Semantic nets, Frames. STRONG SLOT AND FILLER STRUCTURES - Conceptual dependency, scripts, CYC GAME PLAYING - MIN MAX search procedure, Adding Alpha Beta cutoffs.									
	• 1	•	C	Learning	• 1 • • 1	1 1 1 1	· .		
examples: induction, exp	rning , le lanation	earning based le	from earnin	taking adv ig, Hopfiel	d networks, learning	g in neural netv	vorks,		
			C	Case Studio	es				
MYCIN, PROSPECTOR	, XCON	1							
Text Books / Reference	Books :	1	1	T / 11.	2005				
1. Elaine Richie And Key	vin Knig	nt, A <i>rtif</i>	icial I	Intelligence	2, 2005				
2. Ivali Braiko, Prolog									
1 nptelvideos in/2012/1	2/artifics	alintellic	rence	html					
2. http://wireless.ictn.it/s	school 2	$\frac{1002}{1002}$	ures/	ermanno/H	TML/802.11 Arch	itecture.ndf			
Question Paper Pattern						······································			
Internal Assessment: T	he quest	tion pap	er sha	all consist of	of Six questions out	t of which the s	student shall		
End Exam: The question	n paper	shall co	nsist	of Eight q	uestions out of whi	ch the student	shall answer		
any Five questions									

ADVANCED OPERATING SYSTEMS (AOS)

II Semester : CSP	II Semester : CSP					Scheme : 2017				
Course Code	Hours/Week			Credits	Max	imum Marks				
EC911 (Elective-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
	3	-	-	3	40	60	100			
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs			
Course Outcomes : At the end of the course the student will be able to										
CO1: Students will acqu	ire the k	nowledg	ge of (OS princip	les-design, memory	management a	nd			
distributed systems	1 /	1 1	1 1	C I IN 1137		• , •				
CO2: Students are able t	o apply t	the know	vledg	e of UNIX	and LINUX operat	ing systems in a	system			
CO3: Students are able t	nter-proc	$\frac{1}{\Gamma \cap D} / \frac{1}{1D}$	nnun	ncations	design network m	anagement prot	ocols and			
socket programming	o appry		protoc		design network ma	anagement prot				
soeket programming.			Ъ	ntroductio	n					
Introduction to Operatin	g Systen	is. Type	e of o	perating sy	stems. Overview o	of UNIX system	n. Structure.			
file systems, type of file.	ordinary	$\sim %$ Spec	cial fi	les. file per	missions. Introduct	tion to shell.	, ~ ,			
ine systems, type of me,	or annur y	a spec								
Basic commands & comm	nand argu	iments. S	Standa	ard input/or	utput Input/output re	direction, filters	and editors.			
			Unix	Systems (Talls					
System calls related file s	structure	s. input	/ outr	out process	creation & termina	tion.				
	I	nterpro	cess (Communio	cation in Unix					
Introduction, file and re	cord loc	king, C	lient	– Server e	xample, pipes, FII	FOs, Streams &	z Messages,			
Name Speces, Systems V	IPC,Me	essage q	ueues	Semaphor	es, Shared Memory	y, Sockets & TI	LI			
Intro	duction	to Netw	orks	and Netw	ork Programming	in Unix				
Network Primer, TCP/IP	– Intern	et Proto	cols,	Socket Pro	gramming – Introd	uction & overvi	iew, UNIX			
domain protocols, Socke	t Addres	ses, Elei	menta	ary Socket	system calls, Simpl	e examples.				
Linux				2		1				
Introduction to LINUX S	ystem, e	ditors a	nd uti	lities, type	of shells.					
			Lin	ux Operat	ions					
Shell operations, file stru	cture, fil	e manag	gemer	nt, Operatio	ons.					
Text Books :										
1. Maurice J.Bach, 7	he Desig	gn of the	UNL	X Operatin	g Systems, PHI, 20	06.				
2. Kernighan & Pike	, The UN	VIX Prog	gram	ming Envir	onment, PHI, 2006.					
3. W.Richard Steven	is, UNIX	Networ	k Pro	gramming	PHI, 2002					
Reference Books :	T C									
1. Richard Peterson,	The Col	mplete F	<u>kefere</u>	ence LINU2	K, TMH.					
2. Ritchie & Yates,	UNIX US	ser Guia	le.							
1 pptelvideos in/2012/1	2/advanc	adonard	tinge	vetome htn	1					
2. http://wireless.ictn.it/s	$\frac{2}{3}$ and $\frac{2}{3}$ and $\frac{2}{3}$ and $\frac{2}{3}$	002/lect	ures/#	ermanno/H	TML/802.11 Arch	itecture ndf				
Ouestion Paper Pattern	:	002/1000								
Internal Assessment: T	The quest	ion pape	er sha	all consist of	of Six questions out	of which the	student shall			
answer any Four questio	ns	11			1					
End Exam: The question	n paper	shall co	nsist	of Eight q	uestions out of which	ch the student	shall answer			
any Five questions										

DESIGN OF DIGITAL SIGNAL PROCESSING SYSTEMS (DDPS)

II Semester : CSP					Scheme	: 2017		
Course Code	Hours	/Week		Credits	Max	imum Marks		
EC912 (Elective-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
	3	-	-	3	40	60	100	
Sessional Exam Dura	tion:2	Hrs			End Exa	m Duration: 3	Hrs	
Course Outcomes : At the end of the course the student will be able to								
CO1: Acquire knowledge of DSP computational building blocks and knows how to achieve Speed in								
DSP architecture or proc	essor	various	oddre	ssing mod	as and Instruction	et of DSP TM	S320C67XX	
and are able to program I	SP prod	ressor	auure	issing mou		Set OI DSF 11VI.	3320C0/AA	
CO3: Understanding AI	C23 COI	DEC and	d prog	grams using	g matlab and C			
CO4: Design of Filters a	nd dsp a	lgorithn	is pro	ograms by i	using c code and A	SM		
CO5: understanding the	applicati	ons of I	DSP i	n CODEC	8			
In	troducti	on to a	Popu	lar DSP fi	om Texas Instrum	nents		
CPU Architecture, CPU	Data Pa	ths and	Con	trol, Timer	s, Interrupts, Interr	nal Data/Progra	im Memory,	
External Memory Interfa	ce, Pipel	ining	04	D				
Architecture and Instru	iction Se	et of the	E C6X	Processor	ita Estal and Es	a serta Da alasta	Dissiliais	
Introduction, 1MIS3200	tox Arcl	dreasing	e, Fui	nctional U	nits, Fetch and Ex	ecute Packets	, Pipelining,	
Linear Assembly AS	M State	ment W	ithin	C C - Cal	lable Assembly Fu	nction Timer	s Interrupts	
Multichannel Buffered S	Serial Po	orts . D	irect	Memory A	Access . Memory	Considerations.	Fixed- and	
Floating-Point Format, C	ode Impr	ovemen	it, Coi	nstraints, P	rogramming Examp	oles Using C, As	ssembly	
	1	DS	P De	velopment	t System	<u> </u>	J.	
DSK Support Tools, Cod	le Comp	oser Stu	dio, S	Support Fil	es, TLV320AIC23	(AIC23) On-bo	ard Stereo	
Codec for Input, and Out	put, Prog	grammi	ng Ex	amples Us	ing C Code and ass	embly		
	D	igital S	ignal	Processin	g Applications			
FIR & IIR digital filter d	lesign pr	ograms	using	g Matlab, F	Fourier transform: I	DFT.FFT Radix	2 programs	
using matlab, impleme	ntation	or real	time	e digital	niters using DSP	, Implementati	on of FF1	
applications using DSF, I		SP Ann		on Examp	les in CODEC			
Voice Scrambler Using I	DMA and	d User S	witch	nes.Phase-I	ocked Loop.Image	e Processing.Vo	vice	
Detection and Reverse Pl	layback				2001)	, , ,		
Text Books :								
1. Digital Signal LikKwanShark;M	Proce Iacmilla	ssing n Press I	–A Ltd.	student	Guide,1 st Edit	ion ;T.J.	Ferrel and	
2. Digital Signal Pr Joseph G & Hodk	rocessing iss Willi	g :A sy am S ;Jo	stem ohn W	Design A Viley	pproach .1 st Editio	on ;David J De	efattaJ,Lucas	
Reference Books :								
1. Digital signal pr	rocessing	g and a	applic	cation with	C6713 and C64	16 DSK, Rul	phChassaing	
,Worcester Polyte	echnic In	stitute,	A wil	ey- Intersc	ience Publication		st	
2. Digital signal pro	ocessing	Implem	entat	ion using t	he TMS320C6000	DSP platform,	1 ^{°°} edition ;	
Naim Dahnoun.								

Web References:

1. www.sciencedirect.com/science/book/9780123744906

2. www.wiley.com > ... > Communication Technology > Signal Processing

3. www.ece.umd.edu/.../computer-aided-design-digital-signal-processing-systems

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions