

M.Tech Syllabus- Scheme 2017

(VLSI and Embedded Systems)

TWO YEAR M.TECH DEGREE COURSE (SCHEME-2017)

Scheme of Instruction and Examination

(Effective from 2017-2018)

M.Tech - I Semester

VLSI and Embedded Systems

S.	Course	Course Title	Cr ed	Scheme of Instruction periods/week			Scheme of Examination			
No.	No.	Course Thie	its	L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks	
1.	EC851	CMOS Analog IC Design(AICD)	3	3	-		60	40	100	
2.	EC852	Advanced Digital System Design using Verilog (ADSD)	3	3		_	60	40	100	
3.	EC853	Embedded Real Time Operating System (ERTOS)	3	3	-	_	60	40	100	
4.	EC854	Advanced Embedded systems (AES)	3	3			60	40	100	
5		Elective – I	3	3	-		60	40	100	
6		Elective-II	3	3	-		60	40	100	
7.	AU101	Technical English	-	2	-	-	-	-	-	
8.	EC863	Advanced VLSI and Embedded Systems Lab (AVESP)	2	_	-	3	50	50	100	
		Total	20	20	-	3	410	290	700	

M.Tech - II Semester

VLSI and Embedded Systems

S.	Course	Course Title	Cr edi	Scheme of Instruction periods/week			Scheme of Examination			
No.	No.	Course l'ifle		L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks	
1	EC951	Low Power VLSI Design(LVD)	3	3	-	—	60	40	100	
2	EC952	VLSI Design for Testability (VDFT)	3	3	-	_	60	40	100	
3.	EC953	VLSI Architecture (VLSIA)	3	3	-	_	60	40	100	
4	EC954	Microcontrollers for Embedded System Design(MESD)	3	3	-	_	60	40	100	
5.		Elective – III	3	3	-	-	60	40	100	
6.		Elective – IV	3	3	-	-	60	40	100	
7.	AU102	Research Methodology(RM)	-	2	-	-	-	_	-	
8.	EC963	Advanced Electronic Design Automation Lab (EDAP)	2	-	-	3	50	50	100	
		Total	20	20	-	3	410	290	700	

S.	Course	Course		Inst	heme ructio ods/w	on	Sche	ne of Examination	
No.	No.	Title	Credits	L	Т	Р	End Exam Marks	Internal Assessment Marks	Total Marks
1.	EC964	Dissertation	12	-	-	-	50	50	100

List of Subjects for Electives

Description	Subject title	Code
	CMOS Digital IC Design (DICD)	EC855
Elective-I	CPLD and FPGA ARCHITECTURES and APPLICATIONS (FPGA)	EC856
Elective-1	Scripting Languages for VLSI Design Automation (SLA)	EC857
	VLSI Technology (VTECH)	EC858
	Embedded Programming (EP)	EC859
Elective II	Embedded System Architecture (ESA)	EC860
Elective II	Robotics and Automation (RAA)	EC861
	Advanced Computer Networks (ACN)	EC862
	VLSI Signal Processing (VS)	EC955
Elective III	Electronic Design Automation Tools (EDAT)	EC956
Elective III	System on Chip Architecture (SOCA)	EC957
	Design of Semiconductor Memories(DSM)	EC958
	Principles of Distributed Embedded Systems (PDES)	EC959
Elective IV	Embedded Linux (ELX)	EC960
Liecuve IV	Embedded Networks and Protocols (ENP)	EC961
	Hardware Software Co-design (HSC)	EC962

CMOS ANALOG IC DESIGN (AICD)

Semester : VLSI & E				G III		Scheme	: 2017
Course Code	Hours	/Week	1	Credits		imum Marks	
EC851	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dura	ation : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A	t the end	of the c	course	e the studen	t will be able to		
CO1: design simple a	-	-				frequency respo	onse
CO2: design Differen				-			
CO3: design Sample a					circuits		
CO4: understand Nyq							
CO5: understand Ove	ersamplin	ig Data o	conve	rters and fi	lters		
	Derter	4	•		-l		
					gle stage amplifie		
Simple CMOS current m							
Source follower with cur			ipply	bias curren	t, High output impo	edance current r	mirrors and
bipolar gain stages, Freq			1.	e• 1 •	1		
					and compensatio		
Two stage CMOS operations							
current mirrors, Folded							
differential operational a	mnlitier	commo					
*	1				k circuits, Current	-	
amplifier. Comparator, C	Charge in	jection	error,	Latched co	omparators, BiCMC	OS comparators	
amplifier. Comparator, C	Charge in Sample	jection (e and h	error, old a i	Latched co nd switche	omparators, BiCM(<mark>d capacitor circui</mark>	OS comparators ts	•
amplifier. Comparator, C MOS, CMOS and BiCM	Charge in Sample IOS samp	jection e and h ple and l	error, <mark>old aı</mark> hold c	Latched condest the condest text of the condest text of the conductive series of the conductive	omparators, BiCMO d capacitor circui itched capacitor cir	DS comparators ts cuits, Basic ope	eration and
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and b	Charge in Sample IOS samp biquad fi	jection e and h ple and l lters, Ch	error, old an hold c harge	Latched condest the second switches bircuits, Swinjection, States States and	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor	DS comparators ts cuits, Basic ope	eration and
amplifier. Comparator, C MOS, CMOS and BiCM	Charge in Sample IOS samp biquad fi	jection e and h ple and l lters, Ch	error, old an hold c harge t hed ca	Latched condest and switcher dircuits, Swinjection, Sapacitor cir	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits.	DS comparators ts cuits, Basic ope	eration and
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq	Charge in Sample IOS samp biquad fi ues, Othe	jection (e and hope and l ple and l lters, Ch er switcl	error, old an hold c harge a hed ca Da	Latched condest convert conver	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers	DS comparators ts rcuits, Basic ope gain circuit, Co	eration and rrelated
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conve	Charge in Sample IOS samp biquad fi ues, Othe erters, Qu	jection (e and ho ple and l lters, Ch er switch antizati	error, old an hold c harge t hed ca Da on no	Latched condestination of the second switcher dircuits, Swinjection, Stapacitor cirrent the second	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. N	DS comparators ts cuits, Basic ope gain circuit, Co Nyquist rate D/A	eration and rrelated A converter
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver	Charge in Sample IOS samp biquad fi ues, Othe erters, Qu rs, Binar	jection of e and he ple and l lters, Ch er switch antizati y scaled	error, old an hold c harge : hed ca Da on no	Latched co ad switche circuits, Sw injection, S apacitor cir ta convert ise, Perforr verters, Hyb	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. Norid Converters, Ny	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A yquist rate A/ D	eration and rrelated A converter O converter
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a	Charge in Sample IOS samp biquad fi ues, Othe erters, Qu rs, Binar	jection of e and he ple and l lters, Ch er switch antizati y scaled	error, old an hold c harge : hed ca Da on no	Latched co ad switche circuits, Sw injection, S apacitor cir ta convert ise, Perforr verters, Hyb	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. Norid Converters, Ny	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A yquist rate A/ D	eration and rrelated A converter O converter
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver	Charge in Sample IOS samp biquad fi ues, Othe erters, Qu rs, Binar approxim	jection (e and h ple and l lters, Ch er switch antizati y scaled ation, C	error, old an hold c harge t hed ca Da on no conv Syclic	Latched condestination of the second switcher dircuits, Swinjection, Sapacitor cirres, Sapacitor cirres, Performation of the second se	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A yquist rate A/ D	eration and rrelated A converter O converter
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters.	Charge in Sample IOS samp biquad fi ues, Othe erters, Qu rs, Binar approxim	jection of e and he ple and l lters, Ch er switch nantizati y scaled hation, C	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A yquist rate A/ D ating, Folding a	eration and rrelated A converter O converter and pipeline
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters.	Charge in Sample IOS samp biquad fi- ues, Othe erters, Qu rs, Binary approxim	jection (e and h ple and l lters, Ch er switch antizati y scaled ation, C Over sa oise shap	error, old an hold c harge : hed ca Da on no conv Cyclic mplin ping, l	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High	DS comparators ts cuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a	eration and rrelated A converter o converter and pipeline rs, Band pas
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters.	Charge in Sample IOS samp biquad fii ues, Othe erters, Qu rs, Binar approxim	jection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over san oise shaj al Consi	error, old an hold c harge : hed ca Da on no conv Cyclic mplin ping, l	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High	DS comparators ts cuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a	eration and rrelated A converter o converter and pipeline rs, Band pas
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters.	Charge in Sample IOS samp biquad fii ues, Othe erters, Qu rs, Binar approxim	jection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over san oise shaj al Consi	error, old an hold c harge : hed ca Da on no conv Cyclic mplin ping, l	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High	DS comparators ts cuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a	eration and rrelated Converter of converter and pipeline rs, Band pas
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G	Charge in Sample IOS samp biquad fii ues, Othe erters, Qu rs, Binar approxim	jection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over san oise shaj al Consi	error, old an hold c harge : hed ca Da on no conv Cyclic mplin ping, l	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High	DS comparators ts cuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a	eration and rrelated A converter o converter and pipeline rs, Band pas
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books :	Charge in Sample IOS sample biquad fi jues, Othe erters, Qu rs, Binary approxim (without ne s, Practice m-c filters	jection of e and h ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shap al Consi s.	error, old an hold c harge : hed ca On no l conv Cyclic mplin ping, I iderati	Latched condensity of the second switcher of the second se	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, f	DS comparators ts reuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s	eration and rrelated Converter o converter and pipeling rs, Band pas econd orde
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and b double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Ro	Charge in Sample IOS sample Job sample Job sample Job sample Sample Content Sample Sam	jection of e and h ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shap al Consi s.	error, old an hold c harge : hed ca On no l conv Cyclic mplin ping, I iderati	Latched condensity of the second switcher of the second se	omparators, BiCMO d capacitor circui itched capacitor cir witched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, f	DS comparators ts reuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s	eration and rrelated Converter o converter and pipeling rs, Band pas econd orde
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20	Charge in Sample IOS sample biquad fii jues, Othe erters, Qu rs, Binary approxim (without no s, Practice m-c filters obert G. 1 04.	jection (e and h ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shap al Consi s. Major, <i>A</i>	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati	Latched condense of the second switcher of the second seco	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, f	DS comparators ts reuits, Basic ope gain circuit, Co Nyquist rate D/A yquist rate A/ D ating, Folding a order modulator first order and s grated Circuits,	eration and rrelated A converter o converter and pipeline rs, Band pas econd orde
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Ro Wiley & sons, 20 2. David Johns, Ken I	Charge in Sample IOS sample Jog sample Jog sample Jog sample Sample Contention Sample Contention Sample Contention Conten	ijection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shaj al Consi s. Major, A Analog I	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati	Latched cond switched ircuits, Swinjection, Sapacitor cir ta convert ise, Perforr verters, Hyb flash type, ng converted Digital deci- ions, Conti- sis and Des- ated Circuit	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, filt	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s grated Circuits,	eration and rrelated Converter o converter and pipeling rs, Band pas econd orde John
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20	Charge in Sample IOS sample Jog sample Jog sample Jog sample Sample Contention Sample Contention Sample Contention Conten	ijection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shaj al Consi s. Major, A Analog I	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati	Latched cond switched ircuits, Swinjection, Sapacitor cir ta convert ise, Perforr verters, Hyb flash type, ng converted Digital deci- ions, Conti- sis and Des- ated Circuit	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, filt	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s grated Circuits,	eration and rrelated Converter o converter and pipeling rs, Band pas econd orde John
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20 2. David Johns, Ken I 3. P.E. Allen, D.R. H	Charge in Sample IOS sample Jog sample Jog sample Jog sample Sample Contention Sample Contention Sample Contention Conten	ijection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shaj al Consi s. Major, A Analog I	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati	Latched cond switched ircuits, Swinjection, Sapacitor cir ta convert ise, Perforr verters, Hyb flash type, ng converted Digital deci- ions, Conti- sis and Des- ated Circuit	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, filt	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s grated Circuits,	eration and rrelated Converter o converter and pipeling rs, Band pas econd orde John
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20 2. David Johns, Ken I 3. P.E. Allen, D.R. He Reference Books :	Charge in Sample IOS sample Jog sample Jog sample Jog sample Provide the Sample	jection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shaj al Consi s. Major, A Analog I CMOS	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati Analy: ntegra Analo	Latched cond switched eircuits, Swinjection, Sapacitor cir ta convert ise, Perforr rerters, Hyb flash type, ng convert Digital deci- ions, Conti- sis and Des- ated Circuit I	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. No orid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, fi	DS comparators ts ccuits, Basic ope gain circuit, Co Vyquist rate D/A vquist rate A/ D ating, Folding a order modulator first order and s grated Circuits, ey & sons. 2004 iversity Press, 2	eration and rrelated Converter o converter and pipelind rs, Band pas econd orde John L. 2002
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20 2. David Johns, Ken I 3. P.E. Allen, D.R. H Reference Books : 1. Behzad Razavi, De	Charge in Sample IOS sample biquad fii ues, Othe erters, Qu rs, Binary approxim (without no s, Practice m-c filters obert G. 1 04. Martin, A olberg, " esign of A	jection (e and h ple and l lters, Ch er switch nantizati y scaled ation, C Over sa oise shaj al Consi s. Major, A Analog I CMOS	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati Analy: Analy: Analy:	Latched cond switched ircuits, Swinjection, Sapacitor cir ta convert ise, Perforr verters, Hyb flash type, Digital deci ions, Conti sis and Des ated Circuit I S Integrate	omparators, BiCMO d capacitor circui itched capacitor circuits witched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, fil	DS comparators ts reuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a order modulator first order and s grated Circuits, ey & sons. 2004 iiversity Press, 2 cGraw Hill. 200	eration and rrelated Converter o converter and pipelind rs, Band pas econd orde John I. 2002
amplifier. Comparator, C MOS, CMOS and BiCM analysis, first order and I double sampling techniq Ideal D/A and A/D conver Decoder based converter Integrating, Successive a A/D converters. Over sampling with and v over sampling converters filters, introduction to G Text Books : 1. Paul. R. Gray & Re Wiley & sons, 20 2. David Johns, Ken I 3. P.E. Allen, D.R. H Reference Books :	Charge in Sample IOS sample biquad fii jues, Othe erters, Qu rs, Binary approxim (without ne s, Practice m-c filters obert G. 1 04. Martin, A olberg, " esign of A al., CMO	jection of e and he ple and l lters, Ch er switch nantizati y scaled ation, C Dver sa oise shap al Consi s. Major, A Analog I CMOS Analog O S Circu	error, old an hold c harge : hed ca Da on no l conv Cyclic mplin ping, I iderati Analy: ntegra Analo	Latched cond switche ircuits, Swinjection, Sapacitor cir ta convert ise, Perforr rerters, Hyb flash type, ng converte Digital deci- ions, Conti- sis and Des- ated Circuit I S Integrate ign, IEEE	omparators, BiCMO d capacitor circui itched capacitor circui Switched capacitor cuits. ers nance limitations. Norid Converters, Ny Two step, interpol ers and filters mation filter, High nuous time filters, filt	DS comparators ts reuits, Basic ope gain circuit, Co Nyquist rate D/A quist rate A/ D ating, Folding a order modulator first order and s grated Circuits, ey & sons. 2004 iiversity Press, 2 cGraw Hill. 200	eration and rrelated Converter o converter and pipelind rs, Band pas econd orde John L. 2002

Web	References:

1. http://nptel.ac.in/courses/117106030/35

2. https://link.springer.com/chapter/10

3. http://www.ee.iitm.ac.in/videolectures/doku.php?id=ee658_2008

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

ADVANCED DIGITAL SYSTEM DESIGN USING VERILOG (ADSD)

Course Code	S					Scheme	: 2017
	Hours	/Week		Credits	Max	kimum Marks	
EC852	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3		-	3	40	60	100
Sessional Exam Dura	ation : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A					t will be able to		
CO1: Analyze and de	<u> </u>		0				
CO2: Analyze and de					ital circuits		
CO3: Design using pr						<u> </u>	•
CO4: Identify the req							
CO5: Design and use	program	-		-		s of industry sta	ndards
		<u> </u>			UIT DESIGN		• • •
Analysis of clocked syn		-			Ū.	0	
table assignment and re ASM chart and realizat			or syn	ichronous s	sequential circuits (design of iterativ	e circuits-
		, ,	<u>116 61</u>	FOLIENTI	AL CIRCUIT DES	IGN	
Analysis of asynchrono				~ ~			- transition
table and problems in t							
essential hazards – dat							
vending machine contro		omzers	1111	neu operu	ing mode asynem	onous encuns	acongining
FA	ULT DIA	AGNOS	IS AN	ND TESTA	BILITY ALGORI	THMS	
Fault table method-path							Folerance
techniques – The comp							
					OGRAMMABLE		
Programming logic dev							A/PAL –
Realization of finite sta					- Xilinx FPGA-Xil	inx 4000	
	S	SYSTEN	1 DE				
					NG VERILOG		
Hardware Modelling w Verilog HDL - Behavio State Machines- struct	vith Verilo oural Deso tural moo	og HDL cription: deling –	2 – Lo s in V - com	gic System erilog HDI pilation an	NG VERILOG a, Data Types and (2 – HDL Based Syr d simulation of V	Operators For M othesis – Synthes ferilog code – To	sis of Finite est bench
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder	vith Verilo oural Deso tural moo tional an	og HDL criptions deling – d seques	. – Lo s in V - com ntial c	gic System erilog HDI pilation an circuits usin	NG VERILOG a, Data Types and C L – HDL Based Syr d simulation of V ng Verilog – Regis	Operators For M nthesis – Synthes ferilog code – To ters – counters –	sis of Finite est bench
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books :	vith Verilo oural Deso tural moo tional an – Multip	og HDL criptions deling – d seques lier- Div	2 – Lo s in V - com ntial c vider -	gic System erilog HDI pilation an circuits usin – Design of	NG VERILOG a, Data Types and (2 – HDL Based Synd d simulation of V ag Verilog – Regiss f simple microproc	Operators For M nthesis – Synthes 'erilog code – To ters – counters – essor	sis of Finite est bench
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books : 2. Charles H.Roth Jr	vith Verilo oural Dese tural moo tional an – Multip "Fundam	og HDL criptions deling – d seques lier- Div nentals o	2 – Lo s in V - com ntial c vider -	gic System erilog HDI pilation an circuits usin – Design of gic Design"	NG VERILOG a, Data Types and C L – HDL Based Syr d simulation of V ng Verilog – Regis f simple microproc Thomson Learnin	Operators For M nthesis – Synthes 'erilog code – To ters – counters – essor g 2004	sis of Finite est bench
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa	vith Verilo oural Dese tural moo tional an – Multip "Fundam	og HDL criptions deling – d seques lier- Div nentals o	2 – Lo s in V - com ntial c vider -	gic System erilog HDI pilation an circuits usin – Design of gic Design"	NG VERILOG a, Data Types and C L – HDL Based Syr d simulation of V ng Verilog – Regis f simple microproc Thomson Learnin	Operators For M nthesis – Synthes 'erilog code – To ters – counters – essor g 2004	sis of Finite est bench
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books :	vith Verilo oural Deso tural moo ational an – Multip "Fundam as "Logic	og HDL criptions deling – d sequen lier- Div nentals o c Design	2 – Lo s in V - com ntial c vider - of Log n Thec	gic System erilog HDI pilation an circuits usin – Design of gic Design" pry" Prentic	NG VERILOG a, Data Types and C L – HDL Based Syr d simulation of V ng Verilog – Regis f simple microproc Thomson Learnin ce Hall of India,200	Operators For M nthesis – Synthes ferilog code – To ters – counters – essor g 2004 01	sis of Finite est bench sequentia
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau	vith Verilo oural Dese tural moo ational an – Multip "Fundam as "Logic alt Tolera	og HDL criptions deling – d seques lier- Div nentals o c Design nt and H	2 – Lo s in V - com ntial c vider - of Log n Theo Fault 7	gic System erilog HDI pilation an circuits usin – Design of cic Design" ory" Prentic Festable Ha	NG VERILOG a, Data Types and (2 – HDL Based Synd d simulation of V ag Verilog – Regis f simple microproce Thomson Learnin ce Hall of India,200 ardware Design" B	Operators For M othesis – Synthes ferilog code – To ters – counters – essor g 2004 01 S Publications,	sis of Finite est bench sequentia
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Dig	vith Verilo oural Deso tural moo ational an – Multip "Fundam as "Logic alt Tolera gital syste	og HDL criptions deling – d seques lier- Div nentals o c Design nt and H cm Design	2 – Lo s in V - com ntial c vider - f Log f Log Theo Fault 1 gn usi	gic System erilog HDI pilation an circuits usin – Design of cic Design " pry" Prention Festable Ha ing PLD" E	NG VERILOG a, Data Types and (2 – HDL Based Synd d simulation of V ng Verilog – Regis f simple microproce Thomson Learnin ce Hall of India,200 ardware Design" B B S Publications,200	Operators For M nthesis – Synthes ferilog code – To ters – counters – essor g 2004 01 S Publications,	sis of Finite est bench sequential
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod	vith Verilo oural Deso tural moo ational an – Multip "Fundam as "Logic alt Tolera gital syste	og HDL criptions deling – d seques lier- Div nentals o c Design nt and H cm Design	2 – Lo s in V - com ntial c vider - f Log f Log Theo Fault 1 gn usi	gic System erilog HDI pilation an circuits usin – Design of cic Design " pry" Prention Festable Ha ing PLD" E	NG VERILOG a, Data Types and (2 – HDL Based Synd d simulation of V ng Verilog – Regis f simple microproce Thomson Learnin ce Hall of India,200 ardware Design" B B S Publications,200	Operators For M nthesis – Synthes ferilog code – To ters – counters – essor g 2004 01 S Publications,	sis of Finite est bench sequential
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod 1999.	vith Verilo oural Dese tural moo ational an – Multip "Fundam as "Logic alt Tolera gital syste eling, Sy	og HDL criptions deling – d seques lier- Div nentals o c Design nt and H em Desis nthesis a	2 – Lo s in V - com ntial c vider - of Log n Theo Tault 1 gn usi and R	gic System erilog HDI pilation an circuits usin – Design of cic Design" ory" Prention Testable Ha ing PLD" H apid Protot	NG VERILOG a, Data Types and C L – HDL Based Synd d simulation of V ng Verilog – Regis f simple microproce Thomson Learnin the Hall of India,200 ardware Design" B B S Publications,200 Syping with the Ver	Operators For M nthesis – Synthes ferilog code – To ters – counters – essor g 2004 01 S Publications, 003 rilog HDL, Pren	sis of Finite est bench sequentia 2002 tice Hall,
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod	vith Verilo oural Deso tural moo ational an – Multip "Fundam as "Logic alt Tolera gital syste eling, Sy log HDL	og HDL criptions deling – d seques lier- Div nentals o c Design nt and H em Desis nthesis a	2 – Lo s in V - com ntial c vider - of Log n Theo Tault 1 gn usi and R	gic System erilog HDI pilation an circuits usin – Design of cic Design" ory" Prention Testable Ha ing PLD" H apid Protot	NG VERILOG a, Data Types and C L – HDL Based Synd d simulation of V ng Verilog – Regis f simple microproce Thomson Learnin the Hall of India,200 ardware Design" B B S Publications,200 Syping with the Ver	Operators For M nthesis – Synthes ferilog code – To ters – counters – essor g 2004 01 S Publications, 003 rilog HDL, Pren	sis of Finite est bench sequentia 2002 tice Hall,
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod 1999. 4. S. Palnitkar , Veril Question Paper Pattern	vith Verilo oural Dese tural moo ational an – Multip "Fundam as "Logic alt Tolera gital syste eling, Sy log HDL n:	og HDL criptions deling – d sequer lier- Div nentals o c Design nt and H em Design nthesis a – A Gu	2 – Lo s in V - com ntial c vider - of Log Theo Theo Fault 1 gn usi and R ide to	gic System erilog HDI pilation an circuits usin – Design of gic Design" ory" Prention Testable Ha ing PLD" H apid Protot	NG VERILOG , Data Types and G – HDL Based Syr d simulation of V ng Verilog – Regis f simple microproc Thomson Learnin ce Hall of India,200 ardware Design" B B S Publications,200 cyping with the Ver- esign and Synthesis	Operators For Mathesis – Synthesis – Synthesi /erilog code – To ters – counters – essor g 2004 01 S Publications, 003 rilog HDL, Pren s, Pearson , 2003	sis of Finite est bench - sequential 2002 tice Hall, 3.
Verilog HDL - Behavio State Machines– struct Realization of combina machine – serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod 1999. 4. S. Palnitkar , Veril	vith Verilo oural Dese tural mod ttional an – Multip "Fundam as "Logic alt Tolera gital syste eling, Sy log HDL n: The questi	og HDL criptions deling – d sequer lier- Div nentals o c Design nt and H em Design nthesis a – A Gu	2 – Lo s in V - com ntial c vider - of Log Theo Theo Fault 1 gn usi and R ide to	gic System erilog HDI pilation an circuits usin – Design of gic Design" ory" Prention Testable Ha ing PLD" H apid Protot	NG VERILOG , Data Types and G – HDL Based Syr d simulation of V ng Verilog – Regis f simple microproc Thomson Learnin ce Hall of India,200 ardware Design" B B S Publications,200 cyping with the Ver- esign and Synthesis	Operators For Mathesis – Synthesis – Synthesi /erilog code – To ters – counters – essor g 2004 01 S Publications, 003 rilog HDL, Pren s, Pearson , 2003	sis of Finite est bench - sequentia 2002 tice Hall, 3.
Verilog HDL - Behavio State Machines- struct Realization of combina machine - serial adder Text Books : 2. Charles H.Roth Jr 3. Nripendra N Biswa Reference Books : 1. Parag K.Lala "Fau 2. Parag K.Lala "Fau 2. Parag K.Lala "Dig 3. M.D.Ciletti , Mod 1999. 4. S. Palnitkar , Veril Question Paper Pattern Internal Assessment: T	vith Verilo oural Dese tural mod ational an – Multip "Fundam as "Logic alt Tolera gital syste eling, Sy log HDL n: The questions	og HDL criptions deling – d seque: lier- Div nentals o c Design nt and F em Design nthesis a – A Gu	2 – Lo s in V - com ntial c vider - of Log f Log Thec Thec Thec Thec Thec Thec Thec Thec	gic System erilog HDI pilation an circuits usin – Design of gic Design" ory" Prentic restable Ha ing PLD" H apid Protot Digital De ll consist of	NG VERILOG A, Data Types and O L – HDL Based Synd d simulation of V ng Verilog – Regis f simple microproce Thomson Learnin ce Hall of India,200 ardware Design" B B S Publications,200 cyping with the Ver- esign and Synthesis f Six questions out	Operators For Mathematical Synthesis – Synthesis – Synthesis – Counters – Counters – essor g 2004 01 S Publications, 003 rilog HDL, Pren s, Pearson , 2003 of which the stu	sis of Finite est bench sequentia 2002 tice Hall, 3. ident shall

EMBEDDED REAL TIME OPERATING SYSTEM (ERTOS)

Course Code EC853 Sessional Exam Durat Course Outcomes : At CO1: Understand Real CO2: Understand the U CO3: Understand the V CO4: Understand the d		T -	P -	Credits C	Max Continuous Internal Assessment	kimum Marks End Exam	TOTAL
Sessional Exam Durat Course Outcomes : At CO1: Understand Real CO2: Understand the U CO3: Understand the V	3 tion : 2	-			Internal	End Exam	ΤΟΤΑΙ
Course Outcomes : At CO1: Understand Real CO2: Understand the U CO3: Understand the V	tion : 2	- Hrs	-	2	1 socosment		IUIAL
Course Outcomes : At CO1: Understand Real CO2: Understand the U CO3: Understand the V		Hrs		3	40	60	100
CO1: Understand Real CO2: Understand the U CO3: Understand the V	the end				End Exa	m Duration: 3	Hrs
CO2: Understand the U CO3: Understand the V	the end	of the c	ourse	the studen	t will be able to		
CO2: Understand the U CO3: Understand the V	Time S	ystems	and R	RTOS funct	ionality		
	JNIX fil	le syster	n and	its Program	nming		
CO4: Understand the d						nents	
	lebuggir	ng tools	for su	uitable RTC	OS Environments		
				_	erating Systems		
Differences between Trad	itional (OS and	RTOS	S. Real Tim	e Systems. RTOS	Kernel & Proce	SS
Management. Create, Read	dy, Run	, Interr	upt, W	Vait and Te	rminate States. Inte	ertask Commun	ication &
Synchronization, Context	Switchi	ing.					
•	Ι	nterpr	ocess	Communi	cation (IPC):		
Hard Real-time systems, S Preemptive EDF. IPC thro Flags.			•		*	0 0	
		UN	NIX C	Operating	Systems		
UNIX Kernel, File system Management, forks & exe programming and filters.							
			RTO	S Environ	nents		
POSIX Real Time Extension μ C/OS-II and RT Linux for			pplica	ations.	_	n of RTOS, VxV	Works,
			Del	ougging To	ools		
OTP emulators, On board	emulat	ion of S	oftwa	re using Ci	coss Development	Environments, S	Software
Logic Analyzers, ICEs.							
Taret Da alar a							
Text Books :		11.10-	- 4	O're L'	Elassian 2011		
1. Real Time Concepts for				· · ·	,	@ 3 000	
2. Operating System Conc	cepts – S	Silbersc	hatz,	Galvin and	Gagne, 8 th Edition	1 ©2009	
Reference Books :							
1. Embedded Systems- Ar	rchitectu	ire, Pro	gramr	ning and \overline{D}	esign by Rajkama	l, 2007, TMH.	
2. Embedded Linux: Hard	lware, S	oftware	and l	Interfacing	– Dr. Craig Hollat	augh	
3. MicroC/OS-II, Jean.J.I	Labrosse	e, 2^{nd} Eo	lition	Elsevier, 2	012, CMP Books		
Question Paper Pattern:							
Internal Assessment: The	-	on pape	er shal	ll consist of	Six questions out	of which the stu	ident shall
	וכ				•		
answer any Four question End Exam: The question		hall cor	nsist o	f Fight and	-		all answer

ADVANCED EMBEDDED SYSTEMS (AES)

	5					Scheme	: 2017
Course Code	Hours	/Week	r	Credits		ximum Marks	1
EC854	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dura	tion:2	Hrs		I	End Exa	m Duration: 3	Hrs
Course Outcomes : At	t the end	of the c	course	the studen	t will be able to		
CO1: Understand Intel							
CO2: Utilize the progr							ms.
CO3: Understand the l							
CO4: Use Embedded	C in inte	rfacing	of I/C) peripheral	s to microcontroll	ers	
Background and History					ded systems		
for embedded systems. P selection for an embedde program segments and bl	d system locks and	n, Memo 1 memor	ory de ry ma	vices, Men p of a syste	nory selection, All em.:		
					nd operations		
Microprocessors Vs Micr Instruction Set. The exter Serial interface.							
		P	roaro	mming Sti			
0.051	·····					1	line fore and
Programs using 8051 inst port pins, Example: Read Example: Reading switch	ling and n inputs	set. Intro writing (basic co Add i	oducti bytes ode), i ing St	ion to embe , Example: Example: (t ructure to	edded C, Basic tec Reading and writi Counting goats the Code	ng bits (simple	version).
port pins, Example: Read	ling and n inputs nted pro structurin	set. Intro writing (basic co Add i grammi ng the '] xamples	oduct bytes ode), 2 ing St ng wi Hello s, Cor	ion to embe , Example: Example: C tructure to th C, The F Embedded aclusions.	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example,	ng bits (simple AIN.H), The Po	version). rt Header
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F	ling and n inputs of nted pro structurin Further e	set. Intro writing (basic co Add grammi ng the '] xamples Meeti	oduct bytes ode), ⁷ ing St ng wi Hello s, Cor ng R a	ion to embe , Example: C tructure to th C, The F Embedded aclusions. eal-Time C	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, Constraints	ng bits (simple AIN.H), The Por Example: Restru	version). rt Header acturing the
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo	set. Intro writing (basic co Addi grammi ng the '] xamples Meeti delays' ortable h outs. Exa	oduct bytes ode), ing St ng wi Hello s, Cor ng R using ardwa	ion to embe , Example: C Example: C tructure to th C, The F Embedded clusions. eal-Time C Timer 0 ar are delay, V : Testing lo	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, Constraints nd Timer 1, Examp Why not use Timer pop timeouts, Exar	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating 2. The need for nple: A more ref	version). rt Header acturing the a precise 50 c 'timeout'
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'ha ms delay, Example: Crea mechanisms, Creating loo interface, Creating hardw	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo	set. Intro writing (basic co Addi grammi ng the '] xamples Meeti delays' ortable h outs. Exa	oduct bytes ode), ing St ng wi Hello s, Cor ng R using ardwa	ion to embe , Example: C Example: C tructure to th C, The F Embedded clusions. eal-Time C Timer 0 ar are delay, V : Testing lo	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, Constraints nd Timer 1, Examp Why not use Timer pop timeouts, Exar	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating 2. The need for nple: A more ref	version). rt Header acturing the a precise 50 c 'timeout'
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Crea mechanisms, Creating loo Interface, Creating hardw	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo vare time	set. Intro writing (basic co Addi grammi ng the 'l xamples Meeti delays' ortable h outs. Exa couts, Exa	oduct bytes ode), ing St ng wi Hello s, Cor ng Ra using ardwa ample kampl	ion to embe , Example: C tructure to th C, The F Embedded aclusions. eal-Time C g Timer 0 and are delay, V : Testing lo e: Testing to	edded C, Basic tec Reading and writi Counting goats the Code Project Header (Ma World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating 2. The need for nple: A more re- t.	version). rt Header acturing the a precise 5 c 'timeout'
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'ha ms delay, Example: Crea mechanisms, Creating loo interface, Creating hardw	ling and n inputs of nted pro structuring Further e ardware ting a po op timeo vare time	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont ,	oduct: bytes ode), T ing St ng wi Hello s, Cor ng Ro using ardwa ample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo e: Testing a	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating c 2. The need for nple: A more re- t.	version). rt Header acturing the a precise 50 the timeout? liable swite
port pins, Example: Read Example: Reading switch Introduction, Object-orier (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Crea mechanisms, Creating loo Interface, Creating hardw Fext Books : 1. <i>Embedded C</i> by M 2. <i>Embedded Systems</i>	ling and n inputs of nted pro structuring Further e ardware ting a po op timeo vare time	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont ,	oduct: bytes ode), T ing St ng wi Hello s, Cor ng Ro using ardwa ample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo e: Testing a	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating c 2. The need for nple: A more re- t.	version). rt Header acturing the a precise 50 t 'timeout' liable swite
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Creating loo interface, Creating hardw Fext Books : 1. <i>Embedded C</i> by M 2. <i>Embedded C</i> by M 2. <i>Embedded Systems</i>	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo vare time	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont , <i>ture, Pro</i>	oduct: bytes ode), T ing St ng wi Hello s, Cor ng Ro using aardwa ample cample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo arson Educa ming and D	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating c 2. The need for nple: A more re- t. 2002. al 2 nd Edition, TM	version). rt Header acturing the a precise 50 timeout' liable swite MH, 2006.
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Crea mechanisms, Creating loc interface, Creating hardw Text Books : 1. <i>Embedded C</i> by M 2. <i>Embedded C</i> by M 2. <i>Embedded Systems</i> Reference Books : 1. <i>An Embedded Soft</i>	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo vare time iichael J Architec	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont , <i>ture, Pro</i>	oduct: bytes ode), T ing St ng wi Hello s, Cor ng Ro using aardwa ample cample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo arson Educa ming and D	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating c 2. The need for nple: A more re- t. 2002. al 2 nd Edition, TM	version). rt Header acturing the a precise 50 timeout' liable swite MH, 2006.
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Crea mechanisms, Creating loo interface, Creating hardw Fext Books : 1. <i>Embedded C</i> by M 2. <i>Embedded C</i> by M 2. <i>Embedded Systems</i> Reference Books : 1. <i>An Embedded Softw</i> Question Paper Pattern	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo vare time (ichael J Architec ware Pri	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont , <i>ture</i> , <i>Pro</i>	oducti bytes ode), T ing Si ng wi Hello s, Cor ng Ra using aardwa ample cample cample cample cample cample cample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo e: Testing lo arson Educa ming and D d.E. Simon	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou ation, 1 st Edition, 2 Design, by Raj Kam	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating r 2. The need for nple: A more rel t. 2002. al 2 nd Edition, TM son Edition, 200	version). rt Header acturing the a precise 50 t 'timeout' liable swite MH, 2006. 9.
port pins, Example: Read Example: Reading switch Introduction, Object-ories (PORT.H), Example: Res goat-counting example, F Introduction, Creating 'hans delay, Example: Crea mechanisms, Creating loc interface, Creating hardw Text Books : 1. <i>Embedded C</i> by M 2. <i>Embedded C</i> by M 2. <i>Embedded Systems</i> Reference Books : 1. <i>An Embedded Soft</i>	ling and n inputs of nted pro structurin Further e ardware ting a po op timeo vare time (ichael J Architec ware Pri : he questi	set. Intro writing (basic co Add i grammi ng the '] xamples Meeti delays' ortable h outs. Exa couts, Exa . Pont , <i>ture</i> , <i>Pro</i>	oducti bytes ode), T ing Si ng wi Hello s, Cor ng Ra using aardwa ample cample cample cample cample cample cample cample	ion to embe , Example: C Example: C tructure to th C, The F Embedded aclusions. eal-Time C are delay, V : Testing lo e: Testing lo e: Testing lo arson Educa ming and D d.E. Simon	edded C, Basic tec Reading and writi Counting goats the Code Project Header (MA World' example, World' example, Constraints and Timer 1, Examp Why not use Timer oop timeouts, Exar a hardware timeou ation, 1 st Edition, 2 Design, by Raj Kam	ng bits (simple AIN.H), The Por Example: Restru- ple: Generating r 2. The need for nple: A more rel t. 2002. al 2 nd Edition, TM son Edition, 200	version). rt Header acturing the a precise 50 t 'timeout' liable switc MH, 2006. 9.

TECHNICAL ENGLISH (TE)

	Common for A Programmes	All M.Te	ch				Sch	Scheme: 2017		
Course Code	Category	Н	ours/Wee	ek	Credits	Maxir	num Mai	`ks		
AU101	U101 Audit Course		Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		2	-	-	-	-	-	-		
Sessional Ex	kam Duration:	-		Enc	l Exam Du	ration: -				
		1 0 1								
	comes: At the e									
	Technical Rep		-							
	Job Applicatio	ns, Resur	nes and St	tatement	s of Purpos	e.				
Course Con		1.0								
	Reports –Form	ats and St	tyles							
	lity Report									
b) Factual	-									
c) Project	-									
	pers- Formats sentation Strates	ia								
-	of Purpose for		a and An	prontico	hing					
	iting- Job Appli	-	· •	-	-					
	Errors in Resea			eparatio	11					
Reference B		ien i aper	5							
		d Mishra	Commun	vication S	Skills for Fr	igineers and Sci	entists			
-	ing Private Lin		Commun	incation t	KIIIS IOI LI	ignicers and bei	entists,			
	-		al Comm	unicatio	n. Tata Mc(Graw-Hill Publi	shing			
	Ltd., 2005.			ameano	i, 1 ata 1110 (Simg			
	. Kane, The Ox	ford Esse	ential Guid	de to Wr	iting, OUP.	2010				
	Emden, A Guid				-					
	web.ulster.ac.uk		-		-	l.pdf				

ADVANCED VLSI AND EMBEDDED SYSTEMS LAB (AVESP)

I Semester : VLSI	& ES					Scheme	2017
Course Code	Hours/	Week		Credits	Ma	ximum Marks	
EC863	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	-	-	3	2	50	50	100
End Exam Duration	on: 3 Hrs						
Course Outcomes	• At the e	nd of th		rse the stud	ent will be able to		
CO1: Understan							
		-	-		and FPGA devices		
CO3: Synthesize				-			
CO4: Program N					rs		
3. Timing simu	lation for	critical	-		ircuits using functi tion.	on Simulator.	
4. Synthesis of	-		•		1 1 1 17/1	A1/ 1 A	. 1 .
					endors such as Xili using FPGA and C		ctel etc.
					and Cortex M4 pi		
a) Toggling			ig usi	iig 10101 +50			
b) Master S			tion,				
c) PWM int			,				
d) Sensor In	terfacing	(Temp	erature	e)			
Internal Assessm End Exam:50M	nent: 50	М					

LOW POWER VLSI DESIGN (LVD)

II Semester : VLSI &				 		Scheme	: 2017
Course Code	Hours	/Week		Credits	Ma	ximum Marks	
EC951	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration:2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes :	A the and	of the a		the studen	t will be able to		
Course Outcomes : A							
CO2: Understand m			-	-			
CO3: Analyze and n				-		LSI circuits	
CO4: Understand we				1	1		
CO5: Find ways to r							
`							
		Sou	rces o	of Power D	issipation		
Short-Circuit Power D	issipation,	Switch	ing P	ower Dissi	pation, Glitching	Power Dissipati	on, Leakag
Power Dissipation; Pow							
Voltage Scaling for Lo	ow Power:	Device	Featu	ure Size Sca	aling, Architectura	I-Level Approac	hes, Voltag
Scaling Using High-Le	vel Transfo	ormatio	ns, Mu	ultilevel Vo	ltage Scaling, Cha	llenges in MVS,	Dynamic
Voltage and Frequency						ogic Circuits	-
	L.	Switche	d Ca	pacitance I	Minimization		
System-Level Approac	h: Hardwa	re-Soft	ware	Codesign,	Transmeta's Cruse	be Processor, Bu	is Encoding
Clock Gating, Gated-	Clock FS	Ms, F	SM S	State Enco	ding, FSM Parti	tioning, Operan	d Isolation
Precomputation, Glitch							Logic,
Dynamic CMOS Logic	, PTL; Soi					r Reduction	
			<u> </u>	Power Min			
VTCMOS Approach, T						ing, Isolation St	rategy,
Sleep transistor, State F	Retention S		-		-		
				tic Logic (1.5	~ .
Adiabatic Charging, Ad	liabatic Ai	mplifica	tion,	Adiabatic I	Logic Gates, Pulse	d Power Supply,	Stepwise
Charging Circuits		T area T		C ofference	Ammunachar		
Introduction Machine	Indonanda				Approaches	on Ontimization	a with
Introduction, Machine-							
DVFS: Loop Unrolling	, <i>Loop</i> 1 III	ing, Loc	prer	mutation, S	irengin Keduciion	, <i>Loop F</i> usion, Lo	oop reenng
Loop Un switching							
Text Books :							
1. Pal, Ajit, <i>Low-Po</i>	wer VLSI	Circuits	and	Systems Sn	ringer 2015		
			critt i	<i></i> , 			
Reference Books :							
1. J. Rabaey, <i>Low Powe</i>	er Design	Essentid	als. 1^{s}	^{at} Edition. S	pringer, 2010		
2. Michael Keating, Da	Ŭ					i, Low Power Me	ethodology
Manual for System-On-					, ·	,	67
3. Christian Piguet, Lov							
	v I Ower C	mos c	ircuit	s Technolo	gy, Logic Design d	and CAD Tools,	
1 st Indian Reprint, C			ircuit	s Technolog	gy, Logic Design c	and CAD Tools,	

4. Kaushik Roy and Sharat Prasad, *Low-Power CMOS VLSI Circuit Design*, Wiley Inter-science Publications, 2000

Web References:

- 1. nptel.ac.in/courses/106105034/
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/</u>
- 3. www.ece.ucdavis.edu/~vojin/CLASSES/EEC280/.../Low-PowerDesignTechniques.pps

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

VLSI DESIGN FOR TESTABILITY (VDFT)

II Semester : VLSI & I	ES					Scheme	: 2017
Course Code	Hours/	Week		Credits	Max	ximum Marks	
EC952	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dura	ation:2	Hrs	•		End Exa	m Duration: 3	Hrs
Course Outcomes : A							
CO1: Understand all the					rcuits		
CO2: Understand the DI					•.		
CO3: Understand logic a					uits		
CO4: Generate test gene	eration in	VLSI C	ircuits	S			
		Т	ntrad	motion to	Facting		
				uction to	<u> </u>		11 '
Importance of Testing, T							
VLSI Testing, Fault Mo	aeis; Lev	eis of A	ostra	ction in VL	LSI Testing, Histori	cal Review of V	LSI Test
Technology		1		n fon Tost	- h - 1		
	A 1		<u>U</u>	n for Testa			<u> </u>
Introduction, Testabilit	• •					•	•
Analysis, Simulation-Ba							
Structured Approach; S		0					
Scan Architectures	Full-Scar	1 Desig	n, Pa	rtial-Scan	Design, Random-	Access Scan D	Design; Scan
Design Rules, Scan Desi	ign Flow	diagran	n and	brief descr	iption of each stage	es only, RTL De	esign for
Testability	0	0				5,	8
		Log	gic an	d Fault Si	mulation		
Logic Simulation for De	sign Veri	fication	. Fau	lt Simulatio	on for Test and Dia	gnosis, Simulat	ion Models-
Gate-Level Network,							
Fault Simulation seria							
detection, comparison of	· •						
				st Generat			
Introduction, Random T ATPG for Combinationa PODEM, PODEM; Desi Is Insufficient, Gated Clo At Faults Designing a	ll Circuits igning a S ocks and I	s A Na Sequent Multiple That Ca	aive A ial AT e Cloc apture	ATPG Algo IPG Des cks; Untesta s Delay De	rithm, A Basic ATI igning a Sequentia able Fault Identifica efects, ATPG for Tr	PG Algorithm, I l ATPG, 5-Valu ation, ATPG for	D Algorithm, led Algebra Non-Stuck-
		L	ogic l	Built-In Se	elf-Test		
Introduction, Test Patt Exhaustive Testing, Del Count Testing, Signatu without Scan Chains, BI Register Reconfiguratio Enhancement, BIST Tin	ay Fault ' re Analy ST Archi m, BIST	Testing sis, Log tectures Archite	; Out _l gic B s for C	put Respon IST Archi Circuits wit	se Analysis One tectures BIST h Scan Chains, BIS	s Count Testing Architectures T Architecture	g, Transition for Circuits s Using
Torrt Douber							
Text Books :							
I. Laung-Terng Wan	C1	TT 7 T *	7	• • • • • • • • • • • • • • • • • • • •		• 1 • • •	•
Design for Testab	0 0			1 0	en, "VLSI Test Prin mann, 2006.	ciples and Arch	nitectures:
0 0	0 0			1 0	-	ciples and Arch	itectures:

1. M.L. Bushnell, V. D. Agrawal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits", Kluwer Academic Publishers, 2000

2. M.Abramovici, M.A.Breuer and A.D. Friedman, "Digital systems and Testable Design", Jaico Publishing House, 2002

3. Parag K. Lala, "Digital Circuits Testing and Testability", Academic Press Inc, 1997

Web References:

1. http://booksite.elsevier.com/9780123705976/

2. https://onlinecourses.nptel.ac.in/noc17_ec02/preview

3. http://nptel.ac.in/courses/106103116/

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

VLSI ARCHITECTURES (VLSIA)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Max	ximum Marks	
EC953	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes :	At the and	of the	011800	the studen	t will be able to		
CO1: Students will b						ir projecta	
CO2: Students will b				A		1 0	Iro
CO3: Students will t				<u>.</u>			ii.c.
COS. Students will t			neeu (super scalar arem		
	Com	nlex In	struc	tion Set Co	omputers (CISC)		
Instruction Set, Charact		-				n Formata Aral	nitectural
Overview, Processor O Pentium Processor, Pov			ster U	rgamzation	, instruction Cycle	, instruction Pip	eming,
			strue	tion Set C	omputers (RISC)		
Instruction execution C						ation Set Add	aning
Instruction execution C							
Modes, Instruction For	mats. Arch	ntecturs	al ()ve	rview. RIS	C Pipelining, Mot	orola 88510. MI	PS R4650.
		meetun			F8,	01014 000 10, 111	,
		Intecture					,
RISC Vs. CISC			DS	P Processo	ors		,
RISC Vs. CISC			DS uction	P Processo Formats, A	ors Architectural Over		,
RISC Vs. CISC Instruction Set, Address	sing Mode	es, Instru	DS uction Pipe	P Processo Formats, <i>A</i> line Proces	ors Architectural Over ssing	view	
RISC Vs. CISC Instruction Set, Addres Basic Concepts, Classif	sing Mode	es, Instru Pipelin	DS uction Pipe e Proc	P Processo Formats, A line Proces cessors, Ins	ors Architectural Over ssing truction and Arithm	view metic Pipelining	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U	sing Mode	es, Instru Pipelin	DS uction Pipe e Proc	P Processo Formats, A line Proces cessors, Ins	ors Architectural Over ssing truction and Arithm	view metic Pipelining	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U	sing Mode	es, Instru Pipelin ining H	DS uction Pipe e Proc azards	P Processon Formats, A line Process cessors, Ins s and Scheo	ors Architectural Over ssing truction and Arithi duling, Principles of	view metic Pipelining	, Design of
RISC Vs. CISC Instruction Set, Addres Basic Concepts, Classif Pipelined Instruction U Processors	sing Mode fication of nits, Pipel	es, Instru Pipelin ining H	DS uction Pipel e Proc azards uper \$	P Processo Formats, A line Proces cessors, Ins	ors Architectural Over ssing truction and Arithi duling, Principles of	view metic Pipelining	, Design of
RISC Vs. CISC Instruction Set, Addres Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue	sing Mode fication of nits, Pipel	es, Instru Pipelin ining H	DS uction Pipel e Proc azards uper \$	P Processon Formats, A line Process cessors, Ins s and Scheo	ors Architectural Over ssing truction and Arithi duling, Principles of	view metic Pipelining	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books :	sing Mode fication of nits, Pipel es, PowerF	es, Instru Pipelin ining H S PC, Pent	DS uction Pipe e Proc azards uper S tium	P Processo Formats, A line Proces cessors, Ins s and Scheo Scaler Pro	ors Architectural Over ssing truction and Arith duling, Principles of cessors	view metic Pipelining of Designing Pip	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N	sing Mode fication of nits, Pipel es, PowerF A.Baskar,	es, Instru Pipelin ining H S PC, Pent Digital	DS uction Pipe e Proc azards uper S tium	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro l Processor	Architectural Over ssing truction and Arith duling, Principles o cessors r, McGraw Hill, 20	view metic Pipelining of Designing Pip	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N	sing Mode fication of nits, Pipel es, PowerF A.Baskar,	es, Instru Pipelin ining H S PC, Pent Digital	DS uction Pipe e Proc azards uper S tium	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro l Processor	Architectural Over ssing truction and Arith duling, Principles o cessors r, McGraw Hill, 20	view metic Pipelining of Designing Pip	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N 2. Avatar Singh and S.S	sing Mode fication of nits, Pipel es, PowerF A.Baskar,	es, Instru Pipelin ining H S PC, Pent Digital	DS uction Pipe e Proc azards uper S tium	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro l Processor	Architectural Over ssing truction and Arith duling, Principles o cessors r, McGraw Hill, 20	view metic Pipelining of Designing Pip	, Design of
RISC Vs. CISC Instruction Set, Addres Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N 2. Avatar Singh and S.S Reference Books :	sing Mode fication of nits, Pipel es, PowerF <u>A.Baskar, J</u> Srinivasan	es, Instru Pipelin ining H S PC, Pen Digital , Digital	DS uction Pipe e Proc azards uper S tium Signa l signa	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processor al processi	ors Architectural Over ssing truction and Arithi duling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book	view metic Pipelining of Designing Pip 000 cs, 2004	, Design of
RISC Vs. CISC Instruction Set, Addres Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N 2. Avatar Singh and S.S Reference Books :	sing Mode fication of nits, Pipel es, PowerF <u>A.Baskar, J</u> Srinivasan	es, Instru Pipelin ining H S PC, Pen Digital , Digital	DS uction Pipe e Proc azards uper S tium Signa l signa	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processor al processi	ors Architectural Over ssing truction and Arithi duling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book	view metic Pipelining of Designing Pip 000 cs, 2004	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig	sing Mode fication of nits, Pipel es, PowerF <u>A.Baskar, Srinivasan</u>	es, Instru Pipelin ining H S PC, Pent Digital , Digita puter Ar	DS uction Pipe e Proc azards tium Signa l signa	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro al procession at procession	ors Architectural Over ssing truction and Arith duling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing	view metic Pipelining of Designing Pip 000 cs, 2004	, Design of
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig 2. J.P.Hayes, <i>Computer</i>	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A Srinivasan ggs, Comp r Architect	es, Instru Pipelin ining H S PC, Pen Digital , Digita puter Ar ure and	DS uction Pipe e Proc azards tium Signa l signa chitec	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al procession ture and Pa unization, N	Architectural Over sing truction and Aritheduling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill.	view metic Pipelining of Designing Pip 000 xs, 2004 , Mc Graw Hill.	, Design of belined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Bri 2. J.P.Hayes, <i>Computer</i>	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A Srinivasan ggs, Comp Architect e Fountain	es, Instru Pipelin ining H S PC, Pen Digital , Digita puter Ar ure and	DS uction Pipe e Proc azards tium Signa l signa chitec	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al procession ture and Pa unization, N	Architectural Over sing truction and Aritheduling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill.	view metic Pipelining of Designing Pip 000 xs, 2004 , Mc Graw Hill.	, Design of belined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Bria 2. J.P.Hayes, <i>Computer</i> 3. Dezso Sima, Terence	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A Srinivasan ggs, Comp Architect e Fountain	es, Instru Pipelin ining H S PC, Pen Digital , Digita puter Ar ure and	DS uction Pipe e Proc azards tium Signa l signa chitec	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al procession ture and Pa unization, N	Architectural Over sing truction and Aritheduling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill.	view metic Pipelining of Designing Pip 000 xs, 2004 , Mc Graw Hill.	, Design of belined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig 2. J.P.Hayes, <i>Computer</i> 3. Dezso Sima, Terence <i>Approach</i> , Addison	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A Srinivasan ggs, Comp c Architect e Fountain -Wiley.	es, Instru Pipelin ining H S PC, Pen Digital , Digita puter Ar ure and	DS uction Pipe e Proc azards tium Signa l signa chitec	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al procession ture and Pa unization, N	Architectural Over sing truction and Aritheduling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill.	view metic Pipelining of Designing Pip 000 xs, 2004 , Mc Graw Hill.	, Design of belined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig 2. J.P.Hayes, <i>Computer</i> 3. Dezso Sima, Terence <i>Approach</i> , Addison Question Paper Patter	sing Mode fication of nits, Pipel es, PowerF A.Baskar, Srinivasan ggs, Comp Architect e Fountain -Wiley.	es, Instru Pipelin ining H C, Pent Digital , Digita puter Ar ure ana , Peter I	DS uction Pipe e Proc azards tium Signa l signa chitec U Orga Kacsu	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al processin ture and Pa unization, N k, Advance	Architectural Over ssing truction and Arithr duling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill. ad Computer Archi	view metic Pipelining of Designing Pip 000 cs, 2004 , Mc Graw Hill. tectures-A Desig	, Design of pelined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & N 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig 2. J.P.Hayes, <i>Computer</i> 3. Dezso Sima, Terence <i>Approach</i> , Addison Question Paper Patter Internal Assessment:	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A Srinivasan <u>ggs, Comp</u> Architect e Fountain -Wiley.	es, Instru Pipelin ining H C, Pent Digital , Digita puter Ar ure ana , Peter I	DS uction Pipe e Proc azards tium Signa l signa chitec U Orga Kacsu	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro l Processon al processin ture and Pa unization, N k, Advance	Architectural Over ssing truction and Arithr duling, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill. ad Computer Archi	view metic Pipelining of Designing Pip 000 cs, 2004 , Mc Graw Hill. tectures-A Desig	, Design of pelined
RISC Vs. CISC Instruction Set, Address Basic Concepts, Classif Pipelined Instruction U Processors Overview, Design Issue Text Books : 1. B.Venkatramani & M 2. Avatar Singh and S.S Reference Books : 1. K.Hwang & F.A.Brig 2. J.P.Hayes, <i>Computer</i> 3. Dezso Sima, Terence <i>Approach</i> , Addison	sing Mode fication of nits, Pipel es, PowerF A.Baskar, A. Srinivasan, ggs, Comp c Architect e Fountain -Wiley. rn: The questi ions	es, Instru Pipelin ining H SPC, Pent Digital , Digital , Digita outer Ar ure ana , Peter I	DS uction Pipe e Proc azards uper S tium Signa l signa chitec U Orga Kacsu	P Processo Formats, A line Process cessors, Ins s and Scheo Scaler Pro Scaler Pro I Processon al processin eture and Pa mization, N k, Advance	Architectural Over ssing truction and Arithmedialing, Principles of cessors r, McGraw Hill, 20 ng, Thomson Book arallel Processing Ac Graw Hill. ad Computer Archi f Six questions out	view metic Pipelining of Designing Pip 000 cs, 2004 , Mc Graw Hill. tectures-A Desig	gn Space

MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN (MESD)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours/	Week		Credits	Max	imum Marks	
EC954	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs	•		End Exa	m Duration: 3	Hrs
Course Outcomes : A CO1: Understand A CO2: Understand A CO3: Use ARM pro CO4: Understand the ARM Design Philosoph Vector Table, Architect	RM Archit RM proces gramming e memory ny, Registe	ecture a sor inst model manage ers, Prog	and pi ructic to fra ement ARN gram	ipelining. on set and t me prograr and cache MArchited Status Reg	humb formats ns issues of ARM pro ture ister, Instruction Pi		ts and
Instruction Set: Data Pr PSR Instructions, Cond	-	nstructi	ons, A	0 0	Model – I Modes, Branch, Lo	oad, Store Instru	uctions,
Thumb Instruction Set: Single-Register and Mu Simple C Programs usi Assembly Code using I	ılti Registe ng Functio	er Load- on Calls	-Store ARN , Poin	e Instruction I Program Iters, Struct	ns, Stack, Software ming tures, Integer and F	Interrupt Instru loating Point Ar	rithmetic,
				ory Manag			1
Cache Architecture, Pol Context Switch.	lices, Flusł	ning and	l Cacl	hes, MMU,	Page Tables, Trans	slation, Access I	Permissions
Text Books : 1. ARM Systems D Sloss, Dominic S 2.						Software – And	lrew N.
Reference Books : 1. Embedded Micro Cole, 1999, Thomas Le Question Paper Patter Internal Assessment:	arning r n:	•	-				
Internal Assessment: " answer any Four quest End Exam: The quest	ions						

any **Five** questions

RESEARCH METHODOLOGY (RM)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Max	imum Marks	
AU102	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	2	-	-	-	-	-	-
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: -	
Course Outcomes : A							
CO1: Understand overvi		-			-	nd conduct a lite	erature
review of the con	=						
CO2: Study the data col							
CO3: Understand the ba a research paper.		ties of e	estima	itors, analy	se the estimated dat	ta and interpret	the data in
	Meani	ng, Obj	ectiv	e and Mot	ivation in Researc	h	
Sampling Design, Char Design.	Ν	leasure	ment	and Scali	ng Techniques		
Errors in Measurement,					e		niques,
Forecasting Techniques	s, Thie Se		•	of Data C	1		
Primary Data, Question	naire and					Cases and Sche	dules
Tilliary Data, Question				tical Proc	-	cases and Sene	duies.
Correlation and Regress Vs. Determination, Typ	-	ysis, Me	thod	of Least So	quares, Regression	Vs. Correlation	, Correlation
				othesis Te			
Tests of Hypothesis, Pa Statistical Techniques f Test, Analysis of Variat	or Testing	g Hypotl ovarian	-Paran nesis, ce, M	metric Test Sampling	ts, Procedure for Te Distribution, Sampl e Analysis	0 1	
Data interpretation, Lay	out of a F					on.	
Text Books / Reference 1. C.R. Kothari, <i>Res</i> 2. R.Cauvery, V.K.S	search Me	thodolo			· · ·	-	

ADVANCED ELECTRONIC DESIGN AUTOMATION LAB (AEDAP)

II Semester :VLSI &							e:2017
Course Code	Hours	Week	_	Credits	Maximum Mar	:ks	
EC963	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	-	-	3	2	50	50	100
End Exam Duration	n: 3 Hrs						
Course Outcomes :	At the end o	f the co	urse the	student w	ill be able to		
CO1: Perform transie	ent, AC and	DC ana	lysis of	CMOS ba	sed circuits		
CO2:.Perform transie			-			uits	
CO3:Perform transie	nt ΔC and β	DC anal	veis of	Transmissi	ion Gate based cit	remits	
			•				
CO4:Perform transie					e CS,CG,CD, Dif	f Amplifier, Op	-Amp etc.
CO5: Perform DRS,I	_vS, Layou	ts of sin	iple cir	cuits.			
LIST OF EXPERIM	TENTS						
1. Transient Anal		us CM	DS base	d circuits (from simple circu	uits like Inverter	r to
complex circu							
2. Transient Anal					5		
3. Transient Anal	ysis of vario	us Tran	smissio	on Gate (TO	G) based circuits (eg. XOR gate,	MUX
etc).							
4. Transient, AC,	DC Analysi	s of var	ious an	plifier circ	cuits (e.g. CS, CD	, Differential, C	Derational
Amplifiers etc	c.). Finding	CMRR	(for Dif	ferential a	nd Operational An	mplifiers) and E	Bandwidth.
5. Applications ba	ased on oper	ational	amplifi	ers (e.g. D.	AC etc.)		
6. DRC, LVS, Pa	rasitic Value	es Estim	ation fr	om Layou	t of CMOS based	circuits.	
Reference Books :							
1. Neil Weste, Da	vid Harris, '	'CMOS	VLSI	Design, 4tł	edition", Pearso	n, 2010	
2. Paul.R. Gray &	Robert G.	Major, '	Analys	is and Des	ign of Analog Int	egrated Circuits	s", John
Wiley & sons	, 2004						
3. David Johns, "	Ken Martin,	Analog	Integra	ated Circui	t Design", John V	Viley & sons. 20	004
Internal Assessmen	nt: 50M						
End Exam:50M							

CMOS DIGITAL INTEGRATED CIRCUIT DESIGN (DICD)

I Semester : VLSI & I	ES					Scheme	: 2017
Course Code	Hours/	/Week		Credits	Max	ximum Marks	
EC855 (Elective-I)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	<u>60</u>	100
Sessional Exam Du	ration: 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : . CO1: Revise the MC	OS transiste	or theor	у			a sthe sta	
CO2: Solve various						nethods	
CO3: Understand cir						· 1 1	1 1/1 01
CO4: Understand con			equen	tial circuits	s of medium comple	exity that is base	ed on VLSIs,
and programmab				Taala			
CO5: Understand De	esign wieth	louolog	y and	1 0018			
		MOS	Tron	cistor The	ory Review		
Introduction, Long-Cha Detailed MOS Gate C Saturation, Channel Lea DC Transfer Character	apacitance	e Mode	l; No	n-ideal I-V	/ Effects: Mobility	/ Degradation a	nd Velocity
		Com	binat	tional netv	vork delay		
Power and energy optim	nization in	n combi	natior	nal logic ci	rcuit. Sequential m	achine design st	yles. Rules
for clocking. Performan	nce analysi						
			_	cing static			
Circuit design of latche circuits. Synchronizers		flops. S	tatic s	sequencing	element methodol	logy. Sequencing	g dynamic
		Data j	path a	and array	subsystems		
Addition / Subtraction, ROM, serial access me						ivision. SRAM,	DRAM,
		Desig	gn Me	ethodology	and Tools		
Introduction, Structured Methods, Design Flows		trategie	s usir	ng with the	help of Software F	Radio Example,	Design
Text Books :							
1. Neil Weste, David H	arris, "CM	105 VL	SI De	esign, 4 th E	dition", Pearson, 2	010	
Reference Books :							
1. Jan M. Rabaey, Anar Pearson Education, 2		drakasa	n, Boi	rivoje Niko	olic,"Digital Integra	ated Circuits", 2	nd edition,
2. W.Wolf, "FPGA- ba	sed System	n Desig	n", Pe	earson, 200)4		
3.C.Roth," Fundamenta Digital System Design	als of Digi	tal Logi	c Des	sign", Jaico	Publishers, V ed.,	2009. 6. Recent	t literature in
Question Paper Patter	rn:						
Internal Assessment:		on pape	er shal	ll consist o	f Six questions out	of which the stu	udent shall
answer any Four quest	ions				-		
End Exam: The questi	on paper s	hall cor	nsist o	of Eight qu	estions out of whic	ch the student sh	all answer
any Five questions							

CPLD AND FPGA ARCHITECTURES AND APPLICATIONS (FPGA)

I Semester : VLSI & I	ES				Sch	eme : 2017	
Course Code	Hours	/Week		Credits	Max	ximum Marks	
EC856 (Elective-I)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes :					t will be able to		
CO1: Understand RON							
CO2: Get exposure to							
programming technolog						es, and their I/O	S.
CO3: Understand the c						1 • 4 1	1 1
CO4: Understand Syste	em partitio	oning, fl	oor-p	lanning Pla	acement & Routing	and associated	algorithms
		11 -	-	CPLD		11 1 1	
Programmable logic, Pr							
Programmable array lo	gic (PAL)	. Sequer	itial p	rogramma	ble logic devices (S	SPLDS), Program	mmable ga
arrays (PGAS), CPLD		EDC A	Duce	••••	Technology		
Due - un un al-la la - : - ED	C A			, 0	Technology		11
Programmable logic FP	0		,				0.
PREP benchmarks, FP	GA Logic	DIOCK -		FPGA I/O		LEA, Altera MA	ΑΛ,
				rrga I/U	5		
DC = AC immute and a	C1	alr and	Darres	nimerata V	iling I/O blook		
DC & AC inputs and o	utputs, Clo						
DC & AC inputs and o	1		FPG	A Intercon	nnect		
Actel ACT -Xilinx LCA	1		FPG	A Intercon	nnect	a MAX 9000, A	ltera FLEX
	1		FPG Altera	A Intercon a MAX 500	mect 00 and 7000, Altera	a MAX 9000, A	ltera FLEX
Actel ACT -Xilinx LCA	A - Xilinx	EPLD,	FPG Altera ASI	A Intercon a MAX 500 C Constru	nnect 00 and 7000, Altera ction		
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals	A - Xilinx	EPLD,	FPG Altera ASI(all th	A Intercon a MAX 500 C Constru e ASIC ph	mect 00 and 7000, Altera ction ysical design steps,	, System partitic	oning,
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C	A - Xilinx and object	EPLD, ctives of ve partit	FPG Altera ASIO all th ioning	A Intercon a MAX 500 C Constru- e ASIC ph g, iterative	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a	, System partitic lgorithm, Floor	oning, planning
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F	A - Xilinx and objec Constructiv Placement,	EPLD, ctives of ve partit , placem	FPG Altera ASIO all th ioning ent M	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla	nnect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a cement types con	, System partitic lgorithm, Floor structive: min-c	oning, planning ut placeme
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C	A - Xilinx and objec Constructiv Placement,	EPLD, ctives of ve partit , placem	FPG Altera ASIC all th ioning ent M Iterati	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a cement types con ent Improvement, P	, System partitic lgorithm, Floor structive: min-c	oning, planning ut placeme
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac	A - Xilinx and object Constructive Placement , cement alg	EPLD, ctives of ve partit , placem gorithm,	FPG Altera ASIC all th ioning ent M Iterati	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi	nnect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a cement types con ent Improvement, P ng	, System partitic lgorithm, Floor structive: min-c hysical design f	oning, planning ut placeme low.
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals	A - Xilinx and object Constructiv Placement, cement alg	EPLD, etives of ve partit placem corithm, ctives , 1	FPG Altera Altera all th ioning ent M Iterati As Measu	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay	, System partitic Igorithm, Floor structive: min-c hysical design f	oning, planning ut placeme low. g Methods,
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals	A - Xilinx and object Constructiv Placement alg cement alg and Object and object	EPLD, etives of ve partit , placem corithm, ctives , l	FPG Altera all th ioning ent M Iterati Measu Ieasu	A Intercor a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of rement of c	nnect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a cement types con ent Improvement, P ng Interconnect Delay channel density, Le	, System partitic Igorithm, Floor structive: min-c hysical design f	oning, planning ut placeme low. g Methods,
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S	A - Xilinx and object Constructiv Placement alg cement alg and Object and object	EPLD, etives of ve partit , placem corithm, ctives , l	FPG Altera all th ioning ent M Iterati Measu Ieasu	A Intercor a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of rement of c	nnect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a cement types con ent Improvement, P ng Interconnect Delay channel density, Le	, System partitic Igorithm, Floor structive: min-c hysical design f	oning, planning ut placeme low. g Methods,
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—G ,Floor planning tools ,P method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books :	A - Xilinx and object Constructiv Placement, cement alg and Object and object pecial Rou	EPLD, etives of ve partit , placem corithm, ctives , l ctives , N uting : C	FPG Altera alth ioning ent M Iterati Measu flock	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of rement of c Routing an	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor structive: min-c hysical design f / ,Global routing ft Edge Algorith	oning, planning ut placeme low. g Methods, nm, Circuit
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti	A - Xilinx and object Constructiv Placement, cement alg and Object and object pecial Rou	EPLD, etives of ve partit , placem corithm, ctives , l ctives , N uting : C	FPG Altera alth ioning ent M Iterati Measu flock	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of rement of c Routing an	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor structive: min-c hysical design f / ,Global routing ft Edge Algorith	oning, planning ut placeme low. g Methods, nm, Circuit
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001.	A - Xilinx and object Constructive Placement alg cement alg and Object s and object pecial Rou	EPLD, etives of ve partit , placem gorithm, ctives, N ating : C Applica	FPG Altera Altera all th ioning ent M Iterati Measu Ieasu Ieasu Ieasu	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routin urement of c Routing an pecific Inte	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor Istructive: min-c hysical design f 7 ,Global routing ft Edge Algorith	oning, planning ut placeme low. g Methods, nm, Circuit
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil	A - Xilinx and object Constructiv Placement alg and Object and object pecial Rou ian Smith, ha Mourad	EPLD, etives of ve partit , placem gorithm, ctives, N ating : C Applica	FPG Altera Altera all th ioning ent M Iterati Measu Ieasu Ieasu Ieasu	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routin urement of c Routing an pecific Inte	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor Istructive: min-c hysical design f 7 ,Global routing ft Edge Algorith	oning, planning ut placeme low. g Methods, nm, Circuit
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue plac Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20	A - Xilinx and object Constructiv Placement alg and Object and object pecial Rou ian Smith, ha Mourad	EPLD, etives of ve partit , placem gorithm, ctives, N ating : C Applica	FPG Altera Altera all th ioning ent M Iterati Measu Ieasu Ieasu Ieasu	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routin urement of c Routing an pecific Inte	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor Istructive: min-c hysical design f 7 ,Global routing ft Edge Algorith	oning, planning ut placeme low. g Methods, nm, Circuit
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue place Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20 Reference Books :	A - Xilinx and object Constructive Placement , cement alg and Object s and object pecial Rout ian Smith, ha Mouract 09.	EPLD, etives of ve partit placem gorithm, ctives, N ting : C Applica	FPG Altera Altera all th ioning ent M Iterati As Measu Iterati Iterati As Measu Iterati	A Intercol a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of c Routing an pecific Inte ign using I	nnect 20 and 7000, Altera ction ysical design steps. partitioning, K-L a icement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing . grated Circuits, 3 ^{rc} Field Programmabl	, System partitic lgorithm, Floor Istructive: min-c hysical design f 7,Global routing ft Edge Algorith Edition, Pearso	oning, planning ut placemes low. g Methods, nm, Circuit on Educatio
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue place Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20 Reference Books : 1. S. Trimberger, Ed	A - Xilinx and object Constructive Placement , cement alg and Object s and object pecial Rout ian Smith, ha Mouract 09.	EPLD, etives of ve partit placem gorithm, ctives, N ting : C Applica	FPG Altera Altera all th ioning ent M Iterati As Measu Iterati Iterati As Measu Iterati	A Intercol a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of c Routing an pecific Inte ign using I	mect 00 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing .	, System partitic lgorithm, Floor Istructive: min-c hysical design f 7,Global routing ft Edge Algorith Edition, Pearso	oning, planning ut placement low. g Methods, nm, Circuit on Education
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue place Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20 Reference Books : 1. S. Trimberger, Ed Publications,1994.	A - Xilinx and object Constructive Placement , cement alg and Object pecial Rou ian Smith, ha Mouract 09.	EPLD, etives of ve partit , placem gorithm, ctives, N ating : C Applica Applica Applica	FPG Altera Altera all th ioning ent M Iterati Measu flock I clock I al Des mable	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of c Routing an pecific Inte ign using I e Gate Arr	nnect 20 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing . Egrated Circuits, 3 ^{rc} Field Programmable ray Technology, 1 st	, System partitic lgorithm, Floor istructive: min-c hysical design f 7,Global routing ft Edge Algorith d Edition, Pearso de Gate Arrays, Edition Kluwe	oning, planning ut placeme: low. g Methods, nm, Circuit on Educatio ^{Ist} Edition
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue place Global Routing : Goals Detailed routing: Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20 Reference Books : 1. S. Trimberger, Ed Publications,1994. 2. John V.Oldfield, Ric	A - Xilinx and object Constructive Placement , cement alg and Object pecial Rou ian Smith, ha Mouract 09.	EPLD, etives of ve partit , placem gorithm, ctives, N ating : C Applica Applica Applica	FPG Altera Altera all th ioning ent M Iterati Measu flock I clock I al Des mable	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placemo SIC Routi urement of c Routing an pecific Inte ign using I e Gate Arr	nnect 20 and 7000, Altera ction ysical design steps, partitioning, K-L a accement types con ent Improvement, P ng Interconnect Delay channel density, Le d Power Routing . Egrated Circuits, 3 ^{rc} Field Programmable ray Technology, 1 st	, System partitic lgorithm, Floor istructive: min-c hysical design f 7,Global routing ft Edge Algorith d Edition, Pearso de Gate Arrays, Edition Kluwe	oning, planning ut placeme low. g Methods, nm, Circuit on Educatio ^{Ist} Edition
Actel ACT -Xilinx LCA FPGA Design flow Physical Design ,Goals Partitioning method—C ,Floor planning tools ,F method, eigenvalue place Global Routing : Goals Detailed routing: Goals Extraction and DRC, S Text Books : 1. Michael John Sebasti Asia, 2001. 2. Pak and Chan, Samil Pearson Education, 20 Reference Books : 1. S. Trimberger, Ed Publications,1994.	A - Xilinx and objec Constructiv Placement alg cement alg and Objec s and objec pecial Rou ian Smith, ha Mourad 09. dr, <i>Field F</i>	EPLD, etives of ve partit , placem gorithm, etives, N ating : C Applica Applica Applica Program	FPG Altera Altera all the ioning ent M Iterati Measu flock des al Des mable d Pro	A Intercon a MAX 500 C Constru e ASIC ph g, iterative lethods, Pla ive Placement sive Placement sice Placement of c SIC Routing urement of c Routing an pecific Inter ign using I e Gate Arr grammable	mect 00 and 7000, Alteration ction ysical design steps, partitioning, K-L at a cement types coment Improvement, P ng Interconnect Delay channel density, Le d Power Routing . egrated Circuits, 3 ^{rc} Field Programmable ray Technology, 1 st e Gate Arrays, 1 st E	, System partitic ilgorithm, Floor istructive: min-c hysical design f , Global routing ft Edge Algorith Edition, Pearso <i>e Gate Arrays</i> , Edition Kluwe	oning, planning ut placeme low. g Methods, nm, Circuit on Educatio ^{1st} Edition er Academi ublications,

Web References:

1. http://www.fpgacenter.com/

2. http://www.cpld.com/

3. www.asic.co.in/

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

SCRIPTING LANGUAGES FOR VLSI DESING AUTOMATION (SLA)

I Semester : VLSI & l	ES					Scheme	: 2017
Course Code	Hours	Week		Credits	Max	kimum Marks	
EC857 (Elective-I)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : CO1: Students are ca CO2: Students will a	apable of s	cripting	g the g	given code i	in HDLs.	cts.	
CO3: Students will							
PERL, File handles, Or	comotoma C				g languages	It in data types	Operators
Statements and declara			npoui	nd, Loop sta	atements, Global a		
Degular expression De	ttom motol	ina an		tern match		a conturing and	aluctoring
Regular expression, Pa		nng op		s, Characte Subroutine		s, capturing and	clustering.
Syntax, Semantics, Pro of arrays, Hashes of fur			variab	les, Referei	nces, Data structur		cays, Hashe
Process model, Thread externals, Internal data			perl, e	Using debu	perl, Exercises for		
Broad features of other	scripting	anguag		U	0	ript	
Text Books / Reference 1. Larry Wall, Tom Ch 2. Randal L, Schwartz '	ristiansen,					on, Oreilly publ	lications
Question Paper Patte	m:						
Internal Assessment: answer any Four quest	The questi	on pape	er sha	ll consist of	Six questions out	of which the stu	udent shall
End Exam: The questi	on paper s	hall coi	nsist c	of Eight que	estions out of whic	h the student sh	all answer

any Five questions

VLSI TECHNOLOGY (VTECH)

	5					Scheme	: 2017
Course Code	Hours/	/Week		Credits	Max	imum Marks	
	1				Continuous		
EC858 (Elective-I)	L	Т	Р	С	Internal Assessment	End Exam	TOTAL
(21000101)	3	-	-	3	40	60	100
Sessional Exam Dura		Hrs	l	-		m Duration: 3	
Course Outcomes : A			course	the studer			
CO1: understand the N							
CO2: understand the l							
CO3: understand all th		-			-		
CO4: understand the c							
CO5: understand design					Cs in		
					luction to MOS Te	chnologies	
MOS, CMOS, BiCMOS	Technol	ogy. Ba	sic El	ectrical Pr	operties of MOS, C	MOS & BiCM	OS Circuits
Ids – Vds relationships, 7		U .			± ·		
CMOS Inverters, Zpu/Zp							
			La	ayout Desi	gn		
Layout Design and Tools:	Transisto	or structu	ures, V	Vires and V	ias, Scalable Design	rules, Layout D	esign tools.
Logic Gates & Layouts:							
power gates, Resistive ar							
		St	ages	of Manufa	cturing		
growth, Basic wafer fabrication operat Oxidation and Photolithe	rication o tions, Yio ography,	operatio eld mea Doping	ons, pr asurer and I	rocess yiel nent, Cont Deposition	ds, Semiconductor camination sources, s, Metallization. Te	Clean room c n step patternin	ation, Basi construction g process,
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step	rication of ions, Yio ography, roperties elop inspe- depositio os, Low p	operatio eld mea Doping of pho ect, Dry Don, Drive	asurer asurer and I toresi etchi oping e-in o	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Io	ds, Semiconductor amination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1	material prepar Clean room c n step patternin hotoresists, pho ng Ion implantation	ation, Basi construction g process, oto masking n-2, CVD
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o	rication of ions, Yio ography, roperties elop inspe- depositio os, Low p epitaxy	operatio eld mea Doping of pho ect, Dry Don, Drive pressure	ans, pr asurer and I toresi etchi oping e-in o CVD	rocess yiel nent, Cont Deposition sts, Storag ng Wet etc g and depo xidation, I O systems, T	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin psitions on implantation-1, 1 Plasma enhanced C	material prepar Clean room c n step patternin hotoresists, pho ng Ion implantation	ation, Basic construction g process, oto masking n-2, CVD
growth, Basic wafer fabr wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip character	rication of ions, Yio ography, coperties elop inspe- deposition os, Low p epitaxy De , BICMC	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru OS ICs: (and I asurer and I toresi etchi oping e-in o c CVE	rocess yiel nent, Cont Deposition sts, Storag ng Wet etc g and depo xidation, I D systems, T nd Scaling re of transis	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transit	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V	ation, Basi construction g process, oto maskin n-2, CVD apor phase
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books :	rication of ions, Yio ography, coperties elop inspe- depositio os, Low p epitaxy De , BICMC eristics, p	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru OS ICs: (package	ons, prasurer and I toresi etchi oping e-in o CVE	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Io D systems, T nd Scaling te of transis tions, packa	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi age operations	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V	ation, Basi construction g process, oto masking n-2, CVD apor phase
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characto Text Books : 1. Peter Van Zant, Micro	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication	and I asurer and I toresi etchi e-in o CVE choic funct	rocess yiel nent, Cont Deposition sts, Storag ng Wet etc g and depo xidation, I O systems, T nd Scaling te of transis tions, packa Graw Hill,	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V	ation, Basi construction g process, oto maskin n-2, CVD apor phase
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M.	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication	and I asurer and I toresi etchi e-in o CVE choic funct	rocess yiel nent, Cont Deposition sts, Storag ng Wet etc g and depo xidation, I O systems, T nd Scaling te of transis tions, packa Graw Hill,	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V	ation, Basi construction g process, oto maskin n-2, CVD apor phase
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characto Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books :	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabri Sze, ULS	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn	and I asurer and I toresi etchi oping e-in o CVE Choic funct , McC ology	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, I O systems, d Scaling re of transis ions, pack Graw Hill, 7, McGraw	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors,	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011	rication of ions, Yio ography, coperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr Sze, ULS	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn lysis an	and I asurer and I toresi etchi oping e-in o CVE lles an Choic funct , McC ology d Des	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Io D systems, nd Scaling te of transis tions, packs Graw Hill, 7, McGraw ign 2nd Ec	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi age operations 1997 Hill, 20000	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors,	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabr wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characto Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabri Sze, ULS uits Anal	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn lysis and ion to V	and I asurer and I toresi etchi oping e-in o CVE lles an Choic funct , McC ology d Des	rocess yiel nent, Cont Deposition sts, Storag ng Wet etc g and depo vidation, I o systems, T nd Scaling re of transis tions, pack Graw Hill, 7, McGraw ign 2nd Ec design, Mc	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi age operations 1997 Hill, 20000 lition, Muhammad 1 Graw Hill, 1999	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors,	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabr wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I 3. Wani-Kai Chen (edito	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr Sze, ULS uits Anal Introduct r), The V	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: 0 package rication SI techn lysis an ion to V /LSI Ha	and I asurer and I toresi etchi e-in o CVE choic funct <u>, McC</u> ology d Des	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Ia D systems, nd Scaling te of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, I Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000 lition, Muhammad I Graw Hill, 1999 EEE press, 2000	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabr wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I 3. Wani-Kai Chen (edito	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr Sze, ULS uits Anal Introduct r), The V	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: 0 package rication SI techn lysis an ion to V /LSI Ha	and I asurer and I toresi etchi e-in o CVE choic funct <u>, McC</u> ology d Des	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Ia D systems, nd Scaling te of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, I Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000 lition, Muhammad I Graw Hill, 1999 EEE press, 2000	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characte Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabir Sze, ULS uits Anal uits Anal Introduct r), The V brication	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: 0 package rication SI techn lysis an ion to V /LSI Ha	and I asurer and I toresi etchi e-in o CVE choic funct <u>, McC</u> ology d Des	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Ia D systems, nd Scaling te of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, I Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000 lition, Muhammad I Graw Hill, 1999 EEE press, 2000	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors,
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, of basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characto Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I 3. Wani-Kai Chen (editor 4. S.K. Gandhi, VLSI Fa	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr Sze, ULS vuits Anat Introduct r), The V brication	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn lysis and ion to V /LSI Ha princip	and I asurer and I toresi e-in o CVE choic funct d Des /LSI o oles, J	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Ia D systems, T nd Scaling te of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II ohn Wiley	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000 lition, Muhammad Graw Hill, 1999 EEE press, 2000 and Sons, NY, 199	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN	ation, Basi construction g process, pto maskin n-2, CVD apor phase , capacitors, AGE
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical process, Hard bake, dever Diffusion process steps, of basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip character Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I 3. Wani-Kai Chen (edito 4. S.K. Gandhi, VLSI Fa Question Paper Pattern	rication of ions, Yio ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabr Sze, ULS uits Anat Introduct r), The V brication he questi	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn lysis and ion to V /LSI Ha princip	and I asurer and I toresi e-in o CVE choic funct d Des /LSI o oles, J	rocess yiel nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Ia D systems, T nd Scaling te of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II ohn Wiley	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transi- age operations 1997 Hill, 20000 lition, Muhammad Graw Hill, 1999 EEE press, 2000 and Sons, NY, 199	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN	ation, Basic construction g process, pto masking n-2, CVD apor phase , capacitors, AGE
growth, Basic wafer fabrication operat Oxidation and Photolitho Photoresists, physical pr process, Hard bake, deve Diffusion process steps, o basics, CVD process step epitaxy, molecular beam Design rules and Scaling Packaging: Chip characto Text Books : 1. Peter Van Zant, Micro 2. C.Y. Chang and S.M. Reference Books : 1. Micro Electronics circ Learning 2011 2. Eugene D. Fabricius, I 3. Wani-Kai Chen (edito 4. S.K. Gandhi, VLSI Fa Question Paper Pattern Internal Assessment: T	rication of ions, Yie ography, roperties elop inspe- deposition os, Low p epitaxy De , BICMC eristics, p ochip fabri Sze, ULS uits Ana Introduct r), The V brication he questions	operatio eld mea Doping of pho ect, Dry Don, Drive pressure esign ru DS ICs: (package rication SI techn lysis and ion to V /LSI Ha princip on pape	ons, prasurer and I toresi etchi oping e-in o c CVD choic funct funct d Des /LSI o oles, J er shal	rocess yield nent, Cont Depositions sts, Storag ng Wet etc g and depo xidation, Id D systems, T and Scaling re of transis tions, packa Graw Hill, 7, McGraw ign 2nd Ec design, Mc pok, CRI/II ohn Wiley Il consist o	ds, Semiconductor camination sources, s, Metallization. Te e and control of p ching, resist strippin ositions on implantation-1, 1 Plasma enhanced C , BICMOS ICs stor types, pnp transia age operations 1997 Hill, 20000 lition, Muhammad Graw Hill, 1999 EEE press, 2000 and Sons, NY, 199 f Six questions out	material prepar Clean room c n step patternin hotoresists, pho g Ion implantation VD systems, V istors, Resistors, H Rashid, CEN 4 of which the stu	ation, Basi construction g process, oto maskin n-2, CVD apor phase , capacitors, AGE

EMBEDDED PROGRAMMING (EP)

I Semester : VLSI & E	S					Scheme	: 2017
Course Code	Hours	Week		Credits	Max	ximum Marks	
EC859 (Elective-II)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		-	-	3	40	60	100
Sessional Exam Dura	ation:2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A CO1: Understand C Ia CO2: Understand Ob CO3: Understand sof CO4: Understand Em	anguage a ject orien tware mo	and asse tation for deling f	embly or pro fundai	programm gramming mentals.	ing. and C++.		
INTRODUCTION TO Assembly language pro and floating point num Structures – Unions – I Register usage conven- call and return – Func Everything in pass by v	ogrammin ber forma Dynamic tions – T ctions – r	ig – mac ats –Lov memory Pi ypical u ecursive	cros - w leve y allo ROG ise of e func	Data repre el programm cation – Fu RAMMIN addressing ctions – 8,	sentation – Twos c ming in C: Primitiv Inctions – recursive G IN C g options – Instruct Parameter passing	complement, fix e data types – P e f unctions - Lin ion sequencing g – Retrieving p	ed point Pointers – nked lists. – Procedure parameters –
scheduling Object oriented analysi	is and des	ign - C	++ cla	asses and o		- data structures	- examples
Connecting the object m basics. Object state beh Timing diagrams – Sequ Architectural design in U	nodel wit avior – U uence dia JML con	h the us JML sta grams - currenc	se cas ate ch – Eve y desi	e model – harts – Rol nt hierarch gn – thread	e of scenarios in t nies – types and str	he definition of rategies of opera	f behavior –
The compilation process and debugging technique	s – librari	es – por	ting k	ternels – C	extensions for emb		– emulation
Text Books :1.David E. Simon, "2.Daniel W. Lewis, "Education, 2002.							, Pearson
Reference Books : 1. Steve Heath, " <i>Embea</i> 2. E. Balaguruswamy, " Question Paper Pattern	Object of					Graw Hill, 2011	
Internal Assessment: T answer any Four question End Exam: The question any Five questions	ons				-		

EMBEDDED SYSTEM ARCHITECTURE (ESA)

I Semester : VLSI & I	ES					Scheme	: 2017
Course Code	Hours	Week		Credits	Max	imum Marks	
EC860 (Elective-II)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
(Elective-II)	3	0	_	3	40	60	100
Sessional Exam Du	-	-	-	3		m Duration: 3	
Sessional Exam Du		111.5			End Exa		111.5
Course Outcomes : CO1: Understand the CO2: Understand the CO3: Understand ra CO4: Analyze the E	e Embedde e typical e tionale and	ed Systen ngineer l concep	em Mo ing ise ots for	odels sues of soft designing	ware development		
					ded systems		
Embedded system mo board using Von Neum ISA models – general Internal processor des	nan model purpose IS	. Embed SA mod	lded p els – Proce	rocessors: instruction essor Hard	ISA architecture mo level parallelism. ware	odels – applicati	on specific
interrupts – processor					r i i i i i i i i i i i i i i i i i i i	J	
	T		-	port Hard	ware		
Board memory: ROM - performance – board by components – bus performance Middleware and applica – HTTP server and clie	uses: arbiti ormance. ations: PPI	ation ar	nd tim	ing – PCI Software	bus example – inte	grating bus with	1
	ли .	Fngir	eerin	or Issues (of Software		
Design and development		ctural pa	atterns	s and refere	ence models – creat		tural
structures – documentir and maintaining.	ig the arch				evaluating the archi	ltecture – debug	
structures – documentir and maintaining. Text Books :						ltecture – debug	
structures – documentir and maintaining. Text Books : 1. <i>Embedded system</i>						ltecture – debug	
structures – documentir and maintaining. Text Books :	n architect ns Buildin	<i>ure</i> , Ta g <i>Block</i>	mmy s: Cor	Noergaard	Elsevier, 2006.		ging testing
structures – documentin and maintaining. Text Books : 1. <i>Embedded system</i> Reference Books : 1. <i>Embedded System</i>	n architect ns Buildin publisher, H	<i>ure</i> , Ta g <i>Block</i>	mmy s: Cor	Noergaard	Elsevier, 2006.		ging testing

ROBOTICS AND AUTOMATION (RAA)

I Semester : VLSI & I	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Ma	ximum Marks	
ECE861 (Elective-II)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	0	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A	At the and	of the	011700	the studen	t will be able to		
CO1: Understand an							
CO2: Understand the					control modes		
CO3: Understand the							
CO4: Use robot prog							
	0			6			
			Ba	sic Conce	pts		
Definition and origin							ots – degree
of freedom – Asimov'	's laws of					of robots.	
				ources And			
Hydraulic, pneumatic							
speed arrangements –						nachine vision –	ranging –
laser – acoustic – mag							
					And Crinnord		
Construction of manir					And Grippers	types of control i	modes-
Construction of manip	oulators –	manipu	lator c	lynamics a	nd force control –t	types of control i	modes-
Construction of manip electronic and pneuma	oulators –	manipu ulator c	lator c ontrol	lynamics a l circuits –	nd force control –t end effectors – va	types of control r rious types of gr	modes- ippers.
electronic and pneuma	oulators – atic manip	manipu oulator c Kine	lator c ontrol matic	lynamics a l circuits – <mark>s And Pat</mark> l	nd force control –t end effectors – var h Planning	rious types of gr	ippers.
electronic and pneuma Forward kinematics-sol	oulators – atic manip lution of ii	manipu ulator c Kine nverse k	lator o ontrol matic inema	lynamics a l circuits – s And Pat atics proble	nd force control –t end effectors – var h Planning	rious types of gr	ippers.
electronic and pneuma	oulators – atic manip lution of ii	manipu ulator c Kine nverse k	lator o ontrol matic inema ming	lynamics a l circuits – s And Pat atics proble	nd force control –t end effectors – var h Planning em – multiple solu	rious types of gr	ippers.
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi	pulators – atic manip lution of in s – robot p ne interfac	manipu ulator c Kine nverse k program ce – rob	lator o ontrol matic inema ming	lynamics a l circuits – s And Pat atics proble languages Case Studie	nd force control –t end effectors – var h Planning em – multiple solu	rious types of gr	ippers. ork envelop
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec	pulators – atic manip lution of in s – robot p ne interfac	manipu ulator c Kine nverse k program ce – rob	lator o ontrol matic inema ming	lynamics a l circuits – s And Pat atics proble languages Case Studie	nd force control –t end effectors – var h Planning em – multiple solu	rious types of gr	ippers. ork envelop
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books :	pulators – atic manip lution of in s – robot p ne interfac ction of ro	manipu ulator c Kine nverse k program ce – rob bot.	lator c ontrol matic inema ming C ots in	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar	rious types of gr tion jacobian wo nufacturing appli	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec	pulators – atic manip lution of in s – robot p ne interfac ction of ro	manipu ulator c Kine nverse k program ce – rob bot.	lator c ontrol matic inema ming C ots in	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar	rious types of gr tion jacobian wo nufacturing appli	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing technique Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i>	pulators – atic manip lution of in s – robot p ne interfac ction of ro <i>otics Analy</i> ation, Asia	manipu ulator c Kine nverse k orogram ce – rob bot. sis, Syst , 2001.	lator control matic inema ming Cots in	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i>	pulators – atic manip lution of in s – robot p ne interfac ction of ro <i>otics Analy</i> ation, Asia	manipu ulator c Kine nverse k orogram ce – rob bot. sis, Syst , 2001.	lator control matic inema ming Cots in	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing technique Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980.	pulators – atic manip lution of in s – robot p ne interfac ction of ro <i>ptics Analy</i> ation, Asia	manipu ulator c Kine nverse k program ce – rob bot. sis, Syst , 2001.	lator control matic inema ming Cots in tems, 1	lynamics a l circuits – s And Pat atics proble languages Case Studio manufactu <i>Application</i> <i>ng and app</i>	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980. Reference Books :	pulators – atic manip lution of in s – robot p ne interfac ction of ro <i>ptics Analy</i> ation, Asia <i>Pechnology</i>	manipu ulator c Kinen nverse k brogram ce – rob bot. sis, Syst , 2001. Progra n Koren	lator control matic inema ming Ots in tems, A tems, A	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu Application ag and app Graw Hill.	nd force control –t end effectors – van h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P 1980	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of 2. Groover, et.al	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980. Reference Books : 1. <i>Robotics for Engin</i> 2. <i>Introduction to Rob</i> 2004.	pulators – atic manip lution of in s – robot p ne interfac ction of ro otics Analy ation, Asia <i>Cechnology</i> <i>eers</i> , Yora botics Mec	manipu ulator c Kine nverse k program ce – rob bot. <i>sis, Syst</i> <i>sis, Syst</i> <i>y Progra</i> <u>n Koren</u>	lator control matic inema ming Cots in tems, A tems, A tems, A tems, A	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu Application ag and app Graw Hill.	nd force control –t end effectors – van h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P 1980 raig, Second edition	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of C. Groover, et.al	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980. Reference Books : 1. <i>Robotics for Engin</i> 2. <i>Introduction to Rob</i> 2004.	pulators – atic manip lution of in s – robot p ne interfac ction of ro etics Analy ation, Asia fechnology eers, Yora botics Mec	manipu ulator c Kine nverse k program ce – rob bot. <i>sis, Syst</i> <i>sis, Syst</i> <i>y Progra</i> <u>n Koren</u>	lator control matic inema ming Cots in tems, A tems, A tems, A tems, A	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu Application ag and app Graw Hill.	nd force control –t end effectors – van h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of C. Groover, et.al	ippers. ork envelop cations –
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – select Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980. Reference Books : 1. <i>Robotics for Engin</i> 2. <i>Introduction to Rob</i> 2004. 3. <i>Robotics Technole</i>	pulators – atic manip lution of in s – robot p ne interfac ction of ro <i>ptics Analy</i> ation, Asia <i>Pechnology</i> <i>eers</i> , Yora <i>botics Mec</i> <i>ogy and F</i>	manipu ulator c Kine nverse k program ce – rob bot. <i>sis, Syst</i> <i>sis, Syst</i> <i>sis, Syst</i> <i>p Progra</i> un Koren <i>chanics</i>	lator control matic inema ming ots in tems, A tems, A ummin n, Mcc and C	lynamics a l circuits – s And Pat l atics proble languages Case Studie manufactu <i>Application</i> <i>ag and app</i> <u>Graw Hill.</u> <i>Control</i> , Cr	nd force control –t end effectors – var h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P 1980 raig, Second editio ya Ranjan Deb, TM	rious types of gr tion jacobian wo nufacturing appli Prentice Hall of C. Groover, et.al n, Pearson Educa 1H, New Delhi,	ippers. ork envelop cations – ation, Asia 2001
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – select Text Books : 1. <i>Introduction to Robo</i> India/PearsonEduca 2. <i>Industrial Robots - T</i> McGraw Hill, 1980. Reference Books : 1. <i>Robotics for Engin</i> 2. <i>Introduction to Rob</i> 2004. 3. <i>Robotics Technolo</i> Question Paper Patter Internal Assessment: 7 answer any Four question	pulators – atic manip lution of in s – robot p ne interfac ction of ro otics Analy ation, Asia fechnology eers, Yora botics Mec ogy and F rn: The questi ions	manipu ulator c Kinen nverse k program ce – rob bot. sis, Syst , 2001. Progra n Koren chanics lexible a	lator control matic inema ming Ots in tems, A ummir n, Mccand C Autom er shal	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu <i>Application</i> <i>ag and app</i> Graw Hill. <i>Control</i> , Cr <i>nation</i> , Saty	nd force control –t end effectors – van h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P 1980 raig, Second edition ya Ranjan Deb, TM f Six questions out	rious types of gra tion jacobian wo nufacturing appli Prentice Hall of Prentice Hall of Groover, et.al n, Pearson Educa IH, New Delhi,	ippers. ork envelop cations – ation, Asia 2001 ident shall
electronic and pneuma Forward kinematics-sol hill climbing techniques Mutiple robots – machi robot cell design – selec Text Books : 1. Introduction to Robo India/PearsonEduca 2. Industrial Robots - T McGraw Hill, 1980. Reference Books : 1. Robotics for Engin 2. Introduction to Rob 2004. 3. Robotics Technolo Question Paper Patter Internal Assessment: 7	pulators – atic manip lution of in s – robot p ne interfac ction of ro otics Analy ation, Asia fechnology eers, Yora botics Mec ogy and F rn: The questi ions	manipu ulator c Kinen nverse k program ce – rob bot. sis, Syst , 2001. Progra n Koren chanics lexible a	lator control matic inema ming Ots in tems, A ummir n, Mccand C Autom er shal	lynamics a l circuits – s And Pat atics proble languages Case Studie manufactu <i>Application</i> <i>ag and app</i> Graw Hill. <i>Control</i> , Cr <i>nation</i> , Saty	nd force control –t end effectors – van h Planning em – multiple solu es uring and non- mar ns, Saeed B. Niku, <i>lications</i> , Mikell P 1980 raig, Second edition ya Ranjan Deb, TM f Six questions out	rious types of gra tion jacobian wo nufacturing appli Prentice Hall of Prentice Hall of Groover, et.al n, Pearson Educa IH, New Delhi,	ippers. ork envelop cations – ation, Asia 2001 ident shall

ADVANCED COMPUTER NETWORKS (ACN)

Course Code	S			~		Scheme	: 2017
	Hours	/Week		Credits		ximum Marks	
EC862 (Elective-II)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAI
	3	0	-	3	40	60	100
Sessional Exam Dur	ation : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A	t the end	of the c	ourse	e the studer	nt will be able to		
CO1: Understand Inte	el 8051 a	nd Atme	el mic	rocontrolle	ers features for emb	bedded systems	
CO2: Utilize the prog							ms.
CO3: Understand the	Embedde	ed C pro	gram	ming techn	iques for microcor	trollers.	
CO4: Use Embedded							
	Co	ngestio	n and	l Quality o	of Service (QoS)		
Active (RED), and Fair Resource Reservation an Introduction, Wireless I Access Control (MAC)	AN Top LAN Top	sion Co Wire ologies, Latest I	ntrol less I Wire Devel	Scheduling Local Area less LAN I opments.	g, Integrated and D Networks Requirements, the I Wireless Personal	ifferential Servie Physical Layer, Area Networks	ces. the Mediu s (WPANs
Introduction to PAN T Wireless Wide Area N		•					
•		e Second	l- Ger	neration Ce	ellular Systems, The		
Systems, Wireless in Lo	cal Loop	e Second , Wirele	l- Ger ss A7	neration Ce TM, IEEE 8	ellular Systems, The 802.16 Standard.		
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN):	cal Loop ks: Cellu Techniqu Types o	e Second , Wirele Cellular alar System es, Dyn f VPN, Y ues, VP	l- Ger ss AT Syst tems amic VPN N Sta	neration Ce FM, IEEE 8 ems and In Fundamen Resource General An ndards.	ellular Systems, The 802.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current	e Third- Generat se, SIR and Us mental Rate Lii	tion Cellul er Capacit nits. Virtu
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN):	cal Loop ks: Cellu Techniqu Types o	e Second , Wirele Cellular alar System es, Dyn f VPN, Y ues, VP	l- Ger ss AT Syst tems amic VPN N Sta	neration Ce FM, IEEE 8 ems and In Fundamen Resource General An ndards.	ellular Systems, The 802.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda	e Third- Generat se, SIR and Us mental Rate Lii	tion Cellul er Capacit nits. Virtu
•	cal Loop ks: Cellu Techniqu Types o curity Iss ion Conv andards f II, ATM M Adapt AL3/4), 1 Traffic	e Second , Wirele Cellular dlar System is, Dyn f VPN, Y ues, VP. ATM vergence for ATM Layer F ation L ATM A c Paran pries, Qo	l- Ger ss AT Syst tems amic VPN N Sta Proto e (TC L AT Suncti- ayer dapta neters oS and	neration Ce TM, IEEE 8 ems and In Fundamen Resource General An ndards. Col Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer , ATM S d QoS Class	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer 0, ATM Adaptation 5 (AAL5). ATM T Service Parameter sses.	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag um Dependent (Structure at UN : Service Classe on Layer 2 (Az Traffic and Servi	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Ce es and AT AL2), AT ice
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN): Disadvantages, VPN Se Introduction, Transmiss layer, Physical Layer St Header Structure at NN Adaptation Layer, ATI Adaptation Layer 3/4 (A Parameterization: ATM	cal Loop ks: Cellu Techniqu Types o curity Iss ion Conv andards f II, ATM M Adapt AL3/4), 1 Traffic	e Second , Wirele Cellular dlar System is, Dyn f VPN, Y ues, VP. ATM vergence for ATM Layer F ation L ATM A c Paran pries, Qo	l- Ger ss AT Syst tems amic VPN N Sta Proto e (TC L AT Suncti- ayer dapta neters oS and	neration Ce CM, IEEE 8 ems and In Fundamen Resource General An Indards. Cocol Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer , ATM S	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer 0, ATM Adaptation 5 (AAL5). ATM T Service Parameter sses.	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag um Dependent (Structure at UN : Service Classe on Layer 2 (Az Traffic and Servi	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Co es and AT AL2), AT ice
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN): Disadvantages, VPN Se Introduction, Transmiss layer, Physical Layer St Header Structure at NN Adaptation Layer, ATI Adaptation Layer, ATI Adaptation Layer 3/4 (A Parameterization: ATM Parameteris, ATM Servio Introduction, Banyan Rearrangeable Network Algorithm. SONET/SDI Multiplexing, SONET N	cal Loop cal Loop cal Loop classical control control curity Iss curity Iss cu	e Second , Wirele Cellular Ilar System ies, Dyn f VPN, Y ues, VP ATM vergence for ATM Layer F ation L ATM A c Paran pries, Qo Int cs- Pro-	I- Ger ss AT syst tems amic VPN N Sta Proto e (TC I. AT functional dapta neters of ano ercon pertie rithm	neration Ce TM, IEEE 8 ems and In Fundamen Resource General An ndards. Col Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer ATM S d QoS Class mection N es, Crossb , Benes N	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer 0, ATM Adaptation 5 (AAL5). ATM T Service Parameter sses. etworks bar Switch, Three etworks, Looping	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag m Dependent (Structure at UN Structure at UN Service Classe on Layer 2 (Az Traffic and Servi s, Factors Aff e Stage Class Algorithm, Bit	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Ca es and AT AL2), AT ice fecting Qa Network - Allocatio
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN): Disadvantages, VPN Se Introduction, Transmiss layer, Physical Layer St Header Structure at NN Adaptation Layer, ATI Adaptation Layer, ATI Adaptation Layer 3/4 (A Parameterization: ATN Parameteris, ATM Service Introduction, Banyan Rearrangeable Network Algorithm. SONET/SDI Multiplexing, SONET N	cal Loop ks: Cellu Techniqu Types of curity Iss ion Conv andards f II, ATM M Adapt AL3/4), I Traffic ce Catego Networl s, Foldin H: SONE	e Second , Wirele Cellular Ilar System ies, Dyn f VPN, Y ues, VP ATM vergence For ATM Layer F ation L ATM A c Paran pries, Qo Int cs- Pro ag Algor T/SDH	I- Ger ss AT ss AT tems amic VPN N Sta Prote (TC I. AT dapta dapta neters oS and ercon pertie rithm Archi	neration Ce TM, IEEE 8 ems and In Fundamen Resource General An ndards. Col Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer ATM S d QoS Class mection N es, Crossb , Benes N itecture, SC	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer 0, ATM Adaptation 5 (AAL5). ATM T Service Parameter sses. letworks bar Switch, Three etworks, Looping DNET Layers, SON	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag m Dependent (Structure at UN : Service Classe on Layer 2 (Az Traffic and Servi s, Factors Aff e Stage Class Algorithm, Bit VET Frames, ST	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Ce es and AT AL2), AT ice fecting Qo Network - Allocatio
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN): Disadvantages, VPN Se Introduction, Transmiss layer, Physical Layer St Header Structure at NN Adaptation Layer, ATI Adaptation Layer, ATI Adaptation Layer 3/4 (A Parameterization: ATN Parameters, ATM Servio Introduction, Banyan Rearrangeable Network Algorithm. SONET/SDI Multiplexing, SONET N Text Books : 1.Wireless Communicat 2. Ad Hoc Wireless Net	cal Loop cal Loop cal Loop curity Cellu Techniqu Types o curity Iss ion Conv andards f II, ATM M Adapt AL3/4), I Traffic ce Catego Networl s, Foldin H: SONE Vetworks ions - An	e Second , Wirele Cellular Ilar System ies, Dyn f VPN, Yer es, VP ATM vergence for ATM Layer F ation L ATM A c Paran ories, Qo Int cs- Pro ng Algor T/SDH	l- Ger ss AT ss AT tems amic VPN N Sta Prote (TC (AT) ayer dapta dapta neters oS and pertie rithm Archi	neration Ce TM, IEEE 8 ems and In Fundamen Resource General An ndards. ocol Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer , ATM S d QoS Class mection N es, Crossb , Benes N itecture, SC ith, 2005, C	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer b, ATM Adaptation 5 (AAL5). ATM T Service Parameter ses. letworks bar Switch, Three etworks, Looping DNET Layers, SON Cambridge Univers	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag um Dependent (Structure at UN : Service Classe on Layer 2 (Az Traffic and Servi s, Factors Aff e Stage Class Algorithm, Bit VET Frames, ST	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Co es and AT AL2), AT ice fecting Qo Network - Allocations
Systems, Wireless in Lo Based Wireless Networ Interference Reduction Private Network (VPN): Disadvantages, VPN Se Introduction, Transmiss layer, Physical Layer St Header Structure at NN Adaptation Layer, ATI Adaptation Layer, ATI Adaptation Layer, ATI Parameterization: ATM Parameteris, ATM Service Introduction, Banyan Rearrangeable Network Algorithm. SONET/SDI Multiplexing, SONET N Text Books : 1.Wireless Communicat	cal Loop ks: Cellu Techniqu Types of curity Iss ion Conv andards f II, ATM M Adapt AL3/4), I Traffic ce Catego Networl s, Foldin H: SONE Vetworks ions - An works: A	e Second , Wirele Cellular Ilar System ilar System iles, Dyn f VPN, Yen wergence for ATM Vergence for ATM Layer F ation L ATM A c Paran ories, Qo Int as- Pro ag Algor T/SDH	I- Ger ss AT ss AT tems amic VPN of N Sta Prote (TC I. AT function ayer dapta bS and pertic rithm Archi oldsmini- ures a	heration Ce TM, IEEE 8 ems and In Fundamen Resource General An ndards. Col Refer C) Sub-laye M Layer: A ons. ATM 1 (AAL1) tion Layer ATM S d QoS Class nection N es, Crossb , Benes N itecture, SC ith, 2005, C nd Protoco	ellular Systems, The 302.16 Standard. nfrastructure tals, Channel Reus Allocation, Funda rchitecture, Current ence Model er, Physical Mediu ATM Cell Header S Adaptation Layer 5 (AAL5). ATM T Service Parameter ses. letworks Dar Switch, Three etworks, Looping DNET Layers, SON Cambridge University DIS - C. Siva Ram M	e Third- Generat se, SIR and Us mental Rate Lin t VPN Advantag um Dependent (Structure at UN : Service Classe on Layer 2 (Az Traffic and Servi s, Factors Aff e Stage Class Algorithm, Bit JET Frames, ST ity Press. furthy and B.S.I	tion Cellul er Capacit nits. Virtu ges and (PMD) Su I, ATM Co es and AT AL2), AT ice fecting Qo Network - Allocations

Reference Books :

1.Introduction to Broadband Communication Systems- Sadiku, Mathew N.O., Akujuobi, Cajetan.M, PHI

2. Wireless Networks- P. Nicopolitidis, A. S. Pomportsis, G. I. Papadimitriou, M. S. Obaidat, 2003, JohnWiley & Sons.

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

VLSI SIGNALPROCESSING (VS)

II Semester : VLSI &		-				Scheme	: 2017
Course Code	Hours	/Week	1	Credits		ximum Marks	ſ
EC955 (Elective-III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes :							
CO1: Apply the prin							1 1
CO2: Apply pipelini low power.	ing and pa	rallel pr	ocess	ing on FIR	and IIR systems to	b achieve high s	peed and
CO3: Solve Register	minimize	ation re	timin	g folding te	chniques for the a	riven digital filte	۶r
CO4: Understand the					1 8		
		• • • • • •		ystone aren			
	Introdu	action t	o Dig	ital Signal	Processing System	ns	
Introduction, Typical D							ologies,
Representation of DSP	Algorithm	18.					
				ration Bou			
Introduction, Data Flov						Bound, Algorith	ms for
computing iteration bou	und, Iterat						
Introduction Direlining	ef EID D				l Processing	a and Danallal F)
Introduction, Pipelining for low power.	g OI FIR D	ngital F	mers,	Parallel Pro	ocessing, Pipelinin	ig and Parallel F	rocessing
Tor tow power.		R	etimi	ng and Un	folding		
Introduction, Definition	ns and prop			<u> </u>	U	timing Technia	ues. An
algorithm for unfolding							
		-		Folding			
Introduction, Folding t				nimization	techniques, Regist	er minimization	in folded
architecture, Folding of	fmultirate	-					
	<u> </u>	Ũ		Architectu	0		
Introduction, System an Matrix-matrix multiplic containing delays.							· · ·
Text Books :							
1. Keshab K. Parthi, VI	LSI Digita	l Signal	Proc	essing- Sys	tem Design and Im	plementation, V	Viley Inter
Science. 1998.							
2. Kung S. Y, H. J. Wh	ile House,	T. Kail	ath, V	/LSI and M	odern Signal proce	essing, Prentice	Hall, 1985.
Reference Books :							
1. Jose E. France, Yann	nis Tsividi	s, Desig	n of A	Analog, Dig	gital VLSI Circuits	for Telecommu	inications
and Signal Processi	ng, Prenti	ce Hall,	1994.				
2. Medisetti V. K, VLS	0				Press (NY), USA	, 1995.	
Question Paper Patter		0		0 /	· //	-	
Internal Assessment:		ion pape	er shal	ll consist of	Six questions out	of which the stu	udent shall
		T T .					
answer any Four quest							
	ions	shall cor	nsist o	of Eight que	estions out of whic	h the student sh	

ELECTRONIC DESIGN AUTOMATION TOOLS (EDAT)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Max	kimum Marks	
EC956 (Elective-III)	L 3	Т	Р	C 3	Continuous Internal Assessment	End Exam	TOTAL
Sessional Exam Dur	_	- Ung	-	3	40 End Eva	60 m Duration: 3	100
Sessional Exam Dur	ration: 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : A CO1: Utilize EDA to CO2: Design synthes CO3: Explain the dif CO4: Design circuits	ols in the sizable ver ference be	ir projec rilog co etween	ets . de.			e SystemVerilog	g code.
	S	ynthesi	is and	l simulatio	n using HDLs		
Logic synthesis using ve of simulation. Static tim	rilog. Mer ing analy	nory and sis. For	d FSN mal v	I synthesis. erification.	Performance driver Switch level and t	ransistor level s	
					lation using Spice		
Circuit description AC, ENDS, FUNC, GLOBA SENS, STEP, DC.				,	1	•	,
SERVE, STER, DC.		Circ	uit siı	nulation u	sing Spice		
Models for diodes, trans and latches.	istors and					and timing mode	els, flip flops
		Data	а Тур	es in Syste	emVerilog		
Introduction, data types Arrays, Array Methods, Conversion, Streaming	Choosing	g a Stora	age T	ype, typede	ef, User-Defined St	•	
					test benches in S	vstemVerilog	
Procedural Statements, Routine, Local Data Sto Design, The Interface C Text Books :	Tasks, Fu orage, Tim	nctions,	, and `	Void Funct	ions, Routine Argu	iments, Returnii	
1. M.J.S.Smith, App	lication S	pecific	Integ	rated Circu	its,Pearson,2002.		
2. M.H.Rashid, Spic		1	0		, ,	HI.	
3. Chris Spear_and_							
Reference Books :		,0	<i>j</i> = <i>v</i> = 11			r0	
1. S.Sutherland, S Springer,2006.	. Davidma	ann, P. I	Flake,	"System V	/erilog For Design	ı",(2/e),	
Question Paper Patter	n •						
Internal Assessment: T answer any Four questi End Exam: The question	The questi ons						
any Five questions			15151 0	n Eight qu			

SYSTEM ON CHIP ARCHITECTURE (SOCA)

II Semester : VLSI & E	S					Scheme	2017
Course Code	Hours/	Week		Credits	Maxi	mum Marks	
EC957 (Elective-III)	L	T	Р	C	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dura	tion : 2	Hrs			End Exan	n Duration: 3	Hrs
Course Outcomes : At	the end	of the co	ourse	the student	will be able to		
CO1: understand system	11			<u> </u>			
CO2: understand proce							
CO3: understand Mem		U 1		U			
CO4: understand inter		-		Ų			
CO5: understand appli	cations of			*			
ã da da da					ystem Approach		
System Architecture, Corr Memory and Addressing. Architecture and Complex	System						
			F	Processors			
Introduction , Processor S Processor Micro Archite Delays, Branches, More VLIW Processors, Supers Overview of SOC extern	cture, Ba Robust F scalar Pro	asic eler Processo ocessors Me	ments ors, Ve s emory	s in Instruc ector Proce 7 Design fo	tion handling. Buf ssors and Vector Ir r SOC	fers: minimizir structions exter	ng Pipeline nsions,
Organization, Cache data Split – I, and D – Caches, of Simple Processor – me	, Multile ^x mory int	vel Cacl	nes, V 1.	rirtual to re	al translation , SOC		
Inter Connect Architectu Using the Bus model, Effe Customizing Instruction F devices, Instance- Specifi and trade-off analysis on F	res, Bus ects of Bu Processon ic design reconfig	: Basic us transa r, Recon n, Custo urable P	Arch action figura mizal Paralle	itectures, S s and conte ation Techr ole Soft Pr elism.	ntion time. SOC Cu ologies, Mapping d ocessor, Reconfigur	stomization: An esign onto Reco	n overview, onfigurable
					ase Studies		
SOC Design approach, AE	ES algorit	thms, De	esign a	and evaluation	on, Image compress	ion – JPEG con	pression.
Text Books :	- C -			N (1) 1 T	T1 1 1 1 1 7 7	1 337' 1 7 1'	
1. Computer System Desi						-	
2. ARM System on Chi	p Archite	ecture	Steve	Furber - 2r	id Ed., 2000, Addi	ison wesley Pro	oressional
Reference Books :	Chim D	aviana	nd Co	mananta	Diagnda Daig 1st	Ed 2004 Smi	
1. Design of System on a	-						
2. Co-Verification of Ha Technology) – Jason And					• •	sign (Embedded	L
3. System on Chip Veri and Leena Singh L, 2001,	fication -	– Metho	dolog	gies and Te		Rashinkar, Pete	r Paterson
Question Paper Pattern	:						
Internal Assessment: The answer any Four question		on paper	r shall	l consist of	Six questions out o	f which the stud	lent shall
End Exam: The question any Five questions		hall con	sist of	f Eight que	stions out of which	the student sha	ll answer

DESIGN OF SEMICONDUCTOR MEMORIES (DSM)

	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Max	kimum Marks	
EC958 (Elective-III)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dur	ration: 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes : At	the end of	f the co	urse tl	he student	will be able to		
CO1 : Students will get	insight in	to basic	mem	ory technic	ues to advanced m	emory techniqu	es.
CO2: Students will be a	able to ana	alyze fa	ults in	memories	•		
CO3: Students will be	able to us	e efficie	ent me	emory tech	niques in their proj	ects especially	esting phase
						- · ·	• •
		S	RAM	I Cell Stru	ctures		
MOS SRAM Architectu	re MOS	SRAM	Cell a	and Periphe	eral Circuit Operat	ion-Bipolar SR	M
Technologies, Silicon	,			1	1	1	
Technologies, Applicati				1.0011101			
				hnology D	evelopment		
CMOS DRAMs, DRAM	/Is Cell Th			U	_	IOS DRAMS S	oft Error
Failures in DRAMs, Ad							
					nories (ROMs)		
High Density ROMs, Pr				•		or DDOMa CM	
Elasameri vi enoram		ad Only					
Programmable (OTP) E Architecture, Nonvolati Architecture	PROMs, I	Electrica , Flash	y Men ally Ei Memo	nories (EPI rasable PR(ories (EPR	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM	ate EPROM Ce EEPROM Tech	ll-One-Time nology And
Programmable (OTP) E Architecture, Nonvolati Architecture	PROMs, I le SRAM	Electrica , Flash	y Men ally Ei Memo RAM	nories (EPI rasable PR ories (EPR Fault Mo	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling	Gate EPROM Ce EEPROM Tech I), Advanced Fla	ll-One-Time nology And ash Memory
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo	PROMs, I le SRAM	Electrica , Flash 1 Testing,	y Men ally Ei Memo RAM , Mega	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat	ate EPROM Ce EEPROM Tech), Advanced Fla ile Memory Mod	ll-One-Time nology And ash Memory
Programmable (OTP) E Architecture, Nonvolati Architecture	PROMs, I le SRAM	Electrica , Flash I Testing, nd Testi	y Men ally Ei Memo RAM , Mega ng, Aj	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM pplication	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory	ate EPROM Ce EEPROM Tech), Advanced Fla ile Memory Moo	ll-One-Time nology And ash Memory
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusde Testing, IDDQ Fault M	PROMs, I le SRAM Random odeling ar	Electrica , Flash Testing, nd Testi Ge	y Men ally En Memo RAM , Mega ng, Aj eneral	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM pplication Reliabilit	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory 7 y Issues	Gate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Moo Festing	ll-One-Time anology And ash Memory leling and
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo	PROMs, I le SRAM Random odeling ar d Mechan for Reliab lectrical T	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F	y Men ally En Memo RAM , Mega ng, Ay meral on-vola eliabili Pseudo alt Mo	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM pplication Reliabilit atile Memo ity Test Str or Random T odeling and	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory T y Issues ory Reliability, Reli uctures, Reliability Testing, Megabit DI Testing, Applicatio	Gate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Moc Festing ability Modeling Screening and G RAM Testing, No	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusde Testing, IDDQ Fault M RAM Failure Modes an Rate Prediction, Design RAM Fault Modeling, E Memory Modeling and T	PROMs, I le SRAM o Random odeling an d Mechan for Reliab lectrical T Festing, ID	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F DDQ Fau	y Men ally En Memo RAM , Mega ng, A eneral on-vola eliabili Pseudo alt Mo Rad	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM pplication Reliabilit atile Memo ity Test Str Random T odeling and liation Eff	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory 7 y Issues ory Reliability, Reli uctures, Reliability Festing, Megabit DI Testing, Application	Gate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Mod Festing ability Modeling Screening and (RAM Testing, No on Specific Mem	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile ory Testing
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo Testing, IDDQ Fault M RAM Failure Modes an Rate Prediction, Design RAM Fault Modeling, E	PROMs, I le SRAM o Random odeling ar d Mechan for Reliab lectrical T festing, ID non (SEP) n Hardene /ater Leve allium Ar AMs), Exj CMs (3D)	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F DDQ Fau DDQ Fau DDQ Fau DDQ Fau el Radia senide (perimen) Memo	y Men ally En Memo RAM , Mega ng, A eneral on-vola eliabili Pseudo alt Mo Rad tion I ory Cl tion T GaAs tal Me ry MO	Fault Mon abit DRAM pplication atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Atile Atile Atile Atile Atile Atile Atile	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory 7 y Issues ory Reliability, Reliability Testing, Megabit DI Testing, Application tests, Reliability Testing, Application test Structures, F Analog Memories vices, Memory Hyb	ate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Mod Festing ability Modeling Screening and C RAM Testing, No on Specific Mem tion Hardening ness Assurance erroelectric Ran , Magneto-resist orids and MCMs	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile ory Testing Process and and Testing dom Access ive Random s (2D)
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo Testing, IDDQ Fault Me RAM Failure Modes an Rate Prediction, Design RAM Fault Modeling, E Memory Modeling and T Single Event Phenomer Design Issues, Radiation Radiation Dosimetry, W Memories (FRAMs), G Access Memories (MRA Memory Stacks and Mo Density Memory Packa	PROMs, I le SRAM o Random odeling ar d Mechan for Reliab lectrical T festing, ID non (SEP) n Hardene /ater Leve allium Ar AMs), Exj CMs (3D)	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F DDQ Fau DDQ Fau DDQ Fau DDQ Fau el Radia senide (perimen) Memo	y Men ally En Memo RAM , Mega ng, A eneral on-vola eliabili Pseudo alt Mo Rad tion I ory Cl tion T GaAs tal Me ry MO	Fault Mon abit DRAM pplication atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Memon atile Atile Atile Atile Atile Atile Atile Atile Atile	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory 7 y Issues ory Reliability, Reliability Testing, Megabit DI Testing, Application tests, Reliability Testing, Application test Structures, F Analog Memories vices, Memory Hyb	ate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Mod Festing ability Modeling Screening and C RAM Testing, No on Specific Mem tion Hardening ness Assurance erroelectric Ran , Magneto-resist orids and MCMs	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile ory Testing Process and and Testing dom Access ive Random s (2D)
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo Testing, IDDQ Fault M RAM Failure Modes an Rate Prediction, Design RAM Fault Modeling, E Memory Modeling and T Single Event Phenomer Design Issues, Radiation Radiation Dosimetry, W Memories (FRAMs), G Access Memories (MRA Memory Stacks and Mo Density Memory Packa	PROMs, I le SRAM o Random odeling ar d Mechan for Reliab lectrical T festing, ID non (SEP) n Hardene /ater Leve allium Ar AMs), Exp CMs (3D) ging Futu	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F DDQ Fau b), Radia ed Memo el Radia senide (perimen) Memo re Direc	y Men ally En Memo RAM , Mega ng, A eneral on-vola eliabili Pseudo alt Mo Rac tion I ory Cl tion T GaAs tal M ry Mo etions	nories (EPI rasable PR ories (EPR Fault Mon abit DRAM pplication Reliabilit atile Memor or Random To deling and liation Eff Hardening haracteristi Cesting and) FRAMs, emory Dev CM Testing	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory T y Issues ory Reliability, Reli uctures, Reliability Testing, Megabit DI Testing, Megabit DI Testing, Applicatio ects Techniques-Radia cs, Radiation Hard Test Structures, F Analog Memories vices, Memory Hyb g and Reliability I	ate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Mod Festing ability Modeling Screening and C RAM Testing, No on Specific Mem tion Hardening ness Assurance erroelectric Ran , Magneto-resist orids and MCMs ssues, Memory	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile ory Testing Process and and Testing dom Access ive Random s (2D)
Programmable (OTP) E Architecture, Nonvolati Architecture Electrical Testing, Peusdo Testing, IDDQ Fault Me RAM Failure Modes an Rate Prediction, Design RAM Fault Modeling, E Memory Modeling and T Single Event Phenomer Design Issues, Radiation Radiation Dosimetry, W Memories (FRAMs), G Access Memories (MRA Memory Stacks and Mo Density Memory Packa	PROMs, I le SRAM o Random odeling an d Mechan for Reliab lectrical T festing, IE non (SEP) n Hardene /ater Leve allium Ar: AMs), Exj CMs (3D) ging Futu miconduc	Electrica , Flash Testing, nd Testi Ge ism, No bility, Re esting, F DDQ Fau), Radia ed Memo el Radia senide (perimen) Memo re Direc	y Men ally En Memo RAM , Mega ng, Aj eneral on-vola eliabili Pseudo alt Mo Rad ttion I GaAs tal M ry MO ctions	nories (EPI rasable PR ories (EPR Fault Mo abit DRAM pplication Reliabilit atile Memo ity Test Str o Random T odeling and liation Eff Hardening haracteristi Testing and) FRAMs, emory Dev CM Testing	ROMs), Floating-C OMs (EEPROMs), OMs or EEPROM deling Testing, Non-volat Specific Memory T y Issues ory Reliability, Reliability Testing, Megabit DI Testing, Megabit DI Testing, Application ects Techniques-Radia cs, Radiation Hard Test Structures, F Analog Memories vices, Memory Hyb g and Reliability I hume Set, Wiley-IE	Gate EPROM Ce EEPROM Tech (), Advanced Fla ile Memory Mod Festing ability Modeling Screening and O RAM Testing, No on Specific Mem tion Hardening ness Assurance erroelectric Ram , Magneto-resist orids and MCMs ssues, Memory EEE Press, 2003	ll-One-Time anology And ash Memory leling and g and Failure Qualification on-volatile ory Testing Process and and Testing dom Access ive Randon s (2D)

Reference Books :

1. Betty Prince, *High Performance Memories New Architecture DRAMs and SRAMs - Evolution and Function*, Wiley, 1999

Question Paper Pattern:

Internal Assessment: The question paper shall consist of **Six** questions out of which the student shall answer any **Four** questions

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions

PRINCIPLES OF DISTRIBUTED EMBEDDED SYSTEMS (PDES)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours	/Week		Credits	Max	imum Marks	
EC959 (Elective-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Dur	_	Hrs	l		-	m Duration: 3	
Course Outcomes : A	At the end	of the c	course	the studer	t will be able to		
CO1: Understand C l	anguage a	and asse	mbly	programm	ing.		
CO2: Understand Ob							
CO3: Understand sof							
CO4: Understand En	nbedded s	oftware	deve	lopment to	ols		
		REA	L-TI	ME ENVI	RONMENT		
Real-time computer sy time – internal and ext temporal relations – de event triggered – rate of	ernal cloc ependabili constraine	k synch ity – po d – time	roniz wer a e trigg	ation – rea nd energy a gered	l time model. Real	– time commun me communica	ication –
Inter component com							ctions
process input/output –						inter task intera	
process input output	agreemer	n proto		TEM DES			
Scheduling problem - architecture	static & d	-	schee	duling – sy	stem design – valid	ation – time–tri	ggered
				UCTION			
Introduction to CAN C	pen – CA	N open				onic Data Sheet	s & Devices
				STANDA			
Configuration Files – Se Profile Encoder	ervice Dat	ta Objec	ctives	– Network	management CAN	open messages	s – Device
Text Books :		-					
1.Hermann Kopetz, Applications", 2nd	Edition, S	Springer	2011	•	_		
2. Glaf P.Feiffer, A CAN open", Copp					d, "Embedded Netv	working with C	AN and
Reference Books :		-					
1.							
Question Paper Patter	n:						
Internal Assessment: Tanswer any Four questi	The questi	on pape	er sha	ll consist o	f Six questions out	of which the stu	ident shall
End Exam: The question		hall cor	nsist o	of Eight qu	estions out of which	h the student sh	all answer
any Five questions							

EMBEDDED LINUX (ELX)

II Semester : VLSI &	ES					Scheme	: 2017
Course Code	Hours/	Week		Credits	Max	kimum Marks	
EC960 (Elective-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
	3	-	-	3	40	60	100
Sessional Exam Du	ration : 2	Hrs			End Exa	m Duration: 3	Hrs
Course Outcomes :					t will be able to		
CO1: Understand fu			bedde	ed Linux.			
CO2: Understand G							
CO3: Understand Er							
CO4: Understand Er	nbedded L	-					
T - 1 - 1	. 1 1			x Fundam		. 1	1 . 1
Introduction - host-tan RT linux.	rget develo	pment	-			ment languages	and tools –
				nitializatio			
Linux kernel and kern	el initializ	ation -				pport – boot loa	ders.
D 1 1 1 1 1	1.1	• • • •		vice Hand	<u> </u>	1	
Device driver basics -	module ut	- 111ties		systems - M elopment 7	-	busy box.	
Embedded developmen debugging - debugging interface.			appli	ications - p	oorting Linux - Lin	•	
				ce Applica			
Asynchronous serial co I/O interfacing - using i				- parallel p	ort interfacing - U	SB interfacing -	memory
Text Books :							
2. <i>Embedded Linu</i> . Hall, 2007.	x Primer: 1	A practi	ical re	eal world a	pproach, Christopl	her Hallinan, Pr	entice
2. Embedded Linux: Ho	ardware, se	oftware	and I	Interfacing	, Craig Hollabaugh	, Pearson Educa	ation, 2002.
Reference Books :							
4. <i>Building embedd</i> Gerum, O'Reilly	•	stems,	Karin	n Yaghmou	r, Jon Masters, Gil	lad Ben Yossef	, Philippe
		eal tim	e app	lications, I	Doug Abbott, Elsev	vier Science, 200)3.
Question Paper Patter	rn:						
Internal Assessment:		on pape	r sha	ll consist of	f Six questions out	of which the stu	ident shall
answer any Four quest		11.			1		
End Exam: The questi		hall cor	nsist o	of Eight qu	estions out of whic	h the student sh	all answer
T !	-			-			

any **Five** questions

EMBEDDED NETWORKS AND PROTOCOLS (ENP)

II Semester : VLSI &						Scheme	: 2017
Course Code	Hours	/Week		Credits	Ma	ximum Marks	
EC961 (Elective-IV)	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
~	3	-	-	3	40	60	100
Sessional Exam Dur	ration : 2	Hrs			End Exa	am Duration: 3	Hrs
<u> </u>	A / .1 1	6.4		.1 . 1			
Course Outcomes : A							
CO1: Understand con CO2: Understand ele	-			is and ether	met.		
CO2: Understand end				tocals			
CO4: Understand RF			<u>s pro</u>	nocuis.			
	Commun		ΓROI	DUCTION	TO CAN		
The CAN bus - General	l - Concer					cessing and mar	agement -
From concept to reality							
the different ISO/OSI la							
		I	ETH	ERNET BA	ASICS		
Elements of a network							
and network speed - De	0					rollers – Using t	he internet
in local and internet cor	nmunicati				1		
		EN	ГКАТ				
T 1 '	' LIDD			DED ETH			1
Exchanging messages u	0	and TC	P-S	erving web	pages with Dynam		
that respond to user Inp	0	and TC	P-S	erving web	pages with Dynam		
0000	ut – Emai	and TC l for En	P – So ibedd	erving web ed Systems	pages with Dynam – Using FTP – Ke	eeping Devices a	
that respond to user Inp secure.	ut – Emai INDU	and TC l for Err STRIA	P – So bedd	erving web ed Systems ETWORK	pages with Dynam – Using FTP – Ko ING PROTOCO	eeping Devices a	and Networl
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital	ut – Emai INDU ct Networ tion layer	and TC l for Em STRIA k - Basi s - Safe	P – So abedd L NI ic con -by-V	erving web ed Systems ETWORK acept of the Vire - Safe-	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A	eeping Devices a L - Fail-safe SBC udiovideo buses	– Gateways - I2C Bus
that respond to user Inp secure. LIN – Local Interconne - Managing the applica	ut – Emai INDU ct Networ tion layer	and TC l for Em <mark>STRIA</mark> k - Basi s - Safe MOST (P – So ibedd L NI ic con -by-V (Medi	erving web ed Systems ETWORK Incept of the Vire - Safe- ia oriented	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol by-Wire Plus - A systems transpor	eeping Devices a L - Fail-safe SBC udiovideo buses	– Gateways - I2C Bus
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus.	ut – Emai INDU ct Networ tion layer l) bus - N	and TC l for Em <mark>STRIA</mark> k - Basi s - Safe MOST (RI	P – So abedd L NH ic con -by-V (Medi F CO	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE	– Gateways - I2C Bus 1394 bus o
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm	ut – Emai INDU ct Networ tion layer l) bus - N unication:	and TC l for Em STRIA k - Basi s - Safe MOST (RI : interna	P – So abedd L NI ic con -by-V (Medi F CO al and	erving web ed Systems ETWORK neept of the Vire - Safe- ia oriented MMUNIC external - I	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol by-Wire Plus - A systems transpor ATION Remote control of	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE 1 opening parts - 1	– Gateways – Gateways - I2C Bus 1394 bus o PKE
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry)	ut – Emai INDU ect Networ tion layer bus - M unication: and passiv	and TC l for Em STRIA k - Basi s - Safe AOST (RI : interna 7e go- T	P – So ibedd ic con -by-V (Medi F CO il and PMS	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE 1 opening parts - 1	– Gateways - I2C Bus 1394 bus c PKE
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) = GSM-Bluetooth - IEEE	ut – Emai INDU ect Networ tion layer bus - M unication: and passiv	and TC l for Em STRIA k - Basi s - Safe AOST (RI : interna 7e go- T	P – So ibedd ic con -by-V (Medi F CO il and PMS	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE 1 opening parts - 1	– Gateways – Gateways - I2C Bus 1394 bus o PKE
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) GSM-Bluetooth - IEEE Text Books : 1. Multiplexed Netwo	ut – Emai INDU ect Networ tion layer bus - M unication: and passiv 802.11x rks for En	and TC l for Em STRIA k - Basi s - Safe MOST (MOST (RI : interna /e go- T - NFC ()	P – So abedd L NI ic con -by-V (Medi I and PMS near-f	erving web ed Systems ETWORK neept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys- unication).	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE opening parts - I stems) -Wireless	– Gateways - I2C Bus 1394 bus c PKE networks
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) = GSM-Bluetooth - IEEE Text Books :	ut – Emai INDU ect Networ tion layer bus - N unication and passiv 802.11x <i>rks for En</i> Ltd- 2007	and TC l for Em STRIA k - Basi s - Safe MOST (RI : interna ve go- T - NFC (bedded v.	P – So ibedd L NH ic con -by-V (Medi F CO Il and PMS near-1	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm	pages with Dynam – Using FTP – Ka ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys unication). LIN, Flexray, Safe	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE (opening parts - I stems) -Wireless -by-Wire, Domit	– Gateways - I2C Bus 1394 bus o PKE networks
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) = GSM-Bluetooth - IEEE Text Books : 1. <i>Multiplexed Networ</i> John Wiley & Sons	ut – Emai INDU ect Networ tion layer bus - N unication and passiv 802.11x <i>rks for En</i> Ltd- 2007	and TC l for Em STRIA k - Basi s - Safe MOST (RI : interna ve go- T - NFC (bedded v.	P – So ibedd L NH ic con -by-V (Medi F CO Il and PMS near-1	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm	pages with Dynam – Using FTP – Ka ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys unication). LIN, Flexray, Safe	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE (opening parts - I stems) -Wireless -by-Wire, Domit	– Gateways - I2C Bus 1394 bus o PKE networks
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) GSM-Bluetooth - IEEE Text Books : 1. Multiplexed Netwo John Wiley & Sons 2. Embedded Ethernet of	ut – Emai INDU ict Networ tion layer bus - N unication: and passiv 802.11x rks for En Ltd- 2007 und Intern g with CA	and TC l for Em STRIA K - Basi s - Safe MOST (RI : interna ze go- T - NFC (bedded z. et Comp N and (P – So abedd L NH ic con -by-V (Medi PMS near-f Syste plete, CAN o	erving web ed Systems ETWORK neept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm ems- CAN, Jan Axelso	pages with Dynam – Using FTP – Ka ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring sys unication). LIN, Flexray, Safe on Penram publicat	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE opening parts - I stems) -Wireless <i>e-by-Wire</i> , Domin tions	- Gateways - I2C Bus 1394 bus c PKE networks
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) : GSM-Bluetooth - IEEE Text Books : 1. <i>Multiplexed Networ</i> John Wiley & Sons 2. <i>Embedded Ethernet of</i> Reference Books : 1. <i>Embedded networkin</i>	ut – Emai INDU ct Networ tion layer bus - M unication and passiv 802.11x <i>Rks for En</i> Ltd- 2007 <i>Ind Intern</i> <i>g with CA</i> System Ac <i>led Netwo</i>	and TC I for Em STRIA St - Basi s - Safe MOST (RI interna ve go- T - NFC (bedded v. et Comp ket Comp wrked Sy	P – So abedd L NH ic con -by-V (Medi F CO dl and PMS near-f V Syste Syste olete, 2005 stems	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm <i>ems- CAN</i> , A Jan Axelso	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring system unication). LIN, Flexray, Safe on Penram publicat P.Feiffer, Andrew	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE opening parts - I stems) -Wireless <i>c-by-Wire</i> , Domini- tions	- Gateways - I2C Bus 1394 bus c PKE networks nique Paret, tian
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) GSM-Bluetooth - IEEE Text Books : 1. <i>Multiplexed Networ</i> John Wiley & Sons 2. <i>Embedded Ethernet of</i> Reference Books : 1. <i>Embedded networkin</i> Keyold Embedded S 2. <i>Principles of Embedd</i>	ut – Emai INDU ict Networ tion layer bus - N unication: and passiv 802.11x rks for En Ltd- 2007 und Intern g with CA System Ac ded Netwo econd Edit	and TC I for Em STRIA St - Basi s - Safe MOST (RI interna ve go- T - NFC (bedded v. et Comp ket Comp wrked Sy	P – So abedd L NH ic con -by-V (Medi F CO dl and PMS near-f V Syste Syste olete, 2005 stems	erving web ed Systems ETWORK acept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm <i>ems- CAN</i> , A Jan Axelso	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring system unication). LIN, Flexray, Safe on Penram publicat P.Feiffer, Andrew	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE opening parts - I stems) -Wireless <i>c-by-Wire</i> , Domini- tions	- Gateways - I2C Bus 1394 bus c PKE networks nique Paret.
that respond to user Inp secure. LIN – Local Interconne - Managing the applica D2B (Domestic digital 'FireWire'- profi bus. Radio-frequency comm (passive keyless entry) : GSM-Bluetooth - IEEE Text Books : 1. <i>Multiplexed Networ</i> John Wiley & Sons 2. <i>Embedded Ethernet d</i> Reference Books : 1. <i>Embedded networkin</i> Keyold Embedded S 2. <i>Principles of Embedd</i> University Press, Se	ut – Emai INDU Act Networ tion layer bus - N unication: and passiv 802.11x rks for En Ltd- 2007 and Intern g with CA System Act led Netwo econd Edit n: The questi	and TC l for Em STRIA k - Basis s - Safe MOST (RI c interna ye go- T - NFC (nbedded c. et Comp cademy rked Sy tion, 200	P – So abedd L NH ic con -by-V (Medi I and PMS near-1 Z Syste plete, CAN c 2005 stems 05.	erving web ed Systems ETWORK neept of the Vire - Safe- ia oriented MMUNIC external - I (tyre press field comm <i>ems- CAN</i> , A Jan Axelso open, Glaf	pages with Dynam – Using FTP – Ke ING PROTOCO LIN 2.0 protocol -by-Wire Plus - A systems transpor ATION Remote control of ure monitoring system unication). LIN, Flexray, Safe on Penram publicat P.Feiffer, Andrew regory J. Pottie, W	eeping Devices a L - Fail-safe SBC udiovideo buses t) bus - IEEE opening parts - I stems) -Wireless <i>e-by-Wire</i> , Domin tions Ayre and Chris /illiam J. Kaiser	- Gateways - I2C Bus 1394 bus of PKE networks nique Paret tian Cambridge

II Semester : VLSI & ES Scheme : 2017 Hours/Week Course Code Credits **Maximum Marks** Continuous End Exam Т Р C EC962 L Internal TOTAL (Elective-IV) Assessment 3 3 60 40 100 -**Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs Course Outcomes :** At the end of the course the student will be able to **CO1:** Understand H/W and S/W Co Design models. **CO2:** Understand H/W and S/W prototyping and target architectures **CO3:** Understand H/W and S/W design specifications and verification **CO4:** Understand the H/W and S/W system level synthesis **Co- Design Issues** Co- Design Models, Architectures, Languages, A Generic Co-design Methodology. Co- Synthesis **Algorithms:** Hardware software synthesis algorithms: hardware – software partitioning distributed system co-synthesis. **Prototyping and Emulation** Instruction Set: Data Processing Instructions, Addressing Modes, Branch, Load, Store Instructions, PSR Instructions, Conditional Instructions. Target Architectures: Architecture Specialization techniques, System Communication infrastructure, Target Architecture and Application System classes, Architecture for control dominated systems (8051-Architectures for High performance control), Architecture for Data dominated systems (ADSP21060, TMS320C60), Mixed Systems. **Compilation Techniques and Tools for Embedded Processor Architectures** Modern embedded architectures, embedded software development needs, compilation technologies, practical consideration in a compiler development environment **Design Specification and Verification** Design, co-design, the co-design computational model, concurrency coordinating concurrent computations, interfacing components, design verification, implementation verification, verification tools, interface verification. Languages for System – Level Specification and Design-I,II System – level specification, design representation for system level synthesis, system level specification languages. Heterogeneous specifications and multi language co-simulation, the cosyma system and lycos system. **Text Books :** 2. Hardware / Software Co- Design Principles and Practice – Jorgen Staunstrup, Wayne Wolf – 2009, Springer. 2. Hardware / Software Co- Design - Giovanni De Micheli, Mariagiovanna Sami, 2002, Kluwer Academic Publishers. **Reference Books :** 1. A Practical Introduction to Hardware/Software Co-design -Patrick R. Schaumont - 2010 - Springer **Ouestion Paper Pattern:** Internal Assessment: The question paper shall consist of Six questions out of which the student shall answer any **Four** questions

HARDWARE SOFTWARE CO-DESIGN (HSC)

End Exam: The question paper shall consist of **Eight** questions out of which the student shall answer any **Five** questions