ELECTRICAL AND ELECTRONICS ENGINEERING (EEE) FOUR YEAR B.TECH DEGREE COURSE

Scheme of Instruction and Examination

I SEM EEE

Scheme-2020

S. No	Catego		Credits]	Scheme Instruct eriods/v	ion	Scheme of Examination Maximum Marks			
5. 110	ry	Course Title	Creans	L	Т	P/D	End Exam Marks	CIA Marks	Total Marks	
Ι		Theory								
1.	BSC	Differential Equations and Linear Algebra	3	2	1	-	60	40	100	
2.	BSC	Engineering Chemistry	3	3	-	-	60	40	100	
3.	HSSC	English	3	3	-	-	60	40	100	
4.	ESC	Engineering Drawing	3	1	-	4	60	40	100	
5.	ESC	Programming for Problem Solving	3	3	-	-	60	40	100	
6	Audit	English Proficiency Course	-	-	-	3	-	-	-	
II		Practicals								
7	BSL	Engineering Chemistry Lab	1.5	-	-	3	60	40	100	
8.	HSSL	Phonetics & Communication Skills Lab	1.5	-	-	3	60	40	100	
9	ESL	Programming for Problem Solving Lab	1.5	-	-	3	60	40	100	
		Total	19.5							

II SEM EEE

Scheme-2020

S. No	Catego		Credits	I	Scheme nstruct eriods/v	ion	Scheme of Examination Maximum Marks			
5. 110	ry	Course Title	Creans	L	Т	P/D	End Exam Marks	CIA Marks	Total Marks	
Ι		Theory								
1.	BSC	Advanced Calculus and Transforms	3	2	1	-	60	40	100	
2.	BSC	Applied Physics	3	3	-	-	60	40	100	
3.	ESC	Electric Circuit Theory	3	3	-	-	60	40	100	
4.	ESC	Electronic Devices and Circuits	3	3	-	-	60	40	100	
5.	ESC	Data Structures	3	3	-	-	60	40	100	
6	MC	Environmental Studies	-	2	-	-	-	100	100	
II		Practicals								
7.	BSL	Applied Physics Lab	1.5	-	-	3	60	40	100	
8	ESL	Electronic Devices and Circuits Lab	1.5	I	-	3	60	40	100	
9	ESL	Data structures Lab	1.5	-	-	3	60	40	100	
		Total	19.5							

DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA (DELA)

Course	Catagory	п		Veels	Credita	Ma		Scheme: 202
Code	Category	L	iours/V	Р	Credits C	Continuous Internal	End	TOTAL
BS102	BSC					Assessment	Exam	
Sectional F	xam Duration :	2 1 16 H	1	-	3	40	60 End Exam	100
Hrs	xam Duration :	I 72 П	ITS					Duration: 5
	comes: At the en							
	the solution for s					rix methods.		
	Eigen values and	<u> </u>				· · · · · · · · · · · · · · · · · · ·		
	e ordinary differe		-			its applications.	0	
	e partial different		<u> </u>	0			8.	
	purtier different	nur equ	ations					
				U	NIT – I			
method. Sys Homogeneo	tem of linear eq us and Non-Ho LU Decomposit	uations mogen	s – Rou eous li	iche's T near eq	heorem (Sta uations, Ga	of Non-singular atement only), C uss elimination ian, Skew-Herm	onsistency of method, Ga	f a systems ussian Jorda
<u> </u>	I I			LIN	IT - II			
				UN	11 - 11			
Linear Tran properties, I power of a	Diagonalization of	Ortho of a ma ey-Har	trix, C nilton '	ayley-H Theoren tion	amilton The n. Quadratie	igen values and eorem (without p c form – Reduc	proof), Findir	ng inverse ar
					IT – III			
Formation of variables se Bernoulli's of	eparable, homogequations, exact	ations, geneous differe	Soluti s equa ential e	on of dit tions, re quations	educible to , equations	uations of the final homogeneous reducible to exa .g., R - L and R	form, linear act equations	r equations . Application
				UN	IT – IV			
Homogeneo		ntial ec	quation	s of sec	-	gher order with o		
homogeneou	is term of the ty	pe $f(x)$	e^{ax}	, sin ax,	$\cos ax, x^n, \epsilon$	$e^{ax}v(x), xv(x)$ and	d General ca	se, Method
Legendre's l	-	applica	tions to	R-L-C		s. Cauchy's hon scillatory electri	-	-
				UN	VIT - V			
Dantial Liff.	nontial and attend	G			•			
	<i>rential equation</i> f partial differen		uations	s hv elin	nination of	arbitrary constan	nts and arhitr	ary function
	-	-		•		utions of non lin		•
-	ons of mist order	-	ange s	incui o	1 ^{uu} 1011, 301	whome of non nin	cui equations	

method of separation of variables.

Text Books

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012.

2. T.K.V.Iyengar and others, "A Text Book of Engineering Mathematics", Vol I & II - S.Chand & Company, 13th Edition 2014.

Reference Books

- 1. B.V. Ramana, "Higher Engineering Mathematics", TMH Publishers, 2nd Edition, 2006.
- 2. N.P.Bali and others, "A Text Book of Engineering Mathematics", Lakshmi publishers, 7th Edition, 2009.
- 3. Erwyn Kreyszig, "Advanced Engineering Mathematics", John wiley, 8th Edition 2006.

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ENGINEERING CHEMISTRY (EC)

Course Code			CE			•		Scheme: 202
Coue	Category	Ho	ours/W	eek	Credits	I	Maximum N	Marks
BS109	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	-	-	3	40	60	100
	am Duration : 1	1 ½ F	Irs				End E	Exam Duration: 3
Hrs								
Course Oute	omes : At the en	nd of t	the cou	Irca ci	tudents are	able to		
	tand the concep						and secondar	ry cell
	e devices and ex				•	- ·		
	bes the water qu							
with treatmen	-				8		F	
CO3: Unders	tand the basic co	oncep	ts of p	hase 1	rule and ref	ractories.		
	<u> </u>	-					the efficienc	cy of combustion.
CO5: Unders	tand the chemis	try of	polym	ners a	nd composi	tes.		
	stry & Corrosio				UNIT – I			
corrosion, str	nemical & elec	troche	emical	corre	usion and t		.	
- Cathodic pr Galvanization Water Chemi Hardness of v of hardness Disadvantage foaming and colloidal cond	corrosion and p otection and con- and Tinning, C stry vater- Types, ex- of water by F s of hard water	pitting prosio prganic press EDTA er-boi on. W rnal co	corros n inhil c coati ion, un metho ler tro ater s	on ce sion. I bitors ngs - nits ar od, a oubles ofteni oning	Il corrosio Factors infl Protective Paints. UNIT – II ad numerica kalinity and s-scale and ng method – zeolite pr	n- differential uencing corrosi coatings - Me al problems. An nd dissolved of sludge, caust ls – internal c rocess and ion e	aeration con on. Corrosic tallic coating nalysis of wa oxygen by ic embrittle onditioning	rrosion, metal io on control method gs - Hot dipping ater-Determinatio Winkler ^s method ement, priming d - calgon process
- Cathodic pr Galvanization Water Chemi Hardness of v of hardness Disadvantage foaming and colloidal cond Desalination -	corrosion and p otection and con- and Tinning, C stry vater- Types, ex- of water by F s of hard water boiler corrosice litioning & exter - reverse osmos	pitting prosio prganic press EDTA er-boi on. W rnal co	corros n inhil c coati ion, un metho ler tro ater s	on ce sion. I bitors ngs - nits ar od, a oubles ofteni oning	Il corrosio Factors infl Protective Paints. UNIT – II ad numerica Ikalinity and s-scale and ng method	n- differential uencing corrosi coatings - Me al problems. An nd dissolved of sludge, caust ls – internal c rocess and ion e	aeration con on. Corrosic tallic coating nalysis of wa oxygen by ic embrittle onditioning	rrosion, metal ic on control method gs - Hot dipping ater-Determination Winkler [*] s method ement, priming of - calgon proces
- Cathodic pr Galvanization Water Chemi Hardness of v of hardness Disadvantage foaming and colloidal cond Desalination Phase rule & Terms involv component sy Pb-Ag system Refractory-cla	corrosion and p otection and con- and Tinning, C stry vater- Types, ex- of water by H s of hard water boiler corrosic litioning & exter - reverse osmos Refractories red in phase ru	errosio organio errosio conservent er-boi on. W rnal co is. le equ d sulp pertie	corros n inhil c coati ion, ur metho ler tro ater s ondition uation bhur sy s- refr	on ce sion. I bitors <u>ngs -</u> nits ar od, a oubles ofteni oning ubles ofteni oning	Il corrosio Factors infl Protective Paints. UNIT – II ad numerica Ikalinity and s-scale and ng method – zeolite pro- UNIT – III nition, exp s. Condense ness, refract r failure of	n- differential uencing corrosi coatings - Me al problems. An nd dissolved of sludge, caust ls – internal c rocess and ion e lanation with of ed phase rule-T rotoriness under la	aeration con on. Corrosid tallic coating halysis of wa oxygen by ic embrittle onditioning exchange pro- examples. A wo compone	rrosion, metal io on control method gs - Hot dipping ater-Determinatio Winkler's method ement, priming of - calgon process ocess.
 Cathodic pr Galvanization Water Chemi Hardness of v of hardness Disadvantage foaming and colloidal cond Desalination Phase rule & Terms involv component sy Pb-Ag system Refractory-cla porosity and 	corrosion and p otection and con and Tinning, C stry vater- Types, ex of water by H s of hard water boiler corrosic litioning & exte - reverse osmos Refractories red in phase ru rstem - water an assification. Pro	errosio organio prganio prganio prganio con con con con con con con con con co	corros n inhil c coati ion, ur metho ler tro ater s ondition uation bhur sy s- refr	on ce sion. I bitors <u>ngs -</u> nits ar od, a oubles ofteni oning ubles ofteni oning	Il corrosio Factors infl Protective Paints. UNIT – II ad numerica Ikalinity and s-scale and ng method – zeolite pr UNIT – III nition, exp s. Condense	n- differential uencing corrosi coatings - Me al problems. An nd dissolved of sludge, caust ls – internal c rocess and ion e lanation with of ed phase rule-T rotoriness under la	aeration con on. Corrosid tallic coating halysis of wa oxygen by ic embrittle onditioning exchange pro- examples. A wo compone	rrosion, metal io on control method gs - Hot dipping ater-Determinatio Winkler's method ement, priming of - calgon proces ocess.

air. Flue gas Analysis by Orsat's Apparatus.

Lubricants- Classification of lubricants with examples. Definition and significance of the following characteristics of a good lubricating oil- viscosity, viscosity index, flash & fire point, acid number, saponifaction value, pour point and cloud point.

Polymers & Composites

 $\mathbf{UNIT} - \mathbf{V}$

Fundamentals of addition & condensation polymerization with examples. Thermoplastic and Thermosetting plastics. Preparation, properties and uses of PVC, Teflon, Nylons, Bakelite, Polyurethane. Rubber – Processing of latex. Drawbacks of natural rubber, vulcanization, properties of vulcanized rubber. Synthetic rubber- Buna S, Buna N, Silicone and Butyl Rubbers. Polymer composites – definition and uses of FRP - laminar composites.

Text Books :

1. P.C. Jain and Monika Jain, Engineering Chemistry, Dhanpat Rai and Sons, New Delhi 2010,15th edition.

Reference Books :

1. Shashi Chawla, A Reading of Engineering Chemistry, Dhanpat Rai and Co., New Delhi, 2011,3rd edition.

2. Gowariker et al., Polymer Science and Technology, Prentice Hall of India Pvt. Ltd., New Delhi, 2004, 10th reprint.

3. Puri, Sharma and Pathania "Principles of Physical Chemistry". Vishal Publishing Co., Jalandhar, 1991, 31st edition.

4. Kuriacose, J.C and Rajaram, J, Engineering Chemistry, Volume I/II, Tata McGraw – Hill Publishing Co. Ltd. New Delhi, 2010, 2nd edition.

5. S.S.Dara, A Textbook of Engineering Chemistry, S. Chand & Co.Ltd. New Delhi, 2007, 10th Edition

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ENGLISH (ENG)

I/II Semest	er : Common for ECE, CSE	,	,	IE/			So	cheme: 2020
Course Code	Category	Н	ours/W	Veek	Credits	Max	ximum Mar	·ks
HU101	HSSC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	-	-	3	40	60	100
Sessional E	Exam Duration :	1½ H	[rs			Enc	d Exam Du	ration: 3 Hrs
0 0	· · · · 1	1 6 4				1.1		
	tcomes : At the e							
	•	-	-			en communication	1.	
	appropriate voca				-			
	ning.	i and i	ecnnic	cont	ent using va	arious reading sl	kills like sl	kimming and
	e letters, summa	ries and	d essa	ys of to	pical, narrati	ive, descriptive, a	analytical a	nd persuasive
	e job application	s, resun	nes, me	emos an	d e-mails.			
				U	NIT – I			
I Have a Di	ream: An Indepe	endent,	Develo	opment	and Strong I	India – Dr. A.P.J.	Abdul Kal	am
Vocabulary	: Synonyms and	Antony	ms	-	_			
	Parts of speech, ty			, Pronot	ins and Adjec	ctives		
Reading: Re	eading with a Put	rpose: F	Reading	g for Ur	derstanding,	Note - Making		
Writing: Pu	nctuation, Writin	ng notes	and P	aragrap	hs, Note – Ta	lking		
				U	NIT - II			
The Doctor	's Word – R.K. N	Varayaı	n					
Vocabulary	: One-word Subs	stitutes,	Idiom	s and Id	iomatic Phras	ses		
	Adverbs, Verbs –			• 1	-	ositions,		
	Conjunctions and kimming and Sca							
-	isiness Letters &	-			Dienension			
winning. Di	Ismess Letters &	E-man	vv 11til	-	III – III			
Stay Hungi	y, Stay Foolish -	- Steve	Jobs	UI	11 – 111			
•	• •			ophones	s and Homor	nyms Grammar: '	Tenses, Cor	ncord, Voices
and Reporte	ed Speech							
Reading: U	se of Dictionary,	Thesau	irus, Li	ibrary a	nd Internet fo	or Information		
Writing: W	riting Cover Lett	ers for .	Job Ap	plicatio	ns and Resur	ne Preparation		
				UN	NIT – IV			
	was a King – Ra			-				
•	: Words often Co							
	Question Tags, D Transformation o					tancas		
	ransformation of vectors Writing	n sente	nces a	iiu Corr	ection of Sen	tences		
0	emo Writing							
Text Books								
1. The Enrie	ched Reading by	D. Sud	ha Rar	ni. Pears	on India Edu	cation Services P	vt I td	
				ii, i cais	on maia Laa	cation Services I	vi. Liu,	

Reference Books

- 1. Michael Swan, "Practical English Usage", Third Edition, OUP, 2006.
- 2. David Green, "Contemporary English Grammar", "Structure and Composition", Second Edition, Lakshmi Publications, 2015.
- 3. Oxford Advanced Learner's "Dictionary of Current English", OUP, 2015.
- 4. Meenakshi Raman and Sangeetha Sarma, "Technical Communication Principles and Practice", 3rd Edition, OUP, 2015.
- 5. Raj N Bakshi, "English Grammar Practice", Orient BlackSwan, 2005.
- 6. Sangeeta Sharma & Binod Mishra, "Communication Skills for Engineers and Scientists", PHI Learning Private Limited.
- 7. M. Ashraf Rizvi, "Effective Technical Communication", Tata McGraw-Hill Publishing Company Ltd. 2005.

8. Dr A. Ramakrishna Rao, Dr G. Natanam & Prof S.A. Sankaranarayanan, "English Language Communication: A Reader cum Lab Manual", Anuradha Publications, Chennai, 2006.

Question Paper Pattern:

Sessional Exam

I Sessional Examination : 25 Marks

- 1. Short Answer Questions 4 Marks
- 2. Vocabulary 4 Marks
- 3. Grammar 4 Marks
- 4. Reading Comprehension 5 Marks
- 5. Business Letter 4 Marks
- 6. E-mail Writing 4 Marks

II Sessional Examination : 25 Marks

- 1. Short Answer Questions 4 Marks
- 2. Vocabulary 4 Marks
- 3. Grammar 4 Marks
- 4. Précis Writing 4 Marks
- 5. Memo Writing 4 Marks
- 6. Job Application Letter 5 Marks

End Exam :

- 1. Short Answer Questions 8 Marks
- 2. Vocabulary 8 Marks
- 3. Grammar 12 Marks
- 4. Reading Comprehension –5 Marks
- 5. Précis Writing 5 Marks
- 6. Job Application Letter 10 Marks
- 7. E-mail Writing 6 Marks
- 8. Memo Writing 6 Marks

ENGINEERING DRAWING (ED)

I / II Semes CSE,CST,	ster : Common t EEE	o CE, I	ECE,M	IE/			Sc	cheme: 2020
Course Code	Category	H	ours/V	Veek	Credits	Max	kimum Ma	rks
ME101	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		1	-	4	3	40	60	100
	xam Duration :	1 ½ E	Irs	•		I	End Exam	Duration: 3
Hrs								
<u>C</u>	4		1			1.1. 4.		
	tcomes : At the					draw the projection	n of points	straight
	and planes.	ept of p	rojectio	JIIS OF a	li object allu	uraw the projectio	on or points,	straight
	v projection of re	egular s	olids					
	1 0	0		r solids	and their sur	face developments	s.	
	v the orthograph		-			÷		
	v the isometric v			-				
				T	NIT – I			
				U				
	n to Engineerin	-	-		1.5.	· • . • .•	. 1	
-				-	nd Dimension	ning. Introduction	to polygor	is and conic
	n to scales (not fo	or End	examın	ations)				
•	nic projections			<i>.</i> .			D	C (· 1
	•				-	st angle projection	•	-
-			o otner	plane-	inclined to b	oth the planes, tra	aces of fines	s (treatment
Projection of	mple problems of <i>planes</i>	Jilly)						
•	• •	lar par	allal to	one re	foranco plan	e and inclined to	other refer	ance nlanes
• •	both the reference	-			ference plan			ence planes
Inclined to t		c plane	~ 3					
				U	NIT - II			
Projections	of solids:							
Projections	of right regular	solids-	prism,	pyrami	d, cylinder ar	nd cone with axis	inclined to	one plane an
inclined to b	ooth planes.							
				UN	III – TII			
Sections of	Solids:							
v		gular s	olids -	prism,	pyramid, cy	linder and cone.	True shape	s of Sectior
	is limited to sim	-		-	10 0		1	
	nt of Surfaces:							
-	0 0	right ro	gular s	olids ar	nd their section	ons - prism, pyram	nid cylinder	
Development	nt of surfaces of	fight fe	-			no priorit, p, ran	nu, cynnuci	and cone.
Developmen	nt of surfaces of	fight fe		TT		jiio prisini, pjran	nd, cynnder	and cone.
				UN	NIT – IV			and cone.
Orthograph	nic projections:							and cone.
Orthograph	nic projections:		orthogr	aphic v	iews (treatme	ent limited to simp		and cone.
Orthograph	nic projections:		orthogr	aphic v				and cone.
Orthograph	nic projections: of pictorial view		orthogr	aphic v	iews (treatme			and cone.
Orthograph Conversion Isometric P	nic projections: of pictorial view Projections: E Isometric proje	vs into o		aphic v U	iews (treatme NIT – V		ble blocks)	

Text Books

- 1. K.L.Narayana and P.Kannaiah" Text book on Engineering Drawing," Second Edition Scitech Publications, Chennai.,2006
- 2. N.D.Bhatt and V.M.Panchal," Elementary Engineering Drawing ", 45 th Edition , Charotar Publishing house , Anand, India., 2002.

Reference Books

- 1. K.Venugopal, "Engineering Drawing and Graphics with Auto CAD", Fourth Edition, 2001, New Age International(P) Limited, Publishers, New Delhi, 2001.
- 2. Dhananjay A Jolhe, "Engineering Drawing with an introduction to Auto CAD", Tata Mc Graw-Hill Publishing Company Ltd., New Delhi, 2008.

3. M.B.Shaw & B.C.Rana "Engineering Drawing" Second Edition Pearson Education, New Delhi, 2009

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

PROGRAMMING FOR PROBLEM SOLVING (PPS)

I Semester : (CE,CSE,CST	Common for ,ECE,EEE & M	E					Sch	eme: 2020
Course Code	Category		ours/W	Veek	Credits	M	laximum Mar	ks
CS101	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	-	-	3	40	60	100
Sessional Exa Hrs	m Duration : 1 ¹ /	/2 Hrs	5				End Exam D	ouration: 3
	mes : At the end						- 4 - 4	
	and fundamentals onditional and ite							perators
	e the applications						1	
	ne concepts of po						problem solvin	g.
	and the purpose of					<u> </u>		0
	I I I		,					
				UN	IT – I			
Imperative La Introduction t Operator and Names, Data Operators, Rel Bitwise Opera Formatted input Control Flow Statements and	o imperative lang Expressions with Type and Size ational Operators ators, Assignmer	guage; th dis s (Li s, Logi nt Ope on stru e-If, S	; synta cussion ttle En ical Op erators uctured witch,	x and n of y ndian perator and UN	constructs variable nat Big Endia rs, Type Con Expression IT – II unstructure	of a specific la ming and Hur m), Constants, nversion, Increas, Precedence ed programmin	anguage (ANSI ngarian Notatio , Declarations, ment Decremen and Order of	(C) – Type on: Variab Arithmet nt Operator Evaluatio
				UN	IT - III			
Basics of func Local, Static, I	Program Struct etions, parameter Register Variable ary Functions and	passi s, Sco	ng and pe Rul	l retur es, Bl	ning type, (C main return	-	
Doint	1				11 - 1 V			
Arrays, Addre Multi-dimensie	Arrays ddress, dynamic ess Arithmetic, c onal array and R , Pointer to funct	charac low/co	ter Poi olumn	inters major	and Functi formats, Ir	ions, Pointer Anitialization of	Arrays, Pointer Pointer Arrays	to Pointe
				UN	IT - V			
structures, Tab <i>Files</i>	<i>l Unions</i> re, Structures an le look up, typed	ef, Ur	ions, I	Bit-fie	lds.			

Introduction to Files, Opening and Closing files, Reading and Writing files, File I/O functions, Error

Handling in files.

Text Books

The C Programming Language, B. W. Kernighan and D. M. Ritchie, Second Edition, PHI.
 Programming in C, B. Gottfried, Second Edition, Schaum Outline Series.

Reference Books

1. C: The Complete Reference, Herbert Schildt, Fourth Edition, McGraw Hill.

2. Let Us C, Yashavant Kanetkar, BPB Publications.

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ENGINEERING CHEMISTRY LAB (CHP)

I/II Semest	er : Common ECE	n for CE	, EEE,	, ME /				Scheme: 2020
Course Code	Category	Но	urs/W	eek	Credits	N	laximum Marl	ζS
BS113	BSL	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		-	-	3	1.5	40	60	100
End Exan	n Duration: 2	2 Hrs						
Course Out	comes : At tl	ne end o	f the co	ourse, st	tudents are	able to		
						ds including ins	trumentation that	at acts as a
tools	in analysis of	f water.						
CO2: Under	stand various	s analyti	cal met	thods in	ı analysis o	of an alloy.		
		s analyti	cal met	thods in	cluding in	strumentation th	at acts as tools i	n analysis of
differ	ent fuels.							
					of Experin			
		: At leas	t 12 of	the foll	lowing exp	eriments shall b	e conducted	
Volumetric								
	ation of analy							
	on of standard							
	n of magnesi							
	n of copper b				2 1			
		-		dness o	of water by	EDTA titration	method.	
	n of copper in				un atla a d			
/. Estimation	n of dissolved	ı oxygei	I Uy W	IIIKIEI S	method.			
Instrumenta	ation							
8. Determina	ation of calor	ific valu	e of a s	solid fue	el using Bo	omb calorimeter.		
						er's viscometer.		
						lwood viscomete	er.	
		-				d CH ₃ COOH) by		c titrations.
	ion of Beer-I	-						
13. Potention	metric titratio	ons.						
14. Determin	nation of sim	ple euteo	ctic of t	wo con	nponent sy	stem.		

PHONETICS AND COMMUNICATION SKILLS LAB (PCSP)

	er : Common ECE, CS			ME/				Scheme: 202
Course Code	Category	Но	urs/Wo	eek	Credits		/Iaximum Marl	ζS
HU103	HSSL	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		-	-	3	1.5	40	60	100
End Exan	n Duration: 2	2 Hrs						
	tcomes : At tl	a and a	fthaa	011800	Studente er	a abla to		
						nother tongue ac	cent	
			-	-		oral communica		
-			_			pronunciation of		
	-	-	-			=		
-	-		-		-	dently, fluently	and effectively.	
COS: Exhi	bit team playin	ng and I	eaders					
				List	of Experin	nents		
Phonetics I		1			Turka (*	-1 T. 4. 112 11 112		
						al Intelligibility		
	ion to English	-	ic sym	bols an	id associate	ed sounds.		
	in consonant s							
	in vowel soun		intono	4.00				
	in accent, rhyt				Cormotion of	specific informat	tion & comproh	nsion
J. Flactice s	sessions on ins	stennig	or gene		ormation, s	specific information	tion & comprend	
Communic	ation Skills I	aborat	orv					
	e lab is more o		•	on acc	curacy			
	sonal commu				•			
a) Self in	troduction							
b) Introd	ucing others							
c) Non-V	/erbal commu	nication	1					
d) Postur	re, Gait and B	ody lan	guage					
2. Commun	ication in For	mal Situ	lations					
a) Public	Speaking – E	Extempo	ore, Pre	pared S	Speech			
b) Role-p	olay							
c) Situati	ional Dialogue	es						
d) Giving	g Directions							
e) Sell-or	ut							
f) JAM								
g) Telepl	hone Etiquette	e						
Reference H								
1. "Exerci Hyder	-	n Englis	h Part -	- I, Par	t – II & Pai	rt – III", Publish	ed by EFLU,	
						English", Prentic		
Ltd.	_				-	etics for Indian		
						ommunication S		
	. F	Clash an	0	<u></u>	<u> </u>	kills in English",	NT 1.1 D 1.1.1.	

PROGRAMING FOR PROBLEM SOLVING LAB [PPS (P)]

I Semester : C ECE, EEE & N		E, CSI	E, CS'	Т,			Sch	eme: 2020
Course Code	Category	Но	urs/W	Veek	Credits	Max	imum Mar	·ks
CS107	ESL	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		-	-	3	1.5	40	60	100
End Exam Du	ration : 3 Hrs							
Course Outcor	nes : At the er	d of th	ne cou	ırse stu	idents are al	ole to		
CO1: Implement								
CO2: Develop								
CO3: Perform	Call by value,	Call b	y refe	rence a	and Recursi	on through func	tions.	
CO4: Impleme								
CO5: Develop	programs usin	g struc	ctures	and fil	le concepts.			
			List	t of Ex	periments			
1. Conditional S	Statements: Ou	iadrati	c equa	ations.	usage of sw	vitch statement.		
2. Loop Statem			-		0			
3. Arrays: Max						ce.		
4. Character Ar							ons.	
5. Functions and	d Recursion :]	Matrix	opera	ations,	Towers of I	Hanoi, GCD		
6. Pointers: Inte	erchanging pro	blem,	imple	menta	tion of dyna	mic memory al	location.	
7. Structures: U								
8. Files: Readin	g contents from	m files	and v	writing	g contents to	files.		
Reference Boo	ks :							
1. Yashavanth I	P.Kanetkar , "I	Let us	С", В	BPB Pu	blications,	7 th Edition,2007	7.	

2. B.W. Kernignan and Dennis M.Ritchie, The C Programming Language, (PHI), 2nd Edition 2003.

ADVANCED CALCULUS AND TRANSFORMS (ACT)

II Semester	: Common for E	CE &	EEE				S	cheme: 2020
Course Code	Category	Н	ours/V	Veek	Credits	Max	ximum Maı	·ks
BS105	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
G : 15		2	1	-	3	40	60	100
Sessional Ex	xam Duration :	I 1⁄2 H	lrs			En	d Exam Du	ration: 3 Hrs
Course Out	comes : At the e	nd of t	he cou	rse the st	tudent are a	ble to		
CO1: Unde	rstand mean valu	e theo	rems, f	ind max	ima & mini	ma and areas & v	olumes by r	nultiple
integ		<u> </u>		• .	1	1		
	rstand vector dif							
						the differential	equations i	using Laplace
transf	form.						-1	
CO5: Unde	rstand the Fourie	er trans	forms	and Z-tra	ansforms.			
				UN	I – TIV			
Differential	Calculus							
coordinates, Volume by c Vector Calca Scalar and	egrals- Double a change of varia louble and triple ulus Vector point fu	ables i integra	n dout als. s. Div	ole integ UN ergence,	grals, Appli MT - H curl, grad	der of integration cations - Area ex lient, Solenoidal	nclosed by	plane curves,
	only). Application				Stoke's th	eorem and Gaus	s - Diverg	ence theorem
	<i>,</i> , , , , , , , , , , , , , , , , , ,				IT – III			
	nulae, Dirichlet's iscontinuity. Ch			Fourier	series of E	Even and Odd fur Fourier Sine and		U
				UN	IT – IV			
transforms of	Laplace transfo of derivatives, in overse transform	tegrals	s, mult	iplicatio	n by t, divi	properties of Lap ision by t, Laplac cations of Laplac	ce transforn	ns of periodic
				UN	NIT - V			
	rier Transforms Inverse Fourier			ne and	Cosine tra	nsforms. Finite I	Fourier Sind	e and Cosine

Z-Transforms, Inverse Z-Transformation, Properties, Damping rule, Shifting rule- Application of Z-Transforms to Difference equations.

Text Books

B.S. Grewal- Higher "Engineering Mathematics", Khanna Publishers, 42nd Edition, 2012.
 T.K.V.Iyengar and others – "A Text Book of Engineering Mathematics", Vol I & II - S.Chand & Company, 13th Edition 2014.

Reference Books

1. B.V. Ramana – "Higher Engineering Mathematics", TMH Publishers, 2nd Edition, 2006.

2. N.P.Bali and others –"A Text Book of Engineering Mathematics", Lakshmi publishers, 7th Edition, 2009.

3. Erwyn Kreyszig – "Advanced Engineering Mathematics", John Wiley, 8th Edition 2006.

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

APPLIED PHYSICS (AP)

	er : Common for / CE,ME,EEI	,	CST,E	ECE			Sch	eme: 2020
Course Code	Category		ırs/W	eek	Credits	Maximu	m Marks	
BS110	BSC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	-	-	3	40	60	100
Sessional Exa	am Duration : 1	½ Hr	s.			End E	xam Durati	ion: 3 Hrs.
Course Outc	omes: At the end	l of the	cours	e stu	dents are a	ble to		
	-	-		-		ft and hard magnetic mate acteristics, Meissner, Jos		
CO2: Under	stand the phenor	nenon	of inte	erfere	ence, diffra	ction of light and their ap	oplications.	
detern Schroo	ination of velocitinger's equation	ity of u and it	iltraso s appl	nic w icatic	vaves in liq ons.	nd applications of ultraso uids. Principles of quant	um mechanio	
						thods of lasers and their tions of optical fibers.	applications,	different
CO5: Under	stand the Proper	ties, sy	nthesi	s, apj	plications of	of Nanomaterials and Car	rbon Nanotu	bes.
					UNIT – I	[
Types of Po Electronic po <i>Superconduc</i> Introduction quantization	larizations: Elec larizability – Die <i>tivity</i> : – Critical Temp	etronic lectric	, Ionio Loss e, Crit	c, Or – Apj tical	ientation plications			
					upercondu	field, Critical Current , ctors, Josephson's effe		
Interference					upercondu UNIT – I	ctors, Josephson's effe		
shaped film, wavelength, r	Conditions for a Newton's ring	s. Ap	rence - plicati	- Inte ons	UNIT – 2 rference dr of interfe	ctors, Josephson's effe	ct – Applie Reflected lig	tt), wedge
Introduction shaped film, wavelength, r <i>Diffraction:</i> Introduction diffraction du Determination	Conditions for in Newton's ring adius of curvatur - Differences be the to single slit,	s. Ap re, refr etweer double n using	rence plicati active Inter slit, o g grat	- Inte ons inde: feren circul	UNIT – 2 rference dr of interfe x of liquid ce and Dir ar aperture - Resolvin	ttors, Josephson's effe ue to thin uniform film (l rence: Testing of flatm - Non-reflective coatings ffraction - Types of Diff e, N-Slits (grating) (qual ng power, Rayleigh's cr	ct – Applie Reflected lig less, determ s. fraction - F itative analy	t), wedge ination of raunhoffer sis only) -
Introduction shaped film, wavelength, r <i>Diffraction:</i> Introduction diffraction du Determination Resolving po	 Conditions for it Newton's ring adius of curvatur Differences be to single slit, n of wavelength 	s. Ap re, refr etweer double n using	rence plicati active Inter slit, o g grat	- Inte ons inde: feren circul	UNIT – 2 rference dr of interfe x of liquid ce and Dir ar aperture	ttors, Josephson's effe ue to thin uniform film (l rence: Testing of flatm - Non-reflective coatings ffraction - Types of Diff e, N-Slits (grating) (qual ng power, Rayleigh's cr	ct – Applie Reflected lig less, determ s. fraction - F itative analy	cations of ht), wedge ination of raunhoffer sis only) -
Introduction shaped film, wavelength, r <i>Diffraction:</i> Introduction diffraction du Determination Resolving po <i>Ultrasonics:</i> Introduction Piezoelectric Applications: <i>Quantum Me</i>	 Conditions for it Newton's ring adius of curvature Differences be to single slit, n of wavelength wer of grating an Properties of method - Dete SONAR, NDT, <i>chanics:</i> 	s. Ap re, refr etweer double using d teles ultra- ction genera	rence - plicati active Inter slit, o g grat scope. sonics of ult appli	- Inte ons inde: feren circul ing - - P rason icatic	UNIT – 2 rference dr of interfe x of liquid ce and Dir ar aperture - Resolvin UNIT – 1 Production ics - Detrons.	ttors, Josephson's effe ue to thin uniform film (l rence: Testing of flatm - Non-reflective coatings ffraction - Types of Diff e, N-Slits (grating) (qual ng power, Rayleigh's cr	ct – Applie Reflected lig less, determ s. fraction - F itative analy riterion for gnetostriction ultrasonics	cations of ht), wedge ination of raunhoffer resolution, resolution, n method, in liquids.

Heisenberg's Uncertainty Principle. Schrödinger's Time Independent and Time Dependent Wave equation, Significance of Wave Function - Application of Schrödinger's equation for : particle in a box (one dimensional problem)

UNIT –IV

Lasers:

Spontaneous and Stimulated emission of radiation – Einstein coefficients and their relation - Characteristics of Lasers – Pumping mechanisms – Components of Laser – Ruby, He-Ne and Semiconductor lasers - Applications of Lasers.

Fibre Optics:

Principle and propagation of light in Optical fibers – Structure of optical fibres – Acceptance angle – Numerical aperture – Classification of optical fibres – Applications of Optical fibres: Fibre optic communication system, Fibre optic sensors(Temperature, Pressure, Displacement and Water level indicator)– Losses in optical fibres.

UNIT – V

Nanomaterials:

Introduction - Significance and Properties of Nano particles - Synthesis Methods: Ball Milling method, Sol-Gel method, CVD method, its applications - PVD method, its applications - Pulsed Laser Deposition method - Wire explosion method - Applications of Nano materials.

Carbon Nano tubes:

Properties of Graphene - Classification of CNTs – properties - Synthesis methods: Ball Milling method, CVD method, Arc method, Sputtering - Applications of carbon Nano tubes - Effect of nanotechnology on Environment.

Text Books :

1. M.N.Avadhanulu and P.G.Kshirsagar, A text Book of Engineering Physics, S.Chand & Company

2. V.Rajendran, Engineering Physics, McGraw Hill Education (India) Pvt. Limited.

3. Dr. K.Vijaya Kumar, Engineering Physics, S.Chand & Company

4. S.L.Gupta & S.G.Gupta, Unified Physics (Vol. 3) – Electricity, Magnetism and Electronics, Jai Prakash nath Publications, Meerut.

Reference Books :

1. Hitendra K. Malik & A.K. Singh, Engineering Physics, Tata McGraw Hill Education Pvt. Ltd.

2. P.K Palaniswamy, Engineering Physics, SCITECH Publications (India) Pvt. Ltd.

3. R. Murugashan and Er.K.Siva Prasanth, Modern Physics, S. Chand& Company

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ELECTRIC CIRCUIT THEORY (ECT)

II Semester	: EEE							Scheme: 2020			
Course Code	Category	H	ours/V	Veek	Credits	Ma	ximum Mai	rks			
EE103	ESC	L	Т	Р	С	Continuous Internal AssessmentEnd ExamTOTAL					
		3	-	-	3	40	60	100			
Sessional E Hrs	xam Duration :	1 ½ H	rs				End Exam	Duration: 3			
CO1: Und noda	l analysis.	ental co	oncepts	of circ	cuit element	ts, circuit reduct					
	erstand the fundates s and parallel cire		of sin	gle phas	se AC circui	its and sinusoidal	steady state	analysis of			
-						nance and magne					
						to electrical circ					
				UN	I – TIN						
Circuit Cond Source Tran Reduction T Nodal Analy Single Phas Generation Analysis of Concept of I Power Facto Complex po	sformation, Volta echniques – Serf ysis, Mesh Analy <i>e A.C. Circuits</i> of single phase R, L and C (in S Reactance, Impector, Real and Re- wer. <i>ams</i>	meters, age – C ies, Par sis, Sup AC su eries, P lance, S eactive	Current allel, S per noc apply, Parallel Suscep power	relation Series Pa le and S UN R.M.S. and Sen tance ar rs, J-no UN	aship for Pasarallel, Star uper mesh a NIT - II and Averative ries Parallel and Admittan tation, Con	ation with variati	Circhhoff's L a-to-Star Tra excitations. form factor, vith Sinusoid ase difference forms of 1	Aaws, Network ansformations, Steady State dal Excitation, ce, Concept of representation,			
<i>Resonance</i> Series & Pa Power frequ		Reson	ant fre	equency,	, Voltage m	agnification, Q-I	Factor, Band	l-Width, Half-			
				UN	IT – IV						
Dual Networ <i>Magnetic ci</i> Magnetic ci	Graph, Tree, Inc rks. rcuits	laws o	f elect	romagne		et Matrices for Pl					
Network Th	ooroms				VEE V						
INELWORK IN	eorems										

Tellegen's, Superposition, Reciprocity, Thevinin's, Norton's, Maximum Power Transfer, Milliman's and Compensation theorems for AC and DC excitations.

Text Books

1. Hayt & Kimmerly, "Engineering Circuit Analysis", 8th Edition, TMH, 2004.

2. Joseph Edminister, "Electric Circuits", 2nd Edition, Schaum's Series, TMH, 1983.

3. Ajith Chakravarthy, "Circuit Theory", 5th Edition, Dhanpat Rai & Sons, 2006.

4. R.P.Punagin, "Electrical Circuit Analysis", 2nd Edition, Interline Publishers, Bangalore, 1994.

5. Sivanaga Raju, G. Kishor and C. Srinivasa Rao, "Electrical Circuit Analysis", 1st Edition, Cengage Learning India Publishers, 2010.

6. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Fifth Edition, McGraw

Hill, 9th Reprint 2015.

Reference Books

1. Vanvalken Berg, "Network Analysis", 3rd Edition, PHI, 2004.

2. Sudhakar & Shyam Mohan, "Circuits & Network", 5th Edition, TMH, 2007.

3. Roy Chowdary, "Networks & Systems", 3rd Edition, New Age international publishers, 2007.

4. R.L.Boylstad, "Introductory Circuit Analysis", 7th Edition, McMillan Publishers. 1994.

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ELECTRONIC DEVICES AND CIRCUITS (EDC)

I/II Semest	er : ECE,CSE,C	CST/EE	E				S	Scheme: 2020
Course Code	Category	Н	ours/V	Veek	Credits	Max	imum Marks	·ks
EC101	ESC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	-	-	3	40	60	100
	xam Duration :	1½ H	rs]	End Exam	Duration: 3
Hrs								
Course Out	tcomes : At the e	nd of t		se the s	tudents are s	able to		
	erstand the conce							
		1	0.		0	nd wave shaping.		
	yze the operation							
	yze the operation		_					
CO5: Anal	yze the operation	n and ch	naracte	ristics of	f MOSFET a	and special device	es.	
				U	I – TIV			
Review of S	emiconductor m	aterial	7					
•				v Band	Diagrams, 1	mobility & condu	ctivity of C	harge carriers
			-	-	-	trinsic semicond	-	-
		•				current, Hall-effe		
U		,	,		NIT - II	,		
Comis on de	ton Dio don And	Annlin	-					
	ctor Diodes And			/-I Cha	ractoristics	,Current compon	ents in n_n	diode Diode
1 0						tifier With and V	-	
					-	nisms, Zener dio		
Application	0	out olu	51118, 1	Jioun a				instres und re
<u></u>				LIN	IT – III			
Rinolar Iur	nction Transistor	$\cdot (RIT)$		UI				
Construction		of n-p-				ransistor current Transistor Biasi	-	
amplifier.	,				I '		6,	
				UN	IT – IV			
Field Effect	t Transistors (FE	E T)						
Construction	n, Types and op	eration	of JFI	ETs, Dr	ain and Tra	nsfer characterist	tics, Parame	eters of JFET,
JFET Biasir	ng, Comparison o	of JFET	and B.	JT, App	lications of	JFET.		
				UN	NIT - V			
MOSFETs	and Special Pur	pose De	evices					
				Types of	of MOSFET	S. Characteristic	s of Deplet	ion MOSFET
	ement MOSFET.		,				1	
Special Pur	pose Devices: LI	ED, Pho	oto dio	de, UJT	, SCR and w	vorking Principle	of solar cell	•
Text Books								
		Halki	as Sate	vahrata	lit "Integrat	ed Electronic", 2	nd Edition '	TMH 2012
			-		-	onic Devices", 5th		

2. Ben G Streetman and Sanjay Banerjee, "Solid State Electronic Devices", 5th Edition, Pearson Education Asia, 2002.

3. Robert L Boylestad, Louis Nashelsky, "Electronic devices and Circuit theory", 8th Edition, PHI Pvt. Ltd., 2004.

4. Donald A Neamen and Dhrubes Biswas, "Semiconductor Physics and Devices", 4th Edition TMH, 2012.

5. David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5th edition, 2008

Reference Books

- 1. N.N Bhargava, D.C. Kulshrestha, S.C Gupta, NITTTR Chandigarh, Basic Electronics and Linear Circuits, McGraw Hill Education (India), Pvt. Ltd., 2nd Edition, 2017.
- 2. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits, Oxford University Press, 7th Edition, 2018.

3. Jacob Millman and Arvin Gabriel, Microelectronics- 2nd Edition, McGraw Hill, 2013.

- 4. A S Sedra and K C Smith, Microelectronics, 7th Edition, Oxford University Press, 2018.
- 5. Albert Paul Malvino, Electronic Principles, McGraw Hill International edition.

Web References

1. http://www.electronics-tutorials.ws/

2. http://nptel.ac.in/courses/117103063/

3. www.electronicshub.org/tutorials/

 $4.\ engineering.nyu.edu/gk12/amps-cbri/pdf/Basic\%20 Electronics.pdf$

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

DATA STRUCTURES (DS)

II Semester : EEE	Common for C	SE,C	ST,EC	CE &			Sci	heme: 2020
Course Code	Category	Hours/Week			Credits	M	aximum Marl	KS
CS104	ESC	L	Т	Р	С	Continuous Internal Assessment	TOTAL	
		3	-	-	3	40	60	100
Sessional Exa	m Duration : 1	¹ / ₂ H	rs			En	d Exam Dura	tion: 3 Hrs
CO1: Underst CO2: Underst CO3: Illustrat CO4: Illustrat	omes : At the end and the purpose and the linked li e the operations e the operations and the concepts	of arr st dat perfo perfo	ay dat a struc rmed o rmed o	a structure a structure a structure a stac	cture and its nd its opera ck data strue eue data stru	s applications ttions. cture. icture	ees.	
				LIN	IT – I			
Sequential Sta Arrays, Operation	assification of Da brage Represent ations on Array y Search, Bubble	<i>ation</i> /s- In	sertio	n, Del tion S	letion, Tra	versing; Appli		rays–Linear
Linked storag	ge Representation e representation erations on linke	usin	g poi	L <i>ists</i> nters, ersing	Types of I g, Searching		-	list, Double
				UN	IT – III			
Representation	tructures – Stack n of Stack usin Pop, and Display	g seq	uential	l stora	age and lin	ked allocation	methods, Op	erations on
				UN	IT - IV			
Representation	tructures - Queu n of Queue usin Fraversing, Circu	g seq		and l	inked alloc	ation, Operatio	ons on Queues	- Insertion,
				UN	IT - V			
Basic termino lists, Binary S	Data Structures- logy, Binary tree Search Trees, O eorder, Inorder a	es, Re perati	epresei ons oi	ı bina	•			
Text Books								
	aul Tremblay an ations, TMH.	nd Pa	ul G.S	orense	on[2007], A	An Introductior	n to DataStruc	tures With

2. Debasis Samantha, Classic Data Structures Second Edition (2009), PHI.

Reference Books

- 1. Pradip Dey, Manas Ghosh and Reema Tereja, Computer Programming and DataStructures, Oxford University Press.
- 2. S.K.Srivatsava and Deepali Srivatsava, Data Structures through 'C' in depth, BPB Publications.

Web References

1. https://www.tutorialspoint.com/data_structures_algorithms

2. http://www.geeksforgeeks.org/data-structures

Question Paper Pattern:

Sessional Exam :

The question paper for sessional examination shall be for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of three sections with Two Questions (EITHER/ OR Type) in each section. The student shall answer one question from each section.

End Examination:

ENVIRONMENTAL STUDIES (ES)

II Semester: Common for EC	CE,CSE,CST,C			Sche	me: 2020			
Course Code	Category	Но	urs/\	Neek	Credits	Maximum Marks		
MC101	MC	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		2	-	-	-	100	-	100

Course Outcomes : At the end of the course students are able to

CO1: Apply the knowledge of environmental issues and understands the need for the conservation of Natural resources for sustainable development.

CO2: Understands the importance of ecosystem and conservation of biodiversity

CO3: Understands the problems due to environmental pollution with remedial measures and issues related to environment.

CO4: Understands the disaster management in prevention of loss of life and property

CO5: Understands the use of IT & related technology to conserve environment & human health.

UNIT – I

Introduction to Environmental studies and Natural resources

Definition, scope, importance and multidisciplinary nature of Environmental studies. Need for public awareness. Energy resources-Growing energy needs, nonrenewable and renewable energy resources: Hydroelectric, solar, wind and nuclear energy resources. Water resources- Use and over exploitation of surface and ground water. Dams and its effects on forest and tribal people. Forest resources- uses of forest, deforestation causes and its effects. Food resources- changes caused by agriculture and over grazing. Modern agriculture and its effects.

UNIT – II

Concepts of ecosystem

Structure and function of an ecosystem. Energy flow in an ecosystem (single channel energy flow model). Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristics and functions of grasslands, desert, pond and ocean ecosystems.

UNIT – III

Biodiversity and its conservation

Definition and levels of biodiversity. Values of biodiversity- consumptive, productive, social, ethical, aesthetic and ecological services. Hot spots of biodiversity. Biogeographical classification of India. Endangered and endemic species of India. Threats to biodiversity-Habitat loss, poaching of wild life and man-wild life conflict. Conservation strategies- In situ and ex situ conservation.

UNIT – IV

Environmental pollution

Air Pollution - sources, types, causes and Effects of air pollutants on humans, plants and animals. Global effects-global warming, acid rains and ozone layer depletion. Air Pollution control measures for suspended particulate matter (SPM) and gaseous pollutants. Water Pollution – sources, causes and effects of water pollution. Sewage water treatment. Disaster management- Floods, Earth quake and cyclone. Municipal solid waste management. Role of an individual in prevention of pollution.

UNIT – V

Social issues and the environment

From unsustainable development to sustainable development. Consumerism and waste products. Salient features of Air Act, water Act and Forest conservation act. Process involved in the enforcement of environmental legislation. Role of Information Technology in environment and human health.

Text books

1.C.P.KaushikandAnubhaKaushik,— "Environmental Studies" New Age International(p)Ltd.,NewDelhi 2. R.Rajagopalan— Environmental Studies, Oxford University press, Chennai 3. Y.Anjaneyulu— Introduction to Environmental sciences, BS Publications, Hyderabad

Reference books

1.BennyJoseph-EnvironmentalStudies,TataMcGrawHill,NewDelhi.

2.BaruchaErach-Environmentalstudies, University Press.

APPLIED PHYSICS LAB (AP(P))

I/II Semes	ter : Commo CST/ M			Е,				Scheme: 2020			
Course Code	Category	Ho	urs/Wo	eek	Credits	Ν	Maximum Marks				
BS114	BSL	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		-	-	3	1.5	40	60	100			
End Exam	Duration: 2	Hrs		•							
Course Out	tcomes : At t	he end c	of the co	ourse, S	Students ar	e able to					
CO1: Appl	y the knowle	dge of p	hysics	laborat	tory in mea	suring the stand	ard values.				
CO2: Appl	y theoretical	knowled	dge to e	experin	nental value	es.					
	-		-	_							
				List	of Experin	nents					
	Note	: At leas	t 12 of		v 1	eriments shall b	e conducted				
1. Determin	ation of size										
			-		-	netic materials.					
	ation of Num	-									
	on of Farada		-		1						
	ation of wave			single	slit.						
						(Steward Gees	Apparatus).				
	es and Parall					`					
8. Determin	ation of wave	elengths	using a	a gratin	ıg.						
9. Hall Effe	ct-determinat	ion of H	[all coe	fficien	t and charg	e density.					
						x lens using Nev					
						s of e-ray and o-	ray.				
	nation of sma										
	nation of rigi										
14. Determi	nation of ene	rgy gap	of a se	micond	luctor by fo	our probe metho	d.				

ELECTRONIC DEVICES AND CIRCUITS LAB (EDC (P))

I/II Semest	er : CSE,CS	T/ EEE						Scheme: 2020
Course Code	Category	Hours/Week			Credits	Ν	laximum Mark	ΔS
EC103	ESL	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		-	-	3	1.5	40	60	100
End Exam	Duration: 3	Hrs						
Course Out	tcomes : At t	he end o	of the c	ourse s	students are	e able to		
						- CRO, CDS an	d FG	
						-diode and Zene		
	erstand the ch					diode and Zene	r diode.	
	erstand the ch							
COT. Onuc			sues of	JI LI.				
				Lint	of Europin	• • • • • •		
	Note	. <u>Atlan</u>	+ 12 of		of Experin	eriments shall b	a aanduatad	
1.0/ 1.01						ernnents shan b	e conducted	
	Electronic eq tion Diode V				and FG.			
	ode V-I Char			cs.				
	de as a volta			ava rac	tifior			
	nce character							
	nce character							
	circuits using		0					
11 0	circuits usir							
	n emitter inp							
	n base input-							
	ain and trans	fer chara	acterist	ics.				
13. SCR cha								
14. UJT cha		·11 ·						
15. UJT as 1	elaxation os	cillator						

DATA STRUCTURES LAB (DS (P))

II Semester : EEE	Common for	CSE,CS	ST,ECE	C &				Scheme: 202		
Course Code	Category	Но	ours/W	eek	Credits	redits Maximum Marks				
CS109	ESL	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		-	-	3	1.5	40	60	100		
End Exam I	Duration: 3 Hr	S		•			· ·			
	tcomes : At the					e to				
-	ement the opera									
CO2: Imple	ementation of s	earching	g and so	rting te	chniques.					
CO3: Imple	ement stacks us	ing stati	c and d	ynamic	allocation.					
CO4: Imple	ement queues u	sing stat	tic and c	lynami	c allocation.					
1 4	Data Staration			List o	of Experime	nts				
•	Data Structure ray Operations									
,	erging of two s		rave							
	cations of Array			s:						
	near Search)								
,	nary Search									
,	ibble Sort									
d) Ins	sertion Sort									
e) Se	lection Sort									
3. Imple	mentation of sin	ngle link	ked list a	and its	operations					
4. Imple	mentation of do	ouble lin	ked list	s and it	s operations					
5. Impler	mentation of sta	ack oper	ations u	ising st	atic allocation	on				
6. Imple	mentation of sta	ack oper	ations u	ising dy	ynamic alloc	ation				
7. Imple	mentation of qu	ieue ope	erations	using d	lynamic allo	cation				
8. Imple	mentation of ci	rcular qu	ueue op	erations	s using static	e allocation				
Reference Bo	ooks									
1. Yashavanth	n P.Kanetkar, '	Let us	C", BPI	B Publi	cations, 7 th I	Edition,2007.				
								0002		
L. D. W. Kern	ignan and Denr	IIS IVI.R1	icme, "	I ne C I	Programmin	g Language", (P	(11), 2 Edition 2	2005.		