Department of Civil Engineering B. Tech. Honors in Civil Engineering

Scheme of Instruction and Examination

(Effective from 2020–21)

S.	Subject		S Ir per	cheme (structio riods/wo	of on eek	Scheme of Examination Maximum Marks			
No.	Subject	Cre	L	D/T	Р	End Exam	Continuous Internal Assessment	Total	
	POOL - 1								
1	Sustainable Materials and Green Buildings	4	4	_	_	60	40	100	
2	Finite Element Method	4	4	—	—	60	40	100	
3	Advanced Design of Steel Structures	4	4	_		60	40	100	
	POOL - 2								
1	Disaster Management	4	4	_	_	60	40	100	
2	Irrigation and Drainage Systems Engineering	4	4	_	_	60	40	100	
3	Water Supply Distribution System	4	4	—	_	60	40	100	
4	Ground Water Engineering	4	4		_	60	40	100	
	<i>POOL - 3</i>								
1	Advanced Foundation Engineering	4	4	—	_	60	40	100	
2	Ground Improvement Techniques	4	4	—	—	60	40	100	
3	Environmental Geotechnology	4	4	—	-	60	40	100	
	POOL - 4								
1	Urban Transportation Planning	4	4	—	_	60	40	100	
2	Intelligent Transportation Systems	4	4	_	_	60	40	100	
3	Pavement Analysis and Design	4	4	_	_	60	40	100	
4	Transportation System and Traffic Management	4	4	_	_	60	40	100	
	MOOC / NPTEL - 1	2	_	_	_	_	_	100	
	MOOC / NPTEL - 2	2	_	_	_	—	_	100	

	MOOC / NPTEL - 1
1	Integrated Waste Management for a Smart City
2	Environmental Impact Assessment for Environmental Health
3	Remote Sensing & GIS
4	Ecology and Environment

	MOOC / NPTEL - 2
1	Municipal Solid Waste Management
2	Environment Natural Resources and Sustainability
3	Urbanisation and Environment
4	Remote Sensing of Leaf Area Index and Primary Productivity

Note: 1. Students has to acquire 16 credits with minimum one subject from each pool.

2. Compulsory MOOC / NPTEL courses for 04 credits (02 courses @ 2 credits each)

SUSTAINABLE MATERIALS AND GREEN BUILDINGS (SMGB)

Course Code Category Hours/Week Credits Maximum Marks HCE01 PCC L T P C Internal Assessment End Exam Total MCE01 PCC L T P C Continuous Internal Assessment End Exam Total Sessional Exam Duration :1.5Hrs End Exam Duration :3 Hrs End Exam Duration :3 Hrs Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials in buildings. CO4:Understand the concept of green buildings. CO3: Use of energy performance of different sustainable materials in buildings. CO4:Understand the concept of green buildings. CO4:Understand the concept of orTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material- Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete – Geo-polymer concrete – Concrete with alternative material for su	B.Tech (Honors) :	CE				Scheme	: 2020					
HCE01 PCC L T P C Continuous Internal Assessment End Exam Total Sessional Exam Duration :1.5Hrs 4 - - 4 40 60 100 Sessional Exam Duration :1.5Hrs End Exam Duration :3 Hrs End Exam Duration :3 Hrs Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials and its properties. CO3: Use of energy performance of different sustainable materials in buildings. CO3: Use of energy performance of green buildings. CO4:Understand the concept of GTTV, LEED & GRIHA UNIT - 1 Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material-Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete-Role of quality-Minimization of natural resource utilization-High volume fly ash concrete – Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crush	Course Code	Category	Ηοι	urs/W	'eek	Credits	Maxin	num Marks				
4 - 4 40 60 100 Sessional Exam Duration :1.5Hrs End Exam Duration: 3 Hrs Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials and its properties. CO3: Use of energy performance of different sustainable materials in buildings. CO4:Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material- Alternative fuel for cements for reduction in carbon emission-Sustainability issues for concrete- Concrete-Role of quality-Minimization of natural resource utilization-High volume fly ash concrete - Geo-polymer concret – Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks	HCE01	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
Sessional Exam Duration :1.5Hrs End Exam Duration : 3 Hrs Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials and its properties. CO3: Use of energy performance of different sustainable materials in buildings. CO4:Understand the concept of green buildings. CO4:Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement - Alternative cements and cementitious material-Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete- Geo-polymer concrete - Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete - Recycled Aggregate - Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality			4	-	-	4	40	60	100			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials and its properties. CO3: Use of energy performance of different sustainable materials in buildings. CO4:Understand the concept of green buildings. CO4:Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material-Alternative fuel for cements for reduction in carbon emission-Sustainability issues for concrete-Role of quality-Minimization of natural resource utilization-High volume fly ash concrete Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	Sessional Exam D	uration :1.5H	[rs				End Exa	m Duration	: 3 Hrs			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the concept of sustainability and green buildings. CO2:Understand the different alternative cementitious materials in buildings. CO4:Understand the concept of green buildings. CO4:Understand the concept of green buildings. CO4:Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy - Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material-Alternative fuel for cements for reduction in carbon emission-Sustainability issues for concrete-Role of quality-Minimization of natural resource utilization-High volume fly ash concrete – Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality			.									
CO1: Understand the concept of sustainability and green buildings. CO2: Understand the different alternative cementitious materials in buildings. CO3: Use of energy performance of different sustainable materials in buildings. CO4: Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT – I Introduction: Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	Course Outcomes	:At the end of	the co	ourse 1	the stu	dent will b	be able to					
CO2: Onderstand the different alternative cententitious materials in buildings. CO3: Use of energy performance of different sustainable materials in buildings. CO4: Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT - I Introduction: Embodied energy-Operational energy in Building and Life cycle energy – Ecological foot print-Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material-Alternative fuel for cements for reduction in carbon emission-Sustainability issues for concrete-Role of quality-Minimization of natural resource utilization-High volume fly ash concrete- Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT - III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	CO1:Understand th	he concept of s	sustain	ability	y and g	green build	ings.	mtion				
CO4: Understand the concept of green buildings. CO5: Apply the concept of OTTV, LEED & GRIHA UNIT – I Introduction: Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	CO3: Use of energy performance of different sustainable materials in buildings.											
CO5: Apply the concept of OTTV, LEED & GRIHA UNIT – I Introduction: Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	CO4: Understand the concept of green buildings.											
UNIT – I Introduction: Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material–Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	CO5: Apply the concept of OTTV, LEED & GRIHA											
Introduction: Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent. UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	UNIT – I											
UNIT - II Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	<i>Introduction:</i> Embodied energy–Operational energy in Building and Life cycle energy – Ecological foot print–Bio-capacity and calculation of planet equivalent.											
Role of Material: Carbon from Cement – Alternative cements and cementitious material– Alternative fuel for cements for reduction in carbon emission–Sustainability issues for concrete–Role of quality–Minimization of natural resource utilization–High volume fly ash concrete– Geo-polymer concrete – Concrete with alternative material for sustainability. UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	UNIT - II											
UNIT – III Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	Alternative fuel f concrete–Role of concrete– Geo-poly	Carbon from for cements quality–Minin ymer concrete	for re- nizatio – Con-	duction n of crete	n in natura with al	carbon en l resource ternative n	mission–Sustain utilization–Hig naterial for sust	nability issu gh volume tainability.	ies for fly ash			
Reduction in water consumption in concrete – Recycled Aggregate – Energy for grinding crushing of cement aggregate and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality				UN	IT – 1	III						
Clay Bricks – Types of kilns – Comparative energy performance – Emission performance and financial performance – Indoor air quality	Reduction in wate crushing of cemen and thermal conduc	er consumptio t aggregate ar ctivity.	n in c nd redu	concre	ete – I . Oper	Recycled A ational end	Aggregate – E ergy in buildin	nergy for g g role of m	rinding aterials			
	Clay Bricks – Typ financial performat	es of kilns – (nce – Indoor a	Compa ir quali	irative ity	e energ	y perform	ance – Emissio	on performar	nce and			
Paints – Adhesive and sealants for use in building – Volatile organic content (VOC) emission issues and indoor air quality for sustainability and health hazard.	Paints – Adhesive issues and indoor a	and sealants f ir quality for s	for use sustain	in bu ability	uilding / and h	– Volatile ealth hazar	e organic conte rd.	nt (VOC) ei	mission			
UNIT – IV				UN	TIV – TIV	IV						
Operational energy reduction and net zero building– Optimization for design of building for energy efficiency and example of optimization through use of Evolutionary genetic algorithm– Radiation budget– Urban heat island–Surface water balance–Effects of trees and microclimatic modification through greening.												
UNIT - V				U	NIT -	V						
Use of Building Integrated Photo Voltaic (BIPV) and other renewable energy in buildings-	Use of Building In	ntegrated Pho	to Vol	ltaic ((BIPV)	and other	r renewable en	ergy in bui	ldings-			

Basic concepts and efficiency– Energy codes ECBC requirement, Concepts of OTTV – Green Performance rating– Requirements of LEED, GRIHA.

Text Books

1. Newman, J. and Choo, Ban Sang, *Advanced Concrete Technology-Processes*, First Edition, Elsevier.

2. Newman, J. and Choo, Ban Sang, *Advanced Concrete Technology-Constituent Materials*, 1st Edition, Elsevier.

3. Ministry of Power, Energy Conservation Building Code 2018, Revised Version, Bureau of Energy Efficiency.

4. McQuiston, F.C., and Parker, J.D. *Heating, Ventilating, and Air Conditioning, Analysis and Design*, Fourth Ed. John Wiley & Sons, Inc.

5. TERI-Griha's Green Design practices.

Reference Books

1. Leadership in Energy and Environmental Design.

2. Green Building Basics, California Integrated Waste Management Board.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

FINITE ELEMENT METHODS (FEM)

B.Tech (Honors) :	CE						Scheme	e: 2020			
Course Code	Category	Ho	urs/W	'eek	Credits	Maxin	um Marks				
HCE02	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		4	-	-	4	40	60	100			
Sessional Exam D	ouration :1.5H	lrs				End Exa	n Duration	: 3 Hrs			
~ ~ ~											
Course Outcomes	At the end of	f the co	ourse	the stu	dent will b	e able to					
CO1: Understand th	ne concepts of l	FEM a	nd En	ergy pi	inciples	Donalamanta					
CO2: Analyse stiff	less matrix and	Shape	Func		or Dealli &	Bar elements	-4-2				
CO4: Analyse Sulfiess matrix and Shape Functions for Two dimensional elements											
CO4: Analyse I wo Dimensional Isoparametric elements with Four and Eight nodes											
COS:AnalyseAxi-Symmetric bodies of revolution											
UNIT – I											
Introduction and Principles of Elasticity: Concepts of FEM-Steps involved – Merits and demerits – Energy principles – Descretization– Rayleigh–Ritz method of functional approximation –Stress equations – Strain displacement relationships in matrix form – Plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.											
UNII - 11											
<i>One Dimensional</i> elements– Static co effects.	<i>FEM</i> :Stiffnes ondensation of	s matr global	ix for stiffne	[•] beam ess ma	and bar (trix – Solut	elements–Shape tion – Initial str	e functions f ain and temp	for 1-D perature			
			UN	TIV	111						
<i>Two Dimensional</i> Displacement mo compatibility required volume coordination.	FEM: Differen dels –Genera irements –Ge tes–Generatior	nt type llized ometri n of	es of e coord c inva elema	lemen linates ariance ent s	ts for pland – Shapo e – Natura tiffness a	e stress and pla e functions – al coordinate s nd nodal loa	ne strain an Converger ystem – An d matrices	alysis - nt and rea and S–Static			
			UN	TIV – TIV	IV						
<i>Isoparametric Formulation:</i> Concept – Different isoparametric elements for 2-D analysis – Formulation of 4-noded and 8-noded isoparametric quadrilateral elements –Lagrangian elements – Serendipity elements.											
UNIT - V											
Axisymmetric Anal relationship – Forn	<i>lysis:</i> Bodies of nulation of axi	f revol -symn	ution netric	– Axi elemer	-symmetrie nts.	c modeling – S	Strain displa	cement			
Text Books											

1. C.S.Krishna Murthy, *Finite Element Analysis – Theory & Programming*, Tata McGraw Hill.

2. TirupathiChandruPatla A &Belugunudu, *Introduction to Finite Element Method*, Khanna Publishers.

Reference Books

1. Cook, R.D., *Concepts and Applications of Finite Element Analysis*, John Wiley and sons Inc., New York.

2. J.N. Reddy, Introduction to Finite Element Method, McGraw Hill Book Co.

3. Bathe K.J., Finite Element Procedures in Engineering Analysis, Prentice Hall.

4. Gallagher R.H., & Wilson, Finite Element Analysis Fundamentals, Prentice Hall Inc.

5. Hinton and Owen, *Finite Element Programming*, Academic press, London.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

ADVANCED DESIGN OF STEEL STRUCTURES (ADSS)

B.Tech (Honors)	CE						Scheme	: 2020			
Course Code	Category	Но	urs/W	'eek	Credits	Maxin	num Marks	1			
HCE03	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		4	-	-	4	40	60	100			
Sessional Exam D	uration :1.5H	lrs				End Exa	m Duration	: 3 Hrs			
C O I	1 1	C (1		1	1 4 111	11 /					
Course Outcomes	At the end of	t the co	ourse	the stu	dent will b	e able to	design of	waldad			
connection	the concepts of	or ecc	entric	and	noment co	onnections and	design of	weided			
CO2:Design the W	/elded Plate G	irders									
CO3: Design the C	CO3: Design the Gantry Girders										
CO4: Design of Roof trusses											
CO5: Design of Li	ight gauge stee	el struc	tures								
UNIT – I											
Eccentric and Moment Connections: Introduction – Beams-Column Connections – Connections Subjected to Eccentric Shear – Bolted Framed and Seat Connections– Welded Framed and bracket Connections – Moment Resistant Connections. UNIT - II Design of Welded Plate Girders: Elements of plate girders – Self-weight of plate girders– Economical depth–Shear buckling resistance of web– Design of bearing stiffeners– Weld for bearing stiffeners– Design of intermediate stiffeners and design of welded plate girder. UNIT – III											
<i>Design of Gantry</i> gantry girder and d	Girders: Load lesign of gantr	ls, pos y girde	ition ers.	of mo	ving load	for maximum	effects– Pro	ofile of			
			UN	TIV	IV						
<i>Design of Roof tru</i> Purlins– Loads on trusses.	Design of Roof trusses: Bracings, types of roof trusses – Pitch of trusses – Spacing of trusses – Purlins– Loads on trusses – Design of truss members – Design of joints – Design of tubular trusses.										
			U	NIT -	V						
Light gauge steels stresses. Compress –Computation of Deflection – Loca beams.	structures:Lig ion members - permissible st l buckling of	ht gaug – Loca resses compr	ge stee 1 buck – De ressior	el – Ty kling o sign o n elem	ppes of sect f elements f columns ents – Lat	tions – Specific – Stiffened con . Flexural men erally supporte	ations- Pern npression el nbers – Ber d and unsuj	nissible lements iding – pported			
1. S. K. Duggal,	Limit State D	esign d	of Ste	el Stru	ctures, Mc	Graw Hill Edu	cation Priva	ate Ltd.			

New Delhi.

2. K. S. Sairam, *Design of Steel Structures*, Pearson Education.

Reference Books

1. N. Subramanian, *Design of Steel Structures*, Oxford University Press.

2.Dr. Ramachandra&VivendraGehlot, *Design Steel Structures Volume–II*, Scientific Publishers Journals Department.

3. Indian Standard Code – IS – 800-2007 *General Construction in Steel- Code of Practice*.

4. Steel Tables.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

DISASTER MANAGEMENT (DM)

	B.Tech (Honors)	CE						Scheme	e: 2020			
HCE04 PCC L T P C Continuous Internal Assessment End Exam Total Sessional Exam Duration :1.5Hrs 5 End Exam Duration: 3 Hrs 5 60 100 Sessional Exam Duration :1.5Hrs End Exam Duration: 3 Hrs End Exam Duration: 3 Hrs 5 60 100 Course Outcomes :At the end of the course the student will be able to CO1:Understand the impact of disasters throughdifferent case studies. CO2:Understand the basic principles of disaster management. CO3:Analyze Risk and Vulnerability. CO4:Understand the basic principles of disaster management. CO4:Understand the basic principles of Disaster-Different Types of Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides-Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster: Biological Disaster, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - I Study of Important Disasters:Earthquakes and its types - Magnitude and intensity - Seismic zones of India - Major fault systems of India plate - Flood types and its management - Drought types and its management - Landside and its management - Case studies of disasters. UNIT - II Risk and Vulnerability Analysis:Risk: Its concept and analysis -Risk Reduction-Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT - IV	Course Code	Category	Но	ırs/W	eek	Credits	Maxin	um Marks	5			
Image: Constraint of the set of the se	HCE04	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
Sessional Exam Duration :1.5Hrs End Exam Duration : 3 Hrs Course Outcomes :At the end of the course the student will be able to CO1:Understand the different types of disasters. CO2:Understand the impact of disasters through different case studies. CO3:Analyze Risk and Vulnerability. CO4:Understand the basic principles of disaster management. CO4:Understand the basic principles of disaster management. CO5:ApplyGIS and Remote sensing techniques in disaster management. UNIT - I Definition and Types of Disaster: Introduction on Disaster-Different Types of Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides-Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters. UNIT - III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management – Disaster Management – Cale – Disaster Management – Cale – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones – Retrofitting of buildings.			4	-	-	4	40	60	100			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the different types of disasters. CO2:Understand the impact of disasters throughdifferent case studies. CO3:Analyze Risk and Vulnerability. CO4:Understand the basic principles of disaster management. CO5:ApplyGIS and Remote sensing techniques in disaster management. CO5:ApplyGIS and Remote sensing techniques in disaster management. CO5:ApplyGIS and Remote sensing techniques, Landslides–Man-made Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides–Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT – III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management –Disaster Management _ cycle – Disaster management policy –National and State Bodies for Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones - Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management:Training and drills for disaster prapardness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	Sessional Exam D	uration :1.5H	[rs				End Exa	m Duration	: 3 Hrs			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the different types of disasters. CO2:Understand the impact of disasters throughdifferent case studies. CO3:Analyze Risk and Vulnerability. CO4:Understand the basic principles of disaster management. CO5:ApplyGIS and Remote sensing techniques in disaster management. CO5:ApplyGIS and Remote sensing techniques, Landslides-Man-made Disaster-Natural Definition and Types of Disaster: Introduction on Disaster-Different Types of Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides-Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its management – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT – II Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones – Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management:Training and drills for disaster prapardness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management –												
CO1:Understand the different types of disasters. CO2:Understand the impact of disasters throughdifferent case studies. CO3:Analyze Risk and Vulnerability. CO4:Understand the basic principles of disaster management. UNIT - I Definition and Types of Disaster:Introduction on Disaster management. UNIT - I Definition and Types of Disaster: Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters. UNIT - III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones – Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and	Course Outcomes	At the end of	f the co	ourse	the stu	dent will b	e able to					
CO3: Analyze Risk and Vulnerability. CO4: Understand the basic principles of disaster management. CO4: Understand the basic principles of disaster management. CO3: Analyze Risk and Vulnerability. UNIT – I Definition and Types of Disaster: Introduction on Disaster—Different Types of Disaster—Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides—Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters: Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT – II Risk and Vulnerability Analysis:Risk: Its concept and analysis—Risk Reduction—Vulnerability: Its concept and analysis—Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones – Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Managemen	CO1:Understand t	he different ty	pes of	disast	ers.	0						
CO4: Understand the basic principles of disaster management. CO5: ApplyGIS and Remote sensing techniques in disaster management. CO5: ApplyGIS and Remote sensing techniques in disaster management. UNIT - I Definition and Types of Disaster: Introduction on Disaster—Different Types of Disaster—Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides—Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters: Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT - III Risk and Vulnerability Analysis: Risk: Its concept and analysis—Risk Reduction—Vulnerability: Its concept and analysis—Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster: Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones – Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster prepar	CO2:Understand t	he impact of d	1saster	s thro	ughdif	terent case	studies.					
COS: ApplyGIS and Remote sensing techniques in disaster management. UNIT - I Definition and Types of Disaster: Introduction on Disaster-Different Types of Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides-Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters: Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters. UNIT - III Risk and Vulnerability Analysis: Risk: Its concept and analysis-Risk Reduction-Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster: Basic principles of disasters management – Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management early Warming Systems – Building design and construction in highly seismic zones- Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment	CO3:Analyze Risk	and Vulnerab	ility.	6 d:	4							
Constant Remote sensing techniques in disaster management. UNIT - I Definition and Types of Disaster: Introduction on Disaster-Different Types of Disaster-Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides-Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster: Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters: Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT - III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management –Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management:Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. <td>CO5: A pplyCIS on</td> <td>d Romoto cono</td> <td>ples of</td> <th>f disas</th> <th>ster ma</th> <td>inagement.</td> <td>nocomont</td> <th></th> <th></th>	CO5: A pplyCIS on	d Romoto cono	ples of	f disas	ster ma	inagement.	nocomont					
Origination and Types of Disaster: Introduction on Disaster–Different Types of Disaster–Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides–Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism. UNIT - II Study of Important Disasters: Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT - III Risk and Vulnerability Analysis: Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT - IV Mitigation and Management Techniques of Disaster: Basic principles of disasters management – Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. UNIT - V	COS:AppryOIS and	UNIT – I										
UNIT - II Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT – III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management:Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	<i>Definition and Types of Disaster:</i> Introduction on Disaster–Different Types of Disaster–Natural Disaster: such as Flood, Cyclone, Earthquakes, Landslides–Man-made Disaster: such as Fire, Industrial Pollution,Nuclear Disaster, Biological Disasters, Accidents (Air, Sea,Rail& Road), Structural failures(Building and Bridge),War & Terrorism.											
Study of Important Disasters:Earthquakes and its types – Magnitude and intensity – Seismic zones of India – Major fault systems of India plate – Flood types and its management – Drought types and its management – Landside and its managements – Case studies of disasters in Sikkim (e.g.) Earthquakes, Landside) – Social Economics and Environmental impact of disasters. UNIT – III Risk and Vulnerability Analysis:Risk: Its concept and analysis–Risk Reduction–Vulnerability: Its concept and analysis–Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management – Disaster Management – Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas.				U	NIT -	II						
UNIT – III Risk and Vulnerability Analysis:Risk: Its concept and analysis-Risk Reduction-Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster:Basic principles of disasters management -Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management- Early Warming Systems – Building design and construction in highly seismic zones- Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	<i>Study of Importan</i> zones of India – M types and its mana, (e.g.) Earthquakes,	ut Disasters: E ajor fault syste gement – Lanc Landside) – S	arthqua ems of Iside a Social I	akes a India nd its Econo	and its plate manag mics a	types – N – Flood typ gements – O nd Enviror	Agnitude and it pes and its man Case studies of nmental impact	intensity – S agement – I disasters in of disasters	Seismic Drought Sikkim			
Risk and Vulnerability Analysis: Risk: Its concept and analysis-Risk Reduction-Vulnerability: Its concept and analysis-Strategic Development for Vulnerability Reduction. UNIT – IV Mitigation and Management Techniques of Disaster: Basic principles of disasters management -Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management - Early Warming Systems – Building design and construction in highly seismic zones- Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books				UN	TIV	III						
UNIT – IV Mitigation and Management Techniques of Disaster: Basic principles of disasters management –Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management– Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	Risk and Vulneral Its concept and ana	<i>bility Analysis</i> alysis–Strategi	Risk: c Deve	Its co lopm	oncept ent for	and analys Vulnerabi	sis–Risk Reduc lity Reduction.	tion–Vulner	rability:			
 Mitigation and Management Techniques of Disaster: Basic principles of disasters management Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management– Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings. UNIT - V Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books 				UN	TIV – T	IV						
UNIT - V <i>Training, Awareness Program and Project on Disaster Management:</i> Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	<i>Mitigation and Management Techniques of Disaster:</i> Basic principles of disasters management –Disaster Management cycle – Disaster management policy –National and State Bodies for Disaster Management– Early Warming Systems – Building design and construction in highly seismic zones– Retrofitting of buildings.											
<i>Training, Awareness Program and Project on Disaster Management:</i> Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas. Text Books	UNIT - V											
Text Books	Training, Awareness Program and Project on Disaster Management: Training and drills for disaster preparedness –Awareness generation program – Usages of GIS and Remote sensing techniques in disaster management – Mini project on disaster risk assessment and preparedness for disasters with reference to disasters in Sikkim and its surrounding areas.											
	Text Books											

1. Disaster Management Guidelines, GOI-UND Disaster Risk Program (2009-2012)

2. Damon P.Copola, Introduction to International Disaster Management, ButterworthHeineman.

3. Gupta A.K., Niar S.S and Chatterjee S., *Disaster management and Risk Reduction, Role of Environmental Knowledge*, Narosa Publishing House, Delhi.

4. Murthy D.B.N., *Disaster Management*, Deep and Deep Publication Pvt. Ltd., New Delhi.

5. ModhS., Managing Natural Disasters, Mac Millan publishers India Ltd.

6. Chitkara. K.K., *Construction Project Management: Planning Scheduling and Control*, Tata McGraw Hill Publishing Company, New Delhi.

Reference Books

1.Dr.MrinaliniPandey, Disaster Management, Wiley India Pvt. Ltd.

2. TusharBhattacharya, Disaster Science and Management, McGraw Hill Education

3.J. P. Singhal, *Disaster Management*, Laxmi Publications.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

IRRIGATION AND DRAINAGE SYSTEMS ENGINEERING

B.Tech (Honors) :	CE						Scheme	e: 2020		
Course Code	Category	Ηοι	urs/W	'eek	Credits	Maxin	num Marks			
HCE05	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		4	-	-	4	40	60	100		
Sessional Exam D	uration :1.5 I	Hrs.				End Exam	n Duration:	3 Hrs.		
Course Outcomes	At the end of	f the co	ourse	the stu	dent will b	e able to				
CO1:UnderstandN	lational water	policy	for wa	ater res	sources de	velopment.				
CO2:Evaluate con	sumptive use a	and irri	igation	n effici	lencies.					
CO3: Model theme	thods of irrigat	tion.	and th		lamation					
CO4:Understand th	nesalt affected	i land a	and th	draina	lamation.					
	lesuitace allu s	sub-su		NIT _	<u>I</u>	•				
Introduction: Available water resources and its present utilization – Development through five- year plans –Roles of various commissions on irrigation and agriculture –National water policy for development – Types of irrigation –Irrigation techniques and quality of irrigation water. UNIT - II Soil Water Crop Relationship: Determination of soil moisture– Estimation of consumptive use and frequency of irrigation – Irrigation efficiencies for economical use of water – Design of various irrigation methods – Assessment water charges – Conjunctive use of surface and ground water – Multi-crop irrigationscheduling UNIT – III Modeling of Irrigation Systems: Governing equations and their solutions – Computation of inundation front – Cumulative infiltration estimation – Modeling for sprinklers and other mathods of irrigation										
			UN	TIT – 1	IV					
Salt Affected Land salts affecting the Leaching and salin	<i>d and their R</i> soils and their ity control.	eclam r char	ation: acteri	Salt adstrict a	ccumulatic Reclamat	on in soil water ion of saline a	r– Classifica and alkaline	ation of soils –		
			U.	NIT -	V					
Drainage of Irrigated Soils: Need and purpose of drainage, water logging of agricultural lands and its reclamation – Steady state and transient designs of surface and sub-surface drainage systems – Drainage by wells.										
<i>Soil Erosion and</i> conservation measured	<i>Conservation</i> ures.	:Wate	r and	wind	erosion –	Design of va	rious types	of soil		
Text Books										

1. Asawa G L, *Irrigation and Water Resources Engineering*, New Age International Publishers, New Delhi.

2. Dan Yaron, Salinity in irrigation and water resources, Morcel Dekker Inc., New York.

3. Michael A M, Irrigation theory and practices, Vikas Publishing House, New Delhi.

Reference Books

1. Richard H Cuenca, *Irrigation system design–An Engineering Approach*, Prentice Hall, Englewood Cliffs, New Jercy.

2.Dilip Kumar Mujumdar, Irrigation Water Management Principles and Practice, PHIPublication, New Delhi.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

WATER SUPPLY DISTRIBUTION SYSTEM (WSDS)

Course CodeCategoryHours/WeekCreditsMaximum MarksHCE06PCCLTPCContinuous Internal AssessmentEnd ExamTotalSessional Exam Duration : 1.5 Hrs.IIIPCContinuous Internal AssessmentEnd ExamTotalCOUrse Outcomes : At the end of the course the student will be able toEnd ExamIo0Io0CO1: Understand the types of water supply systems.Eod CO2: Plan thewater supply system.Eod CO2: Plan thewater supply system.Eod CO2: Plan thewater supply system.CO2: Spornulate the equation for distribution system.UNIT - IIonIonIntroduction: Water requirement- Sources of water - Water demand - Reservoir storage nodal hydraulic gradient level values - Water supply consideration - Types of water supply systems - Piping system - Distribution network Parameters: Energy and hydraulic gradient line- Head loss in links -Equivalent pipe - Pipes in series - Pipes in parallel - Pipe material.Need for Transport of water - Water quality - Planning of water supply systems - Intake structures.Ion System: Equivalent pipe - Pipes in parallel - Pipe material.Types of Distribution System: Equivalent pipe - Formulation - Gravity and rising main - Location and design principles.Ion Sistem: UNIT - IIParameters intercelationship - Formulation System: Nethods of analysis: Hardy-Cross method, Newton- Raphson method and Linear theory method.Ion Sistem: Sistem: UNIT - VParameters line Pipe flow.UNIT - VPeripe analysis of dater Distribution system - Pup duty stations and detailing valves - Pressure transition sign have distribut	B.Tech (Honors) :	CE				Scheme	: 2020					
HCE06 PCC L T P C Continuous Internal Assessment End Exam Total Sessional Exam Duration : 1.5 Hrs. End Exam 60 100 Sessional Exam Duration : 1.5 Hrs. End Exam 60 100 Course Outcomes : At the end of the course the student will be able to 60 100 CO1: Understand the types of water supply systems. CO2:Plan thewater supply systems. CO2:Plan thewater supply systems. CO3: Formulate the equation for distribution system. CO4:Analyse the distribution system. CO4:Analyse the distribution system. CO4:Analyse the distribution system. UNIT - I Introduction:Water requirement-Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Design: Trial and error method of design – Cost - head loss ratio method –Optimi	Course Code	Category	Ηοι	urs/W	'eek	Credits	Maxin	num Marks				
4 - 4 40 60 100 Sessional Exam Duration : 1.5 Hrs. End Exam Duration : 3 Hrs. Course Outcomes : At the end of the course the student will be able to CO1:Understand the types of water supply systems. CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT - I Introduction:Water requirement- Sources of water - Water demand - Reservoir storage nodal hydraulic gradient level values - Water supply consideration - Types of water supply systems - Piping system - Distribution network labeling - Network components - Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line- Head loss in links -Equivalent pipe - Pipes in series - Pipes in parallel - Pipe material. Need for Transport of water - Water quality - Planning of water supply systems - Intake structures. UNIT - III Types of Distribution Systems:Equivalent pipe - Parameters in distribution system analysis - Parameters interrelationship - Formulation of equation. Gravity and rising main - Location and design principles. UNIT - IV Analysis of Water Distribution System:Methods of analysis: Hardy-Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design- Cost- head loss ratio method -Optimization u	HCE06	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
Sessional Exam Duration : 1.5 Hrs. End Exam Duration : 3 Hrs. Course Outcomes :At the end of the course the student will be able to CO1:Understand the types of water supply systems. CO2:Plan thewater supply systems. CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT - I Introduction: Water requirement- Sources of water - Water demand - Reservoir storage nodal hydraulic gradient level values - Water supply consideration - Types of water supply systems - Piping system - Distribution network labeling - Network components - Network models. UNIT - II Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line- Head loss in links - Equivalent pipe - Pipes in series - Pipes in parallel - Pipe material. Need for Transport of water - Water quality - Planning of water supply system analysis - Parameters interrelationship - Formulation of equation. Gravity and rising main - Location and design principles. UNIT - IV Analysis of Water Distribution System:Methods of analysis: Hardy-Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design- Cost- head loss ratio method -Optimization using linear programming techniques - Surge analysis in water distribution systems -Pump duty stations and detailing valves -Pressure transints in p			4	-	-	4	40	60	100			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the types of water supply systems. CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. CO5:Applythe linear programming techniques – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. CO5:Applythe linear theory method. CO5:Applythe linear theory method. CO5:Applythe linear theory method. CUNIT – IV Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo, Lancaster, USA.	Sessional Exam D	uration : 1.5	Hrs.				End Exan	n Duration:	3 Hrs.			
Course Outcomes :At the end of the course the student will be able to CO1:Understand the types of water supply systems. CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT - I Introduction:Water requirement–Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.												
CO1:Understand the types of water supply systems. CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. UNIT - I Introduction:Water requirement—Sources of water – Water demand – Reservoir storage nodal hydraulic gradient line— Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. WINT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line— Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – II Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelations	Course Outcomes	:At the end of	f the co	ourse	the stu	dent will b	e able to					
CO2:Plan thewater supply systems. CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT – I Introduction:Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo, Lancaster, USA.	CO1:Understand t	he types of wa	ter sup	ply sy	ystems	•						
CO3:Formulate the equation for distribution system. CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT - I Introduction:Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	CO2:Plan thewater	r supply syster	ns.									
CO4:Analyse the distribution system. CO5:Applythe linear programming techniques for optimization. UNIT – I Introduction:Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flo	CO3:Formulate the	equation for o	distrib	ution s	system							
Cos:Applythe linear programming techniques for optimization. UNIT – I Introduction:Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters:Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA. <td colspan="12">CO5: Applythe linear programming techniques for optimization</td>	CO5: Applythe linear programming techniques for optimization											
UNIT - 1 Introduction: Water requirement – Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line – Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems: Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design – Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	CO5 :Applythe line	ar programmi	ng tech	inique	$\frac{1}{2}$ s for c	ptimizatio	n.					
Introduction: Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models. UNIT - II Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems: Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.		UNII – I										
UNIT - II Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line- Head loss in links -Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems: Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	<i>Introduction:</i> Water requirement– Sources of water – Water demand – Reservoir storage nodal hydraulic gradient level values – Water supply consideration – Types of water supply systems – Piping system – Distribution network labeling – Network components – Network models.											
Hydraulic Parameters and Network Parameters: Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material. Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems: Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	UNIT - II											
Need for Transport of water – Water quality – Planning of water supply systems – Intake structures. UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	<i>Hydraulic Parameters and Network Parameters:</i> Energy and hydraulic gradient line– Head loss in links –Equivalent pipe – Pipes in series – Pipes in parallel – Pipe material.											
UNIT – III Types of Distribution Systems:Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	Need for Transpor structures.	rt of water –	Water	qual	ity – 1	Planning o	of water supply	v systems –	Intake			
Types of Distribution Systems: Equivalent pipe – Parameters in distribution system analysis – Parameters interrelationship – Formulation of equation. Gravity and rising main – Location and design principles. UNIT – IV Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.				UN	TIV	III						
UNIT – IV Analysis of Water Distribution System:Methods of analysis: Hardy–Cross method, Newton-Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	<i>Types of Distribut</i> Parameters interrel design principles.	tion Systems: Hationship – Fo	Equiva ormula	lent p tion o	ipe – I f equa	Parameters tion. Gravi	in distribution ty and rising m	a system ana aain – Locati	alysis – ion and			
Analysis of Water Distribution System: Methods of analysis: Hardy–Cross method, Newton- Raphson method and Linear theory method. UNIT - V Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.				UN	IIT – 1	IV						
UNIT - V Design and Optimization of Water Distribution System:Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow. Text Books 1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	Analysis of Water Raphson method a	• <i>Distribution</i> nd Linear theo	<i>Syster</i> ry met	<i>n:</i> Me hod.	thods	of analysis	s: Hardy–Cross	method, N	lewton-			
 Design and Optimization of Water Distribution System: Design: Trial and error method of design— Cost- head loss ratio method —Optimization using linear programming techniques — Surge analysis in water distribution systems —Pump duty stations and detailing valves —Pressure transients in pipe flow. Text Books Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA. 				U	NIT -	V						
Text Books1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	Design and Optimization of Water Distribution System: Design: Trial and error method of design– Cost- head loss ratio method –Optimization using linear programming techniques – Surge analysis in water distribution systems –Pump duty stations and detailing valves –Pressure transients in pipe flow.											
1. Bhave P R, Analysis of Flow in Water Distribution Network, TechnomicPublishingCo., Lancaster, USA.	Text Books											
	1. Bhave P R, <i>A</i> Lancaster, USA.	nalysis of Flo	ow in	Water	r Disti	ribution No	etwork, Techno	omicPublish	ingCo.,			

2. Bhave P R, *Optimal Design Of Water Distribution Networks*, Narosa Publishing House, New Delhi.

3. Streter V L and Wylie E D, Fluid Transients, McGraw Hill Book Co.

Reference Books

1. Pramod R. Bhave and Rajesh Gupta, *Analysis of Water Distribution Networks*, Narosa Publishing House, New Delhi and Alpha-Science Publication, UK.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

GROUND WATER ENGINEERING (GWE)

B.Tech (Honors) :	CE						Scheme	: 2020			
Course Code	Category	Ho	urs/W	'eek	Credits	Maxin	num Marks				
HCE07	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		4	-	-	4	40	60	100			
Sessional Exam D	uration :1.5 H	Irs.				End Exan	n Duration:	3 Hrs.			
Course Outcomes	At the and of	f the e		the atu	dont will h	a abla ta					
COl ·Understand t	he occurrence	and m	ovem	entof c	roundwate	e able to					
CO2: Estimate the	vield of a well		ovenn		<u>, ound wate</u>						
CO3:Understand th	ne methods of	artifici	al rec	harge	of ground v	water.					
CO4:Applyground	lwater modelir	ig tech	nique	s.							
CO5:Understandthe concept of salt water intrusion.											
<i>Introduction:</i> Occurrence of ground water – Geological formations as aquifers – Types of aquifers – Groundwater movement – Darcy's law –Permeability and its measurement –Tracing of ground watermovement –Fundamental equations for steady and unsteady ground water flow– Flow nets.											
UNIT - II											
<i>Well Hydraulics:</i> Steady and unsteady flow in confined, semi-confined and unconfined aquifers –Radial flow– Superposition – Multiple well system –Different methods of well construction – Construction of well casings and screens –Natural and Artificial gravel packed wells – Safe yields – Estimation – Pumping and recuperation tests –Infiltration galleries.											
			UN	I T I	III						
Artificial Recharg ground water –Dif Cone of depression	ge of Ground Afferent method n.	<i>Wate</i> ls– Me	r: Gr erits-E	ound-v Demeri	water reple ts –Selecti	enishment –Art on criteria for	tificial recha various met	arge of thods –			
			UN	TIV	IV						
Ground Water Mo models –Digital co	odeling Techni omputer model	i ques: s.	Porou	s medi	a models -	- Analog mode	ls – Electric	analog			
			U	NIT -	V						
Salt Water Intrusi	on:Concept –	Interfa	ce and	d its lo	cation –Co	ontrol of intrusion	on.				
<i>Transport of Pollutants in Ground Water:</i> Pollutant transport – Plume Transport –Source identification –Tracer methods.											
Text Books											
1. David Keith Todd, <i>Groundwater Hydrology</i> , John Wiley publishers.											
2. Jacob and Bear,	, Hydraulics of	Grou	ndwat	ter, Mo	Graw Hill	•					

Mutreja K.N., *Applied Hydrology*, Tata McGraw-Hill Publishing company Ltd., NewDelhi.
 Raghunath, *Groundwater & Well Hydraulics*, Wiley Eastern Ltd, New Delhi.

Reference Books

1. Singh Vijay. P, Elementary Hydrology, Prentice Hall, India.

2. Mutreja K.N., Applied Hydrology, Tata McGraw-Hill Publishing company Ltd., NewDelhi.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

ADVANCED FOUNDATIONENGINEERING (AFE)

B.Tech (Honors) :	CE					Scheme	: 2020				
Course Code	Category	Ho	urs/W	'eek	Credits	Maxin	num Marks	5			
HCE08	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		4	-	-	4	40	60	100			
Sessional Exam D	uration :1.5 H	Hrs.				End Exan	n Duration:	3 Hrs.			
	A1 1 .	C .1			1 . 111	11.					
Course Outcomes	At the end of	t the co	oil un	the stu	dent will b	e able to	daoila				
CO2 :Determine th	e bearing capac	city of	on un f soil i	uer me inder i	aft foundat	tion and design	foundation				
CO3:Determine th	CO3 : Determine the settlements for the design of shallow footings										
CO4:Designthepile	CO4: Design the pile foundation sunder different loading conditions										
CO5:Designthefou	Indationsonpro	blema	ticsoi	ls.	0						
UNIT – I											
<i>Shallow Foundations:</i> Bearing Capacity – General formulae – Effect of water table – Footing with eccentric or inclined loads – Foundations on layered soils – Foundations on finite layer with rigid base at shallow depth – Effect of compressibility of soil.											
<i>Raft Foundations:</i> on elastic foundati grade reaction.	Raft Foundations: Bearing capacity of raft foundation – Floating raft – Types of rafts – Beam on elastic foundation – Conventional methods of design – Determination of modulus of sub-grade reaction.										
			UI	- 11							
<i>Settlement:</i> Components – Immediate, consolidation & creep – Stresses and displacements inhomogeneous, layered and anisotropic soils – Consolidation settlement – One, Two & Threedimensional consolidation – Secondary compression settlement –Bearing pressure using SPT,CPT, Dilatometer and Pressuremeter – Settlement of foundations on sands –Schmertmann andBurland&Busbridge methods – Structure tolerance to settlement and differential settlements–Rotationof tall structures.											
			UN	TIV – 1	IV						
Pile Foundations: Single Pile: Vertically loaded piles –Static capacity α, β and λ methods– Dynamicformulae–PointbearingresistancewithSPTandCPT results– Bearingresistanceofpilesonrock–Settlement–Pileloadtest–Upliftresistance–Laterallyloadedpiles– Ultimatelateralresistance–Negativeskinfriction–Batterpiles–Under-reamedpiles– Ultimatecapacityofpilegroupsincompression,pullout&lateralload–Efficiency–Settlementsof pilegroups.											
			U	NIT -	V						
Foundations on	Collapsible	Soi	ls:	Origin	and o	ccurrence –	Identificat	ion –			

Samplingandtesting–Preventive andremedial measures.

Foundations on Expansive Soils: The nature, origin and occurrence –Identifying, testing and evaluating expansive soils–

Typical structural distress patterns and preventive design & construction measures.

Text Books

1. Das, B.M., *PrinciplesofFoundationEngineering*, 7thCengageLearning.

2. DonaldPCoduto, *FoundationDesignPrinciplesandPractices*, Pearson Indian Edition.

3. Bowles, J.E., FoundationAnalysis & Design, McGraw-HillCompanies, Inc.

4. Poulos, H.G. & Davis, E.H., PileFoundationAnalysisandDesign, JohnWiley & SonsInc.

Reference Books

1. Reese,L.C.&VanImpe,W.F., *SinglePilesandPileGroupsunderLateralLoading*, Taylor& Francis Group.

2. Tomlinson, M.J., FoundationDesignandConstruction, PrenticeHall.

3. LymonC.Reese,WilliamM.Isenhower,Shin-TowerWang, *AnalysisandDesignofShallowand Deep Foundations*.

4. Salgado, R., *TheEngineeringofFoundations*, McGraw-Hill, Boston.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

GROUND IMPROVEMENT TECHNIQUES (GIT)

B.Tech (Honors)	CE						Scheme	e: 2020			
Course Code	Category	Hou	ırs/W	'eek	Credits	Maxin	num Marks				
HCE09	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		4	-	-	4	40	60	100			
Sessional Exam D	uration : 1.5	Hrs.				End Exan	n Duration:	3 Hrs.			
Course Outcomes	At the end of	f the co	ourse	the stu	dent will b	e able to					
CO1: Select theef	fective and ec	onomie	cal gro	ound in	nprovemen	nt techniques					
CO2: Understand	the concept of	t deep	compa	$\frac{1}{1}$.1 .1.						
CO3: Gain the Kn	owledge on sto	one col	roinfo	and so	oil nailing.	tructuras					
CO5: Analyze the different grouting techniques.											
COS: Anaryze the different grouting techniques.											
UNIT – I											
Dewatering:IntroductionScopeandnecessityofgroundimprovementinGeotechnicalEngineering-Basicconceptsandphilosophy-Drainage-Groundwaterloweringbywellpointsdeepwells,vacuumandelectro-osmoticmethods-Stabilizationbythermalandfreezingtechniques											
UNIT - II											
<i>Compaction and Sa</i> compaction sand p consolidation – Pre Designandrelativer	and Drains:In- iles – Concept cloading with s merits.	situ co t, desig sand di	mpact gn, fac rains,	ion of ctors in fabric	granular ar Ifluencing drains, wi	nd cohesive soils compaction –B ck drains – The	s –Shallow a clasting and c eories of san	nddeep lynamic ddrain–			
			UN	TIV	III						
<i>StoneColumn,Lim</i> installation – Desi Stabilityoftrenches	<i>ePilesandSoil</i> gn, estimatior – Lime-sandc	<i>Nailin</i> of lo column	g:Stor ad ca s –Ro	necolu rrying otpiles	mn,limepil capacity a s – Soilnail	les–Functions– and settlement ing–Applicatio	Methodsof – Slope sta ms.	bility –			
			UN	TIV – 1	IV						
<i>Earth Reinforcement:</i> Earth reinforcement – Principles and basis mechanism of reinforcedearth – Reinforced soil retaining structures – Simple design –Synthetic and natural fibre based Geotextilesandtheirapplications –Filtration,drainage,separation,erosioncontrol–Casestudies.											
UNIT - V											
<i>Grouting:</i> Grouting Basicrequirements Properties of treat chemicalstabilization	UNIT - V <i>Grouting:</i> Grouting techniques – Types of grout – Suspension and solution grouts – Basicrequirementsofgrout –Groutingequipment–Principleofinjection – Injectionmethods– Properties of treated ground – Application of jet grouting – Grout monitoring – Electro – chemicalstabilization–Stabilizationwithcement,lime–Stabilizationofexpansiveclays.										
Text Books											

1. Dr.P.PurushothamRaj, GroundImprovementTechniques, LakshmiPublicationsPvt.Ltd.

2. Das, B.M., Principles of Foundation Engineering, PWSPublishing.

3. Jones, J.E.P., *EarthReinforcementandSoilStructure*, Butterworths.

4.Koerner, R.M.andWelsh, J.P., *ConstructionandGeotechnicalEngineeringusingSyntheticFabrics*, JohnWiley.

Reference Books

1. Moseley, M.D., GroundTreatment, BlackieAcademicandProfessional.

2. Hehn, R.W., Practical Guideto Grouting of Underground Structures, ASCE.

3. Koerner, R.M., Designing with Geosynthetics, Prentice Hall.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

ENVIRONMENTAL GEOTECHNOLOGY (EGT)

B.Tech (Honors) : CE					Scheme : 2020				
Course Code	Category	Hours/Week			Credits	Maxin	Maximum Marks		
HCE10	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		4	-	-	4	40	60	100	
Sessional Exam D	ouration :1.5 H	Hrs.				End Exan	n Duration:	3 Hrs.	
Correct Orthogram		6 41		(1	1 4 11 1-	1-1			
Course Outcomes : At the end of the course the student will be able to									
CO2: Understand	Soilmineralogy	andMe	chanis	smsofs	oil-waterir	nteraction			
CO3: Learnground	dwaterflowand	predic	tconta	minan	ttransportp	henomenon			
CO4: Applyremed	diationtechniqu	uesfor	contan	ninated	dsite				
CO5: Understand	the reuse of w	aste m	ateria	.1					
			TI	NIT	т				
.		1 7 7 1					1		
Introduction: Indus	strialization an	d Urba	anızat	10n - H	ollution –	Control and ren	nediation.		
<i>Contamination:</i> Su Effect of subsur effectivenessofdesi	<i>Contamination:</i> Surfacecontamination –Contaminationtransport –Soil-aGeotechnicaltrap – Effect of subsurface contamination – Detection of polluted zone – Monitoring and effectivenessofdesignedfacilities.								
			U	NIT -	II				
<i>Contaminants of</i> andsize of landfill Landfillconstruction	<i>Contaminants of Solid Waste in Landfills:</i> Waste contaminants – Landfills – Types, shape and size of landfills –Liner and liner system –Cover and cover system –Stability of landfills. Landfillconstruction&operation – Sustainablewastemanagement.								
			UN	IT – 1	ш				
ContaminantsofSl Embankmentconst	urrywastes:Sluructionandrais	urrytra ing –D	inspor Design	tedwas aspect	stes – s –Environ	Slurryponds, mentalimpacta	operation operation	on –	
			UN	TIV	IV				
<i>Vertical Barriers for Contaminant:</i> Contaminated sites –Types of barriers –Soil-Bentonite slurrytrenchwalls –Cement-Bentoniteslurrytrenchwalls – Construction, material and design aspects.									
			U	NIT -	V				
<i>Geotechnical Reuse of Waste materials:</i> Waste reduction – Use in geotechnical construction – Waste characteristics – Transportation consideration – Engineering properties of wastes – Wastematerialinembankmentandfills.									
Text Books									
1. SharmaH.Dℜ	ddyK.R, <i>Geo-e</i>	nviron	menta	lEngin	eering				
2. Reddi, L.N&Iny	ang, H.I., <i>Geo-</i>	environ National	nmente	alEngii	neering	D			
S. Wentz,C.A., <i>GeoTec</i>	Dat chnicalPractice	forWa	steDis	posalb	yHazardou.	D. sWasteManager	<i>ment</i> ,McGra	E. wHill,	

Singapore.

4. Fried, J.J., GroundWaterPollution, Elsevier.

Reference Books

1. KerryRow, GeotechnicalGeo–EnvironmentalEngineeringHandBook.

2. Bedient, Refai&Newell, GroundWaterContamination.

3. Daniel, B.E., Geotechnical Practice for Waste Disposal, Chapman and Hall, London.

4.

ProceedingsoftheInternationalsymposiumofEnvironmentalGeo-

technology(Vol.IandII), Environmental PublishingCompany, 1986 and 1989.

 $5. \ ASTMS pecial Technical Publication 874, Hydraulic Barrier in Soil and Rock, 1985.$

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

URBAN TRANSPORTATION PLANNING (UTP)

B.Tech (Honors) : CE					Scheme : 2020				
Course Code	Category	Hours/Week			Credits	Maxin	num Marks	5	
HCE11	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total	
		4	-	-	4	40	60	100	
Sessional Exam D	uration :1.5 H	Irs.		End Exam Duration: 3 Hrs.					
Course Outcomes	• At the end of	f the c	011750	tha stu	dont will b	a abla to			
CO1: Understand	the concepts of	of urba	intrans	sportat	ion plannir	ng process.			
CO2: Understand	the surveys rec	quired	for ur	han tra	insportatio	n planning.			
CO3: Understand	and apply the	rip ge	nerati	on mo	dels for urb	an transportati	on planning.		
CO4: Analyze the	various metho	ods of	trip di	istribut	tion model	s and suggest th	ne suitable n	nethod.	
CO5: Understand	and apply the	mode	choic	e mode	els and traf	fic assignment	models.		
			T	NITT	т				
Urban Transportation Planning And Travel Demand: Urban issues, Travel characteristics, Evolution of planning process, Supply and demand – Systems approach. Overall planning process, long term vs short term planning. Travel demand function, independent variables, travel attributes, assumptions in travel demand estimation, sequential, and simultaneous approaches, aggregate and disaggregate techniques. UNIT - II Data Collection And Inventories: Collection of data – Organization of surveys and analysis, Study area-definition and guidelines – Zoning principles – Types and sources of data – Road side interviews, Home interview surveys, Commercial vehicle surveys – Sampling techniques – Expansion factors – Accuracy checks – Use of secondary sources.									
			UN	VIT – 1	III				
<i>Trip Generation And Distribution:</i> Definition of trip – Trip characteristics – Types of trips – Home based and non-home based trips – Factors affecting trip making behavior – Trip generation analysis: zonal models, category analysis, household models, trip attraction models.									
UNIT – IV									
<i>Trip Distribution:</i> Growth factor methods – Uniform growth factor – Average growth factor – Fratar method – Advantages and disadvantages of growth factors. Gravity model – Formulation and calibration.									
	UNIT - V								
Mode Choice and	Traffic Assign	iment:	•						

*Mode Choice:*Factors affecting mode choice – Mode choice behaviour– Competing modes – Mode split curves – Models and probabilistic approaches – Use of diversion curves.

Traffic Assignment: Basic elements of transport networks – Coding – Route properties – Minimum path – Assignment techniques: All-or-nothing assignment – Capacity restraint technique – Multiple route assignment – Basic numerical examples.

Text Books

1. Kadiyali L.R., *Transport Planning*, KhannaPublishers

2. Khisty C.J., *Transportation Engineering - An Introduction*, Prentice Hall Publication.

3. PapacostasC.S. and Prevedouros P.D., Transportation Engineering & Planning, PHI

Reference Books

1. Hutchinson, B.G., Principles of Urban Transport Systems Planning, Scripta, McGraw Hill.

2. Black, Alan, Urban Mass Transportation Planning, McGraw Hill.

3. Vukan R. Vuchic, Urban Transit Systems and Technology, John Wiley & Sons.

4. National Urban Transport Policy.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

B.Tech (Honors) : CE					Scheme : 2020					
Course Code	Category	Hours/Week			Credits	Maximum Marks				
HCE12	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		4	-	-	4	40	60	100		
Sessional Exam D	uration :1.5 I	Irs.				End Exan	n Duration:	3 Hrs.		
Course Outcomes	At the end o	f the co	ourse	the stu	dent will b	e able to				
CO1: Understand the data collection and data acquisition using ITS										
CO2: Understand	s the requirem	ents fo	r teleo	rommi	inications					
CO3: Apply the y	arious ITS me	thodol	ogies	2011111	incutions					
CO4: Design the t	transit system	hy con	sideri	ng all	important	narameters				
CO5: Define the s	significance of	TTS m	nder I	ndian <i>i</i>	conditions	parameters				
COS. Define the s	significance of	115 u		inuran	conditions					
			U	NIT –	Ι					
<i>Introduction to Intelligent Transportation Systems (ITS):</i> Definition of ITS and identification of ITS objectives– Historical background –Benefits of ITS – ITS data collection techniques – Detectors –Automatic Vehicle Location (AVL) –Automatic Vehicle Identification (AVI) – Geographic Information Systems (GIS) – Video data collection.										
UNIT - II										
<i>Telecommunications in ITS:</i> Importance of telecommunications in the ITS system, Information management –Traffic Management Centres (TMC) – Vehicle–Road side communication – Vehicle positioning system										
			UN	IT – I	11(
<i>ITS Functional Areas:</i> Advanced Traffic Management Systems (ATMS) –Advanced Traveler Information Systems (ATIS) –Commercial Vehicle Operations (CVO) –Advanced Vehicle Control Systems (AVCS) –Advanced Public Transportation Systems (APTS) –Advanced Rural Transportation Systems (ARTS).										
			UN	IT – TI	IV					
<i>ITS User Needs and Services</i> :Travel and traffic management –Public transportation management –Electronic payment –Commercial vehicle operations –Emergency management – Advanced vehicle safety systems –Information management.										
UNIT - V										
Automated Highway Systems: Vehicles in platoons – Integration of automated highway systems –ITS Programs in the World – Overview of ITS implementations in developed countries –ITS in developing countries.										
I CAL DUUKS										

1. *ITS Hand Book 2000:* Recommendations for World Road Association (PIARC) by Kan Paul Chen, John Miles.

2. Sussman, J. M., Perspective on ITS, Artech House Publishers, 2005.

3. Chowdhury, M. A. and Sadek, A, *Fundamentals of Intelligent Transportation SystemsPlanning*, Artech House, 2003.

Reference Books

1. *National ITS Architecture Documentation*, US Department of Transportation, 2007, (CD-ROM).

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

PAVEMENT ANALYSIS AND DESIGN (PAD)

B.Tech (Honors) : CE					Scheme : 2020					
Course Code	Category	Hours/Week			Credits	Maximum Marks				
HCE13	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		4	-	-	4	40	60	100		
Sessional Exam D	ouration :1.5 I	Hrs.			End Exam Duration: 3 Hrs.					
Course Outcomes :At the end of the course the student will be able to										
CO1: Understands the design factors, properties of pavement materials and material										
CO2: Know the tr	affic loading	stresse	e stra	ins an	d deflectio	ns in rigid and	flexible pave	ements		
CO3: Design and	apply method		s for f	lexible	pavement	s		inches.		
CO4: Design and	apply method	ologies	s for r	igid pa	vements	5				
CO5: Understand	the structural	and fu	nctior	is failu	re and the	evaluation of p	avements			
			U	NIT –	Ι					
pavements –Highway and airfield pavements –Requirements and desirable properties of aggregates, bitumen, emulsion and modified bitumen –Characterisation of different pavement materials. UNIT - II Pavement Design Factors: Design wheel load – Strength characteristics of pavement materials – Climatic variations – Traffic-load equivalence factors and equivalent wheel loads – Aircraft										
drainage – Sub-sur	face drainage	system	s - D	esign o	of sub-surf	ace drainage st	ructures.	Surrace		
			UN	IT – 1	III					
<i>Flexible Pavement Design:</i> Empirical, semi-empirical and theoretical approaches – Design of highway and airport pavements by IRC, AASHTO Methods –Mechanistic – Empirical design – Applications of pavement design software.										
	UNIT – IV									
Rigid Pavement Design: Types of joints and their functions –Joint spacing –Design of CC pavement for roads –Highways and airports as per IRC, AASHTO –Design of joints –Design of continuously reinforced concrete pavements –Reliability –Use of software for rigid pavement design.										
UNIT - V										
Pavement Management: Distresses in pavements – Maintenance of highways – Structural and functional condition evaluation of pavements – Performance prediction models – Ranking and										

optimization in pavement management.

Text Books

1. Yoder and Witczak, *Priniciples of Pavement Design*, John Wiley and Sons.

2. Yang. H. Huang, Pavement Analysis and Design, Second Edition, Prentice Hall Inc.

Reference Books

1. Rajib B. Mallick and Tahar El-Korchi, *Pavement Engineering – Principles and Practice*, CRC Press (Taylor and Francis Group)

2. W.Ronald Hudson, Ralph Haas and Zeniswki, *Modern Pavement Management*, McGraw Hill and Co.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.

TRANSPORTATION SYSTEM AND TRAFFIC MANAGEMENT (TSTM)

B.Tech (Honors) : CE					Scheme : 2020					
Course Code	Category	Hours/Week		Credits	Maximum Marks					
HCE14	РСС	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total		
		4	-	-	4	40	60	100		
Sessional Exam D	ouration :1.5 I	Hrs.			End Exam Duration: 3 Hrs.					
C O I	A 1 1	C .1		.1 .	1	11.				
Course Outcomes : At the end of the course the student will be able to										
CO2: Understand	the importance	$\frac{cuves}{cuves}$	ffic m	nnosoj anager	ment meas	ures for improv	ing vehicule	ar flow		
CO3: Measure the	reducing peak	hours	traff	ic and	pricing for	r differential to	l policies.			
CO4: Measure the	e multi model	co-ord	inatio	n to pr	omote tran	sit and non-tra	nsit auto mo	des.		
CO5: Understand	and apply the	bus rou	ite ne	twork	planning, r	nanagement an	d evaluation	l .		
			U	NIT –	I					
<i>TSM Philosophy:</i> term measures – 7 Indian urban conte	Systems appro TSM actions - xt – Broad spe	ach to – Obje ectrum	transpectives of TS	oortations and j Macti	on plannin philosophy ons.	g – Long term v – Relevance	strategies an of TSM act	id short ions to		
	UNIT - II									
<i>Traffic Manageme</i> advantages and dis stop relocation – P	ent Measures advantages – (arking manage	<i>I</i> : Me Guidel ement.	asures ines fo	s for in or imp	nproving v lementatio	vehicular flow n – Signal impr	– One way rovements –	streets- Transit		
			UN	TIV	111					
<i>Traffic Management Measures-II:</i> Reversible lanes – Guidelines for applicability – Reducing peak period traffic – Staggering of working hours – Different methods – Congestion pricing – Methods – Differential toll policies – Differential parking fee policy.										
	UNIT – IV									
<i>Measures to Promote Transit and Non-Auto Modes:</i> Preferential treatment to high occupancy vehicles – Carpooling – Transit service improvement measures – Transit management improvement measures – Transit and Para Transit integration – Para-Transit role in urban areas – Multi-modal coordination – Measures to promote Non-Auto modes –Pedestrianisation – Bicycle transportation – Advantages – Planning bicycle facilities – Class I, Class II And Class III Bikeways – Junction treatments for cycle tracks.										
UNIT - V										
Bus Route Network Planning. Management and Evaluation: Types of bus route networks –										

Bus Route Network Planning, Management and Evaluation: Types of bus route networks – Suitability for a given urban area – Types of routes – Corridor routes, Activity routes and

Residential routes – Issues in route network evaluation – Number of routes – Length of routes – Route alignment methods – Service coverage and accessibility index.

Text Books

C.JotinKhisty& B. Kent Lall, *Transportation Engineering– An Introduction*, Prentice Hall.
 Nicholas J.Garber and Lester A. Hoel, *Traffic and Highway Engineering*, Cengage Learning, USA.

Reference Books

1. S.R.Chari, Transportation System Management Notes, NIT, Warangal.

- 2. John W Dickey, Metropolitan Transportation Planning, Tata McGraw Hill.
- 3. Mike Hudson, The Bicycle Planning, Open Books, UK.

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 25 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. The question paper shall consist of Three Sections with Two Questions (EITHER / OR type) in each section. The student shall answer one question from each section.