

Scheme – 2017

Scheme and Syllabus for III to VIII Semester of B.Tech. Degree Programme in Electronics and Communication Engineering G. Pulla Reddy Engineering College (Autonomous): Kurnool Accredited by NBA of AICTE and NAAC (A+) of UGC An ISO 9001:2008 Certified Institution Affiliated to JNTUA, Anantapuramu.

FOUR YEAR B.Tech DEGREE COURSE Scheme of instruction and Examination (Effectivefrom2017-18) (For CSE, ECE)

ISemester Scheme:2017

S.No.	Subject	Code	Credits	Scheme of Instruction Periods/ Week		DurationSchof EndExaminExamM(Hours)Rei		Scheme of aminationM Marks	Max	
				L	D/T	Р	(Hours)	End Exam	Internal Assessment	Total
Ι	Theory									
1	Engineering Mathematics – I	BS101	3	3	-	-	3	60	40	100
2	Computer Programming	CS101	3	3	-	-	3	60	40	100
3	Professional Communication and English – I	HU101	3	3	-	-	3	60	40	100
4	Elements of Electrical Engineering	EE101	3	3	-	-	3	60	40	100
5	Basic Electronics Engineering	EC101	3	3	-	-	3	60	40	100
6	Engineering Mechanics	CE101	3	3	-	-	3	60	40	100
II	Practicals									
7	Computer Programming Lab	CS102	1	-	-	2	3	50	50	100
8	Phonetics & Communication	HU103	1	-	-	2	2	50	50	100
	Skills Lab									
9	Engineering Workshop	ME102	1	-	-	2	3	50	50	100
	Total		21	18	-	6		510	390	900

IISemester

Scheme:2017

S.No.	Subject	Code	Credits	Scheme of Instruction Periods/ Week		Scheme ofInstructionDurationPeriods/of EndWeekExam		Ex	Scheme of aminationN Marks	Лах
				L	D/T	Р	(Hours)	End Exam	Internal Assessment	Total
Ι	Theory									
1	Engineering Mathematics – II	BS102	3	3	-	-	3	60	40	100
2	Data Structures	CS103	3	3	-	-	3	60	40	100
3	Professional Communication and English – II	HU102	3	3	-	-	3	60	40	100
4	Applied Physics	BS103	3	3	-	-	3	60	40	100
5	Engineering Chemistry	BS105	3	3	-	-	3	60	40	100
6	Engineering Drawing	ME101	3	-	3	-	3	60	40	100
II	Practicals									
7	Data Structures Lab	CS104	1	-	-	2	3	50	50	100
8	Applied Physics Lab	BS104	1	-	-	2	2	50	50	100
9	Engineering Chemistry Lab	BS106	1	-	-	2	2	50	50	100
	Total		21	15	3	6		510	390	900

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

]	B.Tech. ECEIIISemester						Scheme:2017			
S.	S. Course Course Title		Cr I edi p		heme ructio ods/w	of on veek	Scheme of Examination Maximum Marks			
INU	Code		ts	L	Т	Р	End Exam	Internal Assessment	Total	
Ι		Theory								
1	HU201	Managerial Economics and Financial Accountancy (MEFA)	3	3	0	0	60	40	100	
2	EC201	Electronic Devices & Circuits (EDC)	3	3	0	0	60	40	100	
3	EC202	Digital System design (DSD)	3	3	0	0	60	40	100	
4	EC203	Signals and Systems (SAS)	3	3	0	0	60	40	100	
5	EC204	Probability Theory & Stochastic processes (PTSP)	3	3	0	0	60	40	100	
6	EE210	Network Analysis (NA)	3	3	0	0	60	40	100	
7	ML202	Constitution of India/PEHV/Essence of Indian Traditional Knowledge	-	2	0	0	-	-	-	
II		Practical								
8	EC205	Electronic Devices & Circuits Lab (EDC(P))	1	0	0	2	50	50	100	
9	EC206	Basic Simulations Lab (BS(P))	1	0	0	2	50	50	100	
10	HU203	Advanced Communication Skills Lab (ACS(P)	1	0	0	2	0	100	100	
		Total	21	20	0	6			900	

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

	D. I ech. ECEI v Semester							Scheme:20	1/
S.N	N Course Code Course Title		Cre	Scheme of Instruction periods/week			Scheme of Examination Maximum Marks		
U	Coue		uits	L	Т	Р	End Exam	Internal Assessment	Total
Ι		Theory							
1	EC207	Analog Electronic Circuits(AEC)	3	3	0	0	60	40	100
2	BS203	Complex Variables and Special Functions (CVSF)	3	3	0	0	60	40	100
3	EC208	Electromagnetic waves (EMW)	3	3	0	0	60	40	100
4	EC209	Networks & Transmission Lines(NTL)	3	3	0	0	60	40	100
5	EC210	Computer Organization & Architecture (COA)	3	3	0	0	60	40	100
6	EE211	Electrical Technology (ET)	2	2	0	0	60	40	100
7	ML201	Environmental Studies(ES)	-	2	0	0	-	-	-
II		Practical							
8	EC211	Analog Electronic Circuits Lab(AEC(P))	1	0	0	2	50	50	100
9	EE212	Electrical Circuits and Machines Lab (ECM(P))	1	0	0	2	50	50	100
10	HU204	Soft Skills Lab (SS(P))	1	0	0	2	0	100	100
		Total	20	19	0	6			900

B.Tech. ECEIVSemester

Scheme:2017

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

B.Tech. ECEVSemester Sc							Scheme:2	2017	
S.	5. Course Course Title		Cr	Scheme of Instruction periods/week			Scheme of Examination Maximum Marks		
No.	Code	Course Thie	its	L	D/ T	Р	End Exam	Internal Assessm ent	Total
Ι		Theory							
1	EC301	Analog and Digital Communications (ADCM)	4	4	0	0	60	40	100
2	EC302	Microprocessors & Micro Controllers (MPMC)	3	3	0	0	60	40	100
3	EC303	Introduction to VLSI Design (IVLSID)	3	3	0	0	60	40	100
4	EC304	Linear IC Applications (LICA)	3	3	0	0	60	40	100
5		Professional Elective –I	2	3	0	0	60	40	100
6		Open Elective-I	3	3	0	0	60	40	100
II		Practical							
7	EC305	Analog and Digital Communication Lab (ADCM(P))	1	0	0	2	50	50	100
8	EC306	Microprocessors & Micro Controllers Lab (MPMC(P))	1	0	0	2	50	50	100
9	EC307	Linear IC Applications Lab (LICA(P))	1	0	0	2	50	50	100
		Total	21	19	0	6			900

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

I	B.Tech. ECEVISemester							Scheme:2017			
S.	Course	Course Title		Scheme of Instruction periods/week			Scheme of Examination Maximum Marks				
190.	code		its	L	D/ T	Р	End Exam	Internal Assessment	Total		
Ι		Theory									
1	EC308	Embedded Systems and Programming (ESP)	3	3	0	0	60	40	100		
2	EC309	Digital Signal Processing (DSP)	3	3	0	0	60	40	100		
3	EC310	Antenna & Wave propagation (AWP)	3	3	0	0	60	40	100		
4	EE311	Linear Control Systems (LCS)	3	3	0	0	60	40	100		
5		Professional Elective –II	3	3	0	0	60	40	100		
6		Open Elective-II	3	3	0	0	60	40	100		
II		Practical									
7	EC311	Digital Signal Processing Lab(DSP(P))	1	0	0	2	50	50	100		
8	EC312	VLSI &Embedded Systems Lab (VES(P))	1	0	0	2	50	50	100		
9	ECMP1	Mini Project 1	2	0	0	4	-	100	100		
		Total	22	18	0	8			900		

B.Tech. ECEVISemester

Cabar

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

B	B.Tech. ECEVIISemester							Scheme:2017			
S.	S. Course Course Title		Cr edi	Scheme of Instruction periods/week			Scheme of Examination Maximum Marks				
190.	coue		ts	L	D/T	Р	End Exam	Internal Assessment	Total		
Ι		Theory									
1	EC401	Microwave Engineering (MWE)	3	3	0	0	60	40	100		
2	EC402	Digital System Design using Verilog (DSDV)	3	3	0	0	60	40	100		
3		Professional Elective –III	3	3	0	0	60	40	100		
4		Professional Elective –IV	3	3	0	0	60	40	100		
5		Open Elective-III	3	3	0	0	60	40	100		
6		Open Elective-IV	3	3	0	0	60	40	100		
II		Practical									
7	EC403	Microwave Communications Lab (MWC (P))	1	0	0	2	50	50	100		
8	EC404	Digital System Design Lab (DSD(P))	1	0	0	2	50	50	100		
9	ECMP2	Mini Project 2	2	0	0	4	-	100	100		
		Total	22	18	0	8			900		

FOUR YEAR B.TECH. DEGREE COURSE

Scheme of Instruction and Examination (Effective from 2017-2018)

B.Tech. ECEVIIISemester

Scheme:2017

S.	Course	Course Title	Credits	Sc Inst peri	heme ructio ods/w	of n reek	Scher M	Scheme of Examina Maximum Marl		
110.	coue			L	D/ T	Р	End Exam	Internal Assessment	Total	
Ι		Theory								
1		Professional Elective-V	3	3	0	0	60	40	100	
2		Professional Elective –VI	3	3	0	0	60	40	100	
II		Practical								
	ECP1	Project Work (PW(P))	6	0	0	12	50	50	100	
		Total	12	6	0	12			300	
			OR							
		Internship	6	-	-	-	50	50	100	
	ECP1	Project work	6	-	-	-	50	50	100	
		Total	12	-	-	-			200	

Scheme-2017

Electives offered by ECE department

Course code	Course Title	
Professional E	lective-I	Stream
ECEL1	Python Programming	Programming oriented course
ECEL2	Electronic Measurements & Instrumentation	Instrumentation
ECEL3	Advanced Computer Architectures	Computer oriented course
Professional Elective-II		Stream
ECEL4	Data Communications & Networking	Communication Network Engineering
ECEL5	Analog VLSI	VLSI
ECEL6	Internet of Things	Embedded systems
Professional E	lective-III	Stream
ECEL7	Coding Techniques	Communication Engineering
ECEL8	Embedded RTOS	Embedded systems
ECEL9	Digital Image Processing	Image Processing
Professional E	lective-IV	Stream
ECEL10	Fiber Optic Communications	Communication Engineering
ECEL11	Advanced Digital signal processing	Signal Processing
ECEL12	Low Power VLSI	VLSI
Professional E	lective-V	Stream
ECEL13	Cellular & Mobile Communications	Communication Engineering
ECEL14	VLSI Design for Testability	VLSI
ECEL15	Radar &Satellite Systems	RF & Microwave Engineering
Professional E	lective-VI	Stream
ECEL16	Wireless Communications	Communication Engineering
ECEL17	FPGAs & ASIC Architectures and Applications	VLSI
ECEL18	Adaptive Signal Processing	Signal Processing

Open Electives	Open Electives-1: (IDE)- Semester - V			
OE301	Artificial Intelligence & Expert Systems	CSE		
OE302	Introduction to Information Systems	CSE		
OE303	Web Development Programming	CSE		
OE304	Introduction to Cyber Security	CSE		
OE305	Internet of Things	ECE		
OE306	Nano Technology	ECE		
OE307	Remote Sensing & GIS	CE		
OE308	Optimization Techniques	ME		
OE309	Renewable Energy	EEE		
OE310	Introduction to JAVA	CSE		

Open Electives	Open Electives-2 : (IDE)- Semester - VI					
OE311	OOP through JAVA	CSE				
OE312	Ethical Hacking	CSE				
OE313	Principles of Programming Languages	CSE				
OE314	Advanced Information Systems	CSE				
OE315	Scientific Programming with Python	CSE				
OE316	Fuzzy Logic & Neural Networks	ECE				
OE317	Building Information Modeling	CE				
OE318	Product Lifecycle Management	ME				
OE319	Simulation of Engineering Systems	EEE				
Open Electives	-3 :(IDE)- Semester - VII					
ECOE1	Scripting Languages for VLSI	ECE				
ECOE2	Bio-Medical Electronics	ECE				
ECOE3	Distributed Embedded Systems	ECE				
Open Electives	-4 :(IDE)- Semester - VII					
ECOE4	VLSI Signal Processing	ECE				
ECOE5	Cognitive Radio	ECE				
ECOE6	Robotics and Automation	ECE				

SEMESTER	CREDITS
I Semester	21
II Semester	21
III Semester	21
IV Semester	20
V Semester	22
VI Semester	21
VII Semester	22
VIII Semester	12
TOTAL	160

S. No	Course Component	Total Number of Credits	Curriculum Content (% of Total No. of Credits of the Program)
1	Basic Sciences	20	12.5
2	Engineering Sciences	21	13.12
3	Humanities and Social Sciences	10	6.25
4	Program Core	67	41.88
5	Program Electives	12	7.5
6	Open Electives	12	7.5
7	Project(s)	10	6.25
8	Internships	06	3.75
9	Mandatory Learning Courses	Non Credit Courses	-
10	Employability Enhancement Courses	02	1.25
Total		160	100

MANAGERIAL ECONOMICS AND FINANCIAL ACCOUNTACY (MEFA)

III Semester:	Common for	CSE	and E	CE			Sch	eme: 2017	
Course Code	Category	Ηοι	ırs/W	'eek	Scheme: 20 Credits Maximum Marks				
						Continuous			
111/201	F l4	L	Т	Р	С	Internal	End Exam	TOTAL	
HU201	Foundation					Assessment			
		3	0	0	3	40	60	100	
Sessional E	xamDuration	2 Hr	S	I		EndE	xamDuration	3 Hrs	
					1				
CourseOuto	comes: At the e	end of	the co	ourse	students wi	ll be able to			
CO1:Understar	ndthenatureand	scope	ofmar	nageria	aleconomic	sandvariouscon	ceptsofdemand	l analysis	
		-		-			-	-	
CO2:Understar	nd the significa	nce of	f dema	and el	asticity and	different conce	epts of demand		
forecastin	ıg								
CO3:Understar	ndtheconceptso	fprod	uction	andco	ostanalysisa	nddifferentmarl	ketstructuresan	d their	
competiti	ivesituations	-			-				
CO4:Understar	nd the concept	and si	gnific	ance	of capital bi	udgeting			
CO5:Understar	nd the principle	es and	signif	ficance	e of accoun	tancy and prepa	aration of final	accounts	
	ie ine principie		0-8		• • • • • • • • • •	and prope			
 					UNIT-I				
Introduction	i to Manage	rial F	Econo	mics	s & Dema	ind:			
Managerial E	conomics- Def	initio	n. Nat	ure ar	id Scope: L	<i>emand</i> -Meanin	ng. Types of De	emand.	
Demand Deter	rminants, Law	of Der	nand	and it.	s exception	s, Law of Dimin	ishing Margin	al Utility,	
Indifference ci	urve.	U				U	0 0	·	
					UNIT-II				
Elasticity of	Demand and	d De	man	d For	ecasting:				
Elasticity of D	emand_Types	Meas	urom	ont an	d Significan	100.			
Demand fore	casting _Impos	rtance	Fact	ors P	u signijicui Purnoses M	ice, lethods of Demo	nd Forecastin	7	
Demana jore	custing impor	iunce	, 1 acı	015, 1	urposes, m	emous of Demu	ina i orecusiin _e	5	
					UNIT-III				
Theory of pr	oduction &	cost	anal	ysis a	and Mark	xet Structure	S		
Production An	alysis: Meanin	g, Iso	quants	s & Ise	ocosts, The	law of diminish	ning Marginal I	Returns,	
Law of Returns	to Scale, Intern	nal ar	d Ext	ernal .	Economies	of scale.			
Cost Analysis -	- Cost concepts	, Cost	t outpi	ut rela	tionship fo	r Short Run and	l Long Run, Br	eak Even	
Analysis – Its Iı	nportance, Lin	iitatio	ns an	d Man	agerial use	25			
Market Structu	res: Types and	l Feat	ures o	of diffe	rent marke	t structures–Per	rfect Competiti	0n —	
Monopoly – Me	phopolistic and	Oligo	opolisi	tic; Pr	rice output	determination in	n case of perfec	et	
					UNIT-IV				
Capital and	CapitalBudg	getin	g						
Introduction:	significance of	f capi	ital bi	udgeti	ng, steps i	in capital budg	geting, optimu	n level of	
capital, decisio	n to invest un	der c	ertain	ty-pay	back perio	d method, net	discounted pre	esent value	

capital, decision to invest under certainty-payback period method, net discounted present value method, internal rate of return method, sources of capital, decision to invest under risk and uncertainty

Introduction to FinancialAccountancy

Principles of Accountancy: Introduction, Double Entry System of Book Keeping-, Journal, Ledger, Preparation of Trial balance **Preparation of Final Accounts:** Trading Account, Profit & Loss Account, and Balance Sheet with adjustments, Final Accounts problems.

Text Books :

1. A.R. Aryasri, Managerial Economics and Financial Analysis, McGrawHill Education Edition-2011.

Reference Books :

1) Varshiney and Maheswari, Managerial Economics, Sultan Chand & Co, New Delhi

- 2) Vanita Agarwal, Managerial Economics, Pearson Education
- 3) Domnick Salvatore: Managerial Economics in a Global Economy, 4th Edition, Thomson
- 4) S.P.Jain and K.L.Narang, Financial Accounting

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions .i.e. there will be two questions from each unit and the student should answer any one question.

ELECTRONIC DEVICE S AND CIRCUITS (EDC)

III Semest	ter: Common	Common for ECE & EEE Scheme : 2017							
Course	Category	H	ours/We	ek	Credits	Maxir	num Mar	ks	
Code									
		L	Т	Р	С	Continuous	End	Total	
EC201	PC					Internal	Exam		
	-	2	0	0	2	Assessment	(0	100	
Continual	Europe Dune4	3	U	U	3	40 End End		100	
Sessional	Exam Durau	$\frac{011:2}{1}$ Hrs	the cours	a student	will be ab		III Durau	on: Surs	
CO1: Docid	m rootifiors	ne chu or	a oirouite	and describ	s will be at	ior of spacial pu	rp 080		
diodes	gii recurrers, wa	ave snapm	g circuits a			for or special pu	irpose		
CO2: Apply	y various biasii	ng techniq	ues to BJT	, JFET and	1 MOSFET				
CO3: Analy	yze Single stag	e amplifie	rs using B.	JT					
CO4: Analy	yze the effect o	f cascadin	g on ampl	ifier Circu	its				
	-								
CO5: Unde	rstand small si	gnal low fi	requency r	nodels for	JFET and M	IOSFET amplifi	ers.		
				TINITT	r				
Diode Ann	lications			UNIT-					
Rectifiers	with filters. H	alf wave	rectifier	Full wave	rectifier b	ridge rectifier	and their a	nalveie	
with L.C.I	C filters					indge recurrer	and then a	1141 y 515	
Linear Wa	we Shaping:	RC netwo	ork as diff	erentiator	and integr	ator			
Non Linea	r Wave shape	ing: Serie	s & Shun	t Diode c	lippers, Cla	mpers- positiv	e & negati	ve	
clampers,	Clamping circ	uit theore	em.				-		
Special Pu	urpose Diodes	: Schottk	y Diode, l	SCR, Tun	nel Diode,	UJT, Varactor	diode, Sol	ar cell.	
				<u>UNIT-I</u>	Ι				
Transistor	Biasing:		50					<i>a</i> 1	
Need for b	biasing, Operation	ating poir	nt, DC ar	nd AC loa	id lines, B	ias stabilizatio	n techniqu	es: fixed	
bias, colle	ctor to base b	ias, self t	onas, Stab	ilization a	against var	lations in I_{CO} ,	VBE and	β for the	
sell blas c	Ircuit, Blas co	ompensau	on techn	iques, In	ermai runa	way and them	iai stadiiit	y, Eber s	
FET&MO	SFET Riasin	o.							
DC load li	ine and region	s. n of operation	ation. Co	mmon-N	IOSFETs of	configurations	Design a	nd	
analysisof	variousJFET	&MOSF	ETbiasin	gcircuits.	Introductio	ontoCNTFET(elementar	V	
treatment))			,				5	
				UNIT-I	Ι				
Single Sta	ge Amplifiers	:							
Two port	device and h	nybrid M	odel, trar	nsistor hy	brid Moc	lel, Analysis	of a	transistor	
amplifier of	circuit using	h Param	eters, Gra	aphical d	eterminatio	n of h param	eters, Sma	all signal	
model of	bipolar juncti	on transis	stor, Con	parison o	of CB, CC	and CE ampli	fier, App	roximate	
CE, CB an	d CC models,	Linear a	alysis of	transistor	amplifier	circuits, Miller	's Theorer	nand	
its Duai, CE amplifier with emitter resistor, Emitter Follower.									
Multistan	Transistor	malifian		<u>UN11-1</u>	<u>v</u>				
Types of a	oupling PC a	oupled D	irect cour	nled Ano	lucie of two	stare PC cour	nled ampli	fier	
Darlington	Bootstran ar	oupled, D	le amnlifi	ers.	19515 01 tW	stage NC COU	picu ampi		
	a poolouido di			-IU.					

FET and MOSFET Amplifiers:

Small signal model of JFET, Analysis of CS, CD JFET amplifiers. Depletion and enhancement types of MOSFETs, Operation & Characteristics, Basic concepts of MOS amplifies, MOS small signal model. Common source amplifiers with resistive, diode and current source loads.

Text Books:

- 1. Milliman and Halkis: "Integrated Electronics", Tata Mc.Graw Hill, 2004.
- 2. R.E.Boylstead and L.Nashelsky: *"Electronic Devices and Circuit Theory"*, 9/e, Pearson Education,2007.
- 3. David Bell, "*Electronic Devices and Circuits*"- 5th Edition, Oxford,2008.
- 4. J.Milliman, C.Halkias & Satyabrata Jit, "*Electronic Devices and Circuits*", 2nd Edition, TMH, 2007
- 5. B.Razavi, "Design of Analog CMOS Integrated Circuits". 1st edition, TMH.(For MOSFET amplifiers), 2002.
- 6. H.-S. Philip Wong, Deji Akinwande, "*Carbon Nanotube and Graphene Device Physics*", Cambridge University Press 1st edition 2010.

Reference Books:

1. Ben.G.Streetman, "Solid state electronic devices", Pearson, 2015

2. Nagrath, "Analog and Digital Circuits", 2ndedition, PHI,2013.

3. G. K. Mithal, "Electronic Devices and Circuits", 23rd Edition, Khanna pub. 2006

4. Bogart Theodore, "Electronic Devices and Circuits", 6th Edition, PE 2008.

5. Allen Mottershed, "*Electronics devices and circuits*", 1st Edition, PHI, 1973.

6. N.N Bhargava, D.C. Kulshreshtha, S.C Gupta, NITTTR – Chandigarh, "*Basic Electronics and Linear Circuits*", 2nd edition, McGraw Hill Education(India) Pvt Ltd, 2013

Web References:

https://www.electronics-tutorials.ws

www.informationvine.com

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions .i.e. there will be two questions from each unit and the student should answer any onequestion.

DIGITAL SYSTEM DESIGN (DSD)

III Semester :C	ommon for ECE	&EEE					Sche	eme : 2017		
Course Code	Course	Hours	Week		Credits	Maxin	num Marks	5		
	Category			1		Continuous				
EC202	РС	L	Т	Р	С	Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Exa	am Duration : 2 I	Irs				End Exa	m Duratio	n: 3 Hrs		
Course Outco	mes : At the end	of the co	urse the	e stude	ent will be	able to				
CO1: Apply the	basic knowledge	of number	er syste	<u>ms, B</u>	oolean alg	ebra to solve simple	e problems			
CO2: Understan	d Boolean algebra	and app	ply it to	minii	mize and re	ealize Boolean func	tions			
CO3: Design var	rious common cor	nbinatio	nal logi	c circi	uits					
CO4: Design sin	nple sequential log	$\frac{g_{1C}}{1}$		1 6	11 • 41	. 1 1 1				
COS: Distinguis	n types of FSMs a	ind desig	n them	by 10	llowing the	e standard procedur	e			
			<u> </u>	UNIT	<u>– I</u>					
Number System	& Boolean Algel	ora								
Binary numbers,	, Number-base Co	nversion	s, Octa	and l	Hexadecim	nal numbers, Compl	lements of r	numbers,		
Signed binary nu	umbers, Binary co	des, bina	ry logi	c; Boo	olean Alge	bra: basic definitio	ns, basic the	eorems and		
properties, Bool	ean functions, can	onical ar	nd stand	lard fo	orms, all lo	gic functions of two	o variables,	digital		
logic gates										
	D	1.	l	JINII -	- 11					
2.3.4.5 voriable	Keauzation Mein	(oas)	aathad	nrima	implicant	a accontial prima in	nnlicente D	OC SOD		
simplifications s	implificationswith	don't (rarescoi	nditio	ns NAND/	NORimplementatic	npricains, 1 msofdigital	os, soi		
level and multi-l	evel NAND/NOR	realizat	ions. Al	ND-0	R-INVER	T(AOI) OR-AND-I	NVERT(O	AI).		
Quine-McClusk	ey (QM) Techniqu	ie or Tab	ulation	Meth	od	1(1101),01111(2)		· · ·),		
			U	NIT -	- III					
Combinational	Logic Design									
Combinational c	vircuits, analysis &	design j	procedu	ires, h	alf-adder,	full-adder, binary a	dder, carry	look ahead		
adder, half-subtr	actor, full-subtrac	tor, bina	ry adde	r with	subtractor	r, BCD adder, binar	y multiplier	•,		
magnitude comp	parator, decoder ar	nd its app	olicatior	ns for	combination	onal logic implement	ntation, enc	oder,		
priority encoder,	, multiplexer (MU	X),comb	oination	al log	ic impleme	entation using MUX	K, hazards ii	1		
combinational lo	ogic				TX 7					
Sequential Least	a Dosian		U	- 11/1	- 1 V					
Sequential circu	<i>c Design</i> it types of sequer	tial circi	uite late	her f	lin_flong	excitation tables fli	n-flon conv	ersions		
registers shift re	oisters and its type	es count	ers: rin	nle co	unter BC	D ripple counter sy	nchronous	counter		
Ring counter. Jo	hnson counter	cs, count	CI3. 11P			D ripple counter, sy	nemonous	counter,		
			τ	JNIT	-V					
Finite State Ma	chines									
Mealy and Moor	re state machines,	Algorith	mic Sta	te Ma	achines, AS	SM chart, Design ex	xamples(AS	MD		
chart), design of	asynchronous sec	uential c	circuits,	state	reduction	and flow tables, rac	e-free state			
assignment, haza	ards, design exam	ples.								

Text Books :

- 1. Mano, Morris. M and Ciletti, Michael D, *Digital Design with an Introduction to Verilog HDL*, 5th edition, Pearson, New Delhi,2013
- 2. Jain, R. P., *Modern Digital Electronics*, 4th edition, Tata McGraw-Hill Education, New Delhi, 2010

Reference Books :

1. Kumar, Anand. A., *Fundamentals of Digital Circuit*, 4th Edition, Prentice-Hall India, New Delhi, 2016

2. Fletcher, W.L., An Engineering Approach to Digital Design, Pearson India, 2015

3. Kohavi, Zvi, Switching and Finite Automata Theory, ; 3rd edition, Cambridge University Press, 2009

4. Roth, Charles H., Fundamentals of Logic Design, 5th Edition, Cengage Learning, 2004

5. Taub, H and D.Schilling, Digital Integrated Electronics, McGraw Hill, New York, 1977

Web References:

- 1.http://nptel.ac.in/courses/117106086/1
- 2. http://www.nptelvideos.in/2012/12/digital-systems-design.html
- 3. http://www.nptelvideos.in/2012/12/digital-circuits-and-systems.html
- 4. http://nptel.ac.in/courses/117105080/
- **Question Paper Pattern:**

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

SIGNALS AND SYSTEMS (SAS)

III Semester :B.TechECE Scheme : 2017											
Course	Category	Hou	irs/We	eek	Credits	Ma	aximum Mark	KS			
EC203	РС	L	Τ	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	0	0	3	40	60	100			
Sessional I	Exam Duration	: 2 H	rs			End I	Exam Duratio	n: 3 Hrs			
	A (1	1 6 4	1	.1	. 1						
Course Outc	omes : At the en	d of t	$\frac{1}{1}$	rse th	e student w	ill be able to	aluma fua au au	ar damain			
description o	and the analysis	and c	lassin	cation	of signals a	and systems, ar	lalyze frequen	cy domain			
CO2: Analyze	e frequency dom	s ain de	escripti	ion of	aperiodic si	ionals underst	and the charact	teristics of			
LTI system and discretization of analog signals											
CO3: Apply the concepts of convolution to find the response of the system and find the degree of											
similari	ty of two signals	s using	g corre	elation	l						
CO4: Unders Laplace	CO4: Understand the s-domain representation of continuous time signals and systems using Laplace Transforms										
CO5: Analyze the discrete time signals in z-domain and perform transform analysis of LTI systems using Z Transform											
Introduction											
Basic continu	ous and discrete	time	signals	s, Clas	sification o	f Signals, Basi	c operations of	n signals,			
Elementary si	gnals, Singularit	y fun	ctions:	Impu	lse, Step an	d Ramp function	ons, Classifica	tion of			
continuous tir	ne systems and o	liscre	te time	e syste	ms and thei	r properties.					
Fourier serie	s										
Dirichlet's co	nditions, Trigon	ometr	ic Fou	rier se	eries and Ex	ponential Four	ier series, Spe	ctrum and			
its significance	e, Ampitude an	u Pha	se spe	ctra							
				UN	IT - II						
Fourier Tran	sforms and Line	eartin	ie inva	iriant	(LTI) syste	m					
Fourier transf	form(FT), Fouri	er tra	nsform	n of s	standard sig	gnals, propertion	es of Fourier	transforms,			
Fourier transf	forms involving	impul	se fun	ction,	Fourier trai	nsform of perio	dic signals, T	ransmission			
of signals three	ough continuous	and	discret	e time	e LTI syste	ms, Transfer fu	unction of an l	LTI system,			
Distortion les	s transmission th	rough	n LTI s	system	n, Causality	& stability					
Sampling of	antinuous tima	gion	19								
Sampling the	orem Reconstru	signa ction	us of sigr	al fro	m its camnl	es effect of un	der sampling	- Aliasing			
Practical aspe	ects of sampling.	Type	s of sa	mplin	g	es, effect of un	der sampling -	- Anasing,			
	<u></u> ,	- 7 - 7 - 7	5 01 50	<u>p</u>	0						
				UN	IT – III						
<i>Convolution</i> Graphical me correlation fu Relation between conv	and correlation of convolu- unction, Energy ween auto correl rolution and corre	of sig tion, a dens ation elation	<i>nals</i> auto co sity sp functi n, App	orrelat bectrum on and blicatio	ion and Cro m, Parseva d energy/po ons of conve	oss correlation l's theorem, l ower spectral o plution and cor	of functions, p Power density lensity function relation.	oroperties of spectrum, on, Relation			
								1 /			

UNIT - IV

Laplace Transforms

Laplace transform (LT), Concept of region of convergence (ROC) for Laplace Transforms, Properties of Laplace Transforms, Laplace Transform of periodic signals, Inverse Laplace transforms, Electric circuit analysis using Laplace Transforms, Analysis of continuous time LTI systems using Laplace Transforms

UNIT - V

Z-Transforms

Review of discrete time signals, Region of Convergence(ROC) and its properties, Constraints on ROC for various classes of signals, properties of Z-Transforms, System function, causality and stability, Inverse Z-Transform, Analysis of discrete time LTI systems using Z-Transforms

Text Books :

- 1. Simon Haykin, -Signals and Systems", 2nd Edition, Wiley-Eastern, 2007
- 2. Oppenheim A.V and Willsky, -Signals and Systems", 2nd Edition, Pearson Edition.2013
- 3. Hwei Piao Hsu, -Schaum"s, Outline of Theory Problems of Signals and Systems", McGraw-Hill Professional.2010
- 4. P. Ramesh Babu, -Signals & Systems 4th edition, Scitech Publications India, 2011.

Reference Books :

- 1. Simon Haykin, -Communication Systems", 2nd Edition, Wiley-Eastern. 2001
- 2. B.P.Lathi, -Communication Systems", WileyEastern.
- 3. Anand Kumar, -Signals and systems", 3rd edition, PHI, 2013
- 4. A. Nagoor Kani, -Signals and Systems: Simplified, McGraw-Hill

Web References:

- 1. https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-lectures/
- 2. <u>https://onlinecourses.nptel.ac.in/noc18_ee02/preview</u>
- 3. <u>https://www.youtube.com/watch?v=s8rsR_TStaA</u>

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion.

PROBABILITY THEORY AND STOCHASTIC PROCESSES (PTSP)

III Semester:	ECE						Sch	eme : 2017
Course Code	Category	Hou	rs/We	eek	Credits	Maximum Marks		
EC 204	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
Sessional Exam Duration : 2 Hrs						End I	Exam Duratio	n: 3 Hrs

Course Outcomes : At the end of the course the student will be able to

CO1. Understand the concept of probability using an appropriate sample space.

CO2. Understand the concept of a random variable and mathematical modeling of random variables.

CO3. Compute statistical Averages on single and multiple random variables.

CO4. Understand the concept of random processes in time domain and frequency domain.

CO5. Determine the channel capacity of information signal source.

UNIT - I

Probability Theory

Probability and axioms of probability, Joint Probability and Conditional Probability Total Probability, Bayes Theorem and Bernoulli's trials.

UNIT - II

Random Variables

Definition of a Random variable, Classification of Random variables, Distribution and density functions, - Gaussian, Uniform, Exponential, Binomial, Poisson's, Rayleigh, Conditional distributions and density functions.

Joint Distribution Function and its Properties , Joint Density and its Properties, Marginal Distribution and Density Functions , Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem.

UNIT - III

Operations on random variables

Expectation, Moments about the origin, Central Moments, Variance, Skew and Kurtosis, Chebyshev's Inequality, Markov Inequality, Characteristic function, Moment Generating function, Transformations of a random variable.

Expected Value of a Function of Random Variables, Joint Moments about the Origin, Joint Central Moments, Schwartz Inequality, Joint Characteristic Functions, Jointly Gaussian Random Variables& properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT - IV

Random Processes-Temporal Characteristics

Random Process Concept, Classification of Random Processes, Distribution and Density Functions, Stationarity and Statistical Independence. Ensemble Averages, Time Averages, Mean-Ergodic Processes, Correlation-Ergodic Processes, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions.

Random Processes-Spectral Characteristics

Power Density Spectrum and its Properties, Relationship between Power Spectrum and Autocorrelation Function, Cross-Power Density Spectrum and its Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function.

UNIT – V

Information Theory

Information, Entropy, Rate of information and information capacity, types of channels, Channel capacity for Binary symmetric channel, Binary erase channel.

Text Books :

1. Peyton Z. Peebles, *-Probability Random variables and Random signal principles*", 4th Edition, TMH, 2009.

2. Athanasius Papoulis and Unni Krishna Pillai, -*Probability, Random variables andstochastic Processes*", 4th Edition, PHI,2009.

3. Simon Haykin, -Communication Systems, 2nd Edition, JohnWiley, 2009.

4. P Ramesh Babu,—Probability Theory and Random Processes^{II}, McGraw-Hill,2015

Reference Books :

1. Henry Stark and John W.Woods, *-Probability and Random processes with applications to signal Processing*", 3rdedition, Pearson Education, 2009.

2. R.P.Singh and S.D. Sapre, *Communication Systems Analog & Digital*", 2ndedition, TMH-2007.

3. I.J.Nagrath, S.N.Sharan, R.Ranjan, S.Kumar, -Signals and Systems, 2ndEdition, TMH, 2015.

4. Murray R. Spiegel, John J. Schiller, R. Alu Srinivasan, "Schaum's Outline of Theory and Problemsof Probability and Statistics", McGraw-Hill, 2000

Web References:

- 1. http://nptel.ac.in/courses/117103067/
- 2. <u>http://</u>https://ocw.mit.edu/courses/mathematics/18-445-introduction-to-stochastic-processesspring-2015/
- 3. https://mathematics.stanford.edu/research-areas/probability/

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion

NETWORK ANALYSIS (NA)

III Semester	:ECE						Sch	eme : 2017		
Course	Category	Hou	rs/We	ek	Credits	Ma	ximum Mark	S		
Code										
		_		_	~	Continuous				
EE210	ES	L	Т	Р	C	Internal	End Exam	TOTAL		
	Lo				2	Assessment	(0)	100		
		3	0	0	3	40	60	100		
Sessional H	Exam Duration	: 2 H	rs			End I	Exam Duratio	n: 3 Hrs		
~ ~ ~										
Course Out	tcomes : At the	end of	the co	ourse	the student	will be able to	<u> </u>			
COI: Apply t	basic network re	ductic	n tech	nique	s for analys	is of electrical	circuits.			
CO2: Unders	CO2: Understand the concept of network topology, resonance and locus diagrams.									
CO3: Unders	tand the fundam	entals	of sin	gle, th	ree phase A	AC circuits and	magnetic circ	uits.		
CO4: Apply I	Network Theore	ms for	<u>Circu</u>	iit An	alysis.	•				
CO5: Analyz	e transient respo	nse of	circu	its wit	h dc excitat	10n				
UNIT - I										
Basic Circuit	Analysis	Ŧ	Ŧ		NT 1 1 /1	1 6 1 .		•.1		
R-L-C Parame	eters, Kirchhoff	s Law	s, Loo	p and	Nodal met	hods of analysi	s of Networks	with		
dependent and	a independent vo	ontage	and ci	irrent	sources.					
Network Reduction Techniques Series Parallel and their combinations, star to delta, delta-to-star transformation and source										
transformation										
				TIN	IT - II					
Network Ton	alaav			UI	11 - 11					
Definitions G	Graphs Tree inc	ident	matrix	Basi	c Cutest and	d Tie set schedi	ules Matrices	for Planar		
Networks Du	ality and Dual N	Jetwo	rks	, Dusi	e cutest un			ior i fullui		
Resonance	unity und D'uur r		RS							
Resonance in	series and paral	lel cir	cuits -	- band	lwidth and (O factor. Half-I	Power Frequer	cies. Locus		
Diagrams for	RL. RC and RL	C con	binati	ons.	i i i unu	2 140101, 11411 1	ower reques	10100, 1100ab		
	,			UN	IT - III					
Single phase	AC Circuits									
RMS, and A	verage values, F	Form f	actor,	Conce	ept of impe	dance, admittar	nce, concept of	complex		
power, real	, reactive power	and p	ower f	factor,	Steady stat	te analysis of se	eries, parallel a	and series		
parallel (RL, I	RC and RLC) cit	rcuits	with s	inusoi	idal excitati	on and phasor	diagrams.			
Three Phase	AC Circuits									
Generation of	three Phase volt	tages	currer	nts and	l power, ph	ase sequence, H	Relation betwe	en Line &		
Phase quantiti	ies in Star and D	elta C	onnec	tion.						
Magnetic Cir	cuits									
Concept of m	utual inductance	in co	upled	circui	ts- coefficie	ent of coupling	– dot conventi	on.		
	UNIT - IV									
Network Theo	orems	11	• • •	т.				T 11 (
Super Position	n, Reciprocity, T	hever	nn`s, f	Norton	n's, Maximi	um Power Tran	ster, Miller's,	Tellegen's,		
and Compens	ation Theorems	for D		ACex	Citations.					
Trongiant				U	N11 - V					
Transient An	ialysis:		rouita	Ciroui	towithowital	as stoprospons	Interdersories			
and parallel R	I C Circuits Net	vork 4	ncuns, Analysi	is usin	σ I anlace tr	ansforms techn	iques sten im	ulse and		
exponential ex	citation.	, or r	y 51	is abili	5 Lupinee ti		ques, step, mi	and und		
								18		

Text Books :

- 1. William H. Hayt, Jack Kemmerly and Steven M. Durbin, "Engineering circuitanalysis", McGraw Hill Company, 8th edition,2013.
- MNahvi, JosephEdminister and KUmaRao, Series), McGraw Hill Company, 5th edition,2010.
 "Electric Circuits", (Schaum'sOutline
- ChoudharyD.Roy, -Networks & Systemsl, New Age International Publishers, 2nd edition 2010.
- 4. M E Van Valkenburg, –Network Analysisl, Prentice-Hall of India Pvt Ltd, NewDelhi.

Reference Books :

- 1. Raymond A.Decarlo and Pen-Min-Lin, "Linear circuit analysis" (time domain phasorand Laplace transform approaches)- 2nd edition, Oxford University Press,2004.
- 2. N.C.Jagan&C.Lakshminarayana, "Network Theory" B.S. Publications, 3rd edition, 2017.
- 3. Sudhakar, Shyam Mohan Palli, "Network Theory", 2nd edition,TMH.

Web References:

- 1. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-spring-2007/</u>
- 2. http://nptel.ac.in/courses/108102042/
- 3. https://lecturenotes.in/subject/553/electrical-circuit-ec

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion

CONSTITUTION OF INDIA (CI)

III Semester :	CSE and ECE	000					Sch	eme : 2017		
Course Code	Category	Hou	rs/We	eek	Credits	M	aximum Mark	KS		
ML202	Mandatory	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		2	0	0	-	-	-	Audit Course		
Sessional E	Exam Duration :	2 Hr	S							
Course Out	comes • At the et	nd of	he coi	irea th	e student w	ill be able to				
CO1:Understa	and the formation	n and	princi	bles of	Indian Co	nstitution.				
CO2:Understa	and structure and	funct	tions o	f Unic	on governm	ent and State e	xecutive. Dutie	es of		
Presider	nt, Vice presiden	t, Prir	ne Mir	nister,	Governor,	Chief Minister	cabinet and Sta	ate		
legislatu	ire.									
CO3:Understa Preside	and constitutiona nt rule.	l ame	ndmer	ts of 4	42, 44,74,76	5,86 and 91. Ce	entral-State rela	ations,		
CO4:Understa weaker	and Indian social section.	struc	ture ar	nd lang	guages in In	dia. Rights of	women, SC, ST	Γ and then		
CO5: Underst	and the structure	of Ju	diciary	y, Role	e and functi	ons of Suprem	e Court, High o	court and		
Subord	inate courts, Judi	icial r	eview.							
Historical back	k ground, Signific	cance	of Coi	Istitut Droop	ion, Making	g of the constitu	ition, Role of t	he opt of		
Constitution F	Sundamental righ	ts-De	es, inc rivativ	e prine	ciples of sta	ite policy-Elect	ions in India			
	undumentar righ		ii v ati v	UN	IT - II	the point of Lieu	ions in maia.			
Union Executi	ive:Structures of	Unio	n Gove	ernme	nt & Functi	ons, President,	Vice President	, Prime		
Minister, Cabi	net, Parliament-	State	Execu	tive:S	tructures ar	d Functions, G	overnor, Chief	Minister,		
Cabinet, State	Legislature									
				UN	IT - III					
Central, State Constitutional	Relations, Presic functionaries, W	lent's /orkin	Rule, ig of P	Const: arliam	itutional Ar ientary syst	nendments [42] em in India	, 44, 74, 76, 86	& 91]-		
				UN	IT - IV					
Indian Social S S.C"s, S.T"s &	Structure, Language to other weaker sec	ges in ctions.	India-1	Politic	al Parties &	Pressure group	s, Rights of Wo	omen-		
				UN	IT - V					
Judiciary: Stru	cture, Organisat	ion of	Judici	iary, ii	ndependenc	e of the Judicia	ary, role and fu	nctions of		
Supreme Cour	rt, High Courts &	z Sub	ordina	te cou	rts					
Judicial Revie	Judicial Review.									
Toxt Dooks										
1 Durga D	as Basu "Introd	uction	n to th	o Com	stitution of	India" Wedwe	& Company			
2 Macivel	Page – An Intro	ductic	$\frac{10}{10}$ m Ang	lysis	Society		a company			
3. M.V. Pv	3. M.V. Pylee, <i>"Indian Constitution"</i> , S. Chand Publications									
4. Subhash	C Kashyao : "On	ur Co	nstituti	ion".N	VationalBan	k,Trust, India.				
5. Constitu	tional Law of inc	lia by	Dr.S.I	M.Raj	an	,,				
L		<u> </u>		5						

Reference Books :

1. The Constitution of India.By the Ministry of Law and Justice, The Govt. of India.

2. Constitutional Law of India by kashyapsubhasah,c

3. Indian constitution Law by M.P.Jain

4. Constitutional Law of India by H.M Seervai

Web References:

1. https://www.india.gov.in/my-government/constitution-india

EC204: ELECTRONIC DEVICES & CIRCUITS LAB (EDC (P))

III Semest	er: ECE					S	cheme : 2017					
Course Code	Category	Ηοι	urs/W	eek	Credits	Max	imum Marks					
EC205	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL				
		0	0	2	1	50	50	100				
							End Exam Dur	ration:3 Hrs				
Course Ou	itcomes : At	the e	nd of	the c	ourse students w	ill be able to						
CO1: Und	erstand the V	/-I ch	aracte	ristic	s of PN diode, Z	ener diode						
CO2: Anal	yse the recti	fier c	ircuits	with	and without filt	ers.						
CO3: Desi	gn differenti	ators	and Ir	tegra	ators using R,C e	elements.						
CO4: Desi	gn and analy	vse Cl	ippers	and	Clampers circui	ts.						
CO5: Und	erstand the C	Charac	cteristi	cs of	BJT and MOSF	ΈT.						
CO6: Stud	y the frequen	ncy re	espons	e of I	BJT, FET and M	OSFETS.						
Introduction to Materials and Annaratus (2 lab sessions):												
1 Identific	ation specifi	icatio	ns and		ing of R L C cc	apparatus (2 lab sess	les) potentiomet	ars Bread				
boards, CD	S, PCB.	icatio	iis and	iest	ing of K, L, C CC	imponents (colour coc	ies), potentionieu	is, Dieau				
2. Identific	ation, specifi	icatio	ns and	test	ng of active dev	ices: Diodes, BJT, FE	ET, MOSFET, SC	R, & UJT				
3. Study an	d operation	of Mı	ılti-me	eters,	Function genera	ators, Regulated powe	r supplies, CRO	& DSO				
					List of Expe	riments						
1. P-N June	ction Diode a	& Zer	ner Die	ode (Characteristics							
2. Rectifier	S	G		0				o • • • •				
a) To const factors	truct half wa	ve, fu	ll wav	e &	bridge rectifiers	with and without filte	rs - Calculation o	tripple				
b) Simulati	on of rectifie	ers an	d trac	e the	ir output wavefo	rms with and without	filters.					
3. RC Netw	vork as Integ	grator	and di	ffere	entiator for low,	medium and large tim	e constants.					
4. Clipper	& Clamper c	ircuit	s usin	g dio	des							
(i) To desig	gn, construct	and o	observ	e out	put of Positive,	negative, biased and c	combinationalclip	pers				
$\frac{(11)}{5}$ Common	n Base input-	-outpi	ut Cha	racte	ristics- α . β and	v calculations	lerampers					
6. Commo	n Emitter inp	out-ou	tput C	'hara	$\frac{1}{1}$	γ calculations						
7. FET & N	MOSFET Ch	aracte	eristics	5.	, p							
8. Biasing	Circuits											
a. To desig b. To simu	n, construct late the biasi	and te ng cii	est diff cuits a	feren and c	t biasing circuits btain the Qpoin	using BJTs, FETs & t.	MOSFETs.					
9. Common	n EmitterAm	plifie	r			<u> </u>						
a. To desig	n, construct	and o	btain f	requ	ency response of	t thecircuit.						
c. Compare	e performanc	e pra	g capa	y and	throughsimulat	ion.						
d. Calculat	ion of voltag	ge gai	n at pa	rticu	larfrequency.							
								22				

10. Emitter follower

a. To design, construct and obtain frequency response of thecircuit b. To measure signal handling capacity, input and outputimpedance c. Compare practical and simulatedresults

BASIC SIMULATIONS LAB (BS (P))

III Semes	ter : ECE						Sche	me : 2017				
Course Code	Category	Hours/	Week		Credits	Ν	/Iaximum Mar	·ks				
EC206	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL				
		0	0	2	1	50	50	100				
							End Exam	Duration: 3 Hrs				
Course Ou	tcomes : At t	the end o	f the c	ourse stu	idents wi	ll be able to,						
CO1: Gene	rate basic sig	nals and	Perfor	m basic	operation	n on signals.						
CO2: Unde	erstand the dif	fference	betwee	en convo	lution an	d correlation of	the signals.					
CO3: Appl	y Fourier and	l Laplace	transf	orms on	the signa	ıls.						
CO4: Com	CO4: Compute the response of LTI system for unit impulse, step and sinusoidal signals.											
CO5: Test	CO5: Test the linearity and time variance properties of LTI systems and apply autocorrelation to remove											
nois	e in the signa	uls.										
				List Of I	Experime	nts						
	Note	: At lea	st 12 oj	f the foll	lowing ex	periments shall	be conducted					
1. Operation	ons On Matrie	ces. Signals										
2. Ocherati	one On Signa											
5. Operation	ons On Signa	$\frac{15}{06}$										
4.Even An		$\frac{\text{Of A Sig}}{1}$	nal.									
5.Convolu	tion Of Signa	als.										
6.Auto Co	rrelation And	Cross C	orrelat	ion Of S	ignals.							
7. Verifica	tion Of Samp	oling The	orem.									
8.Fourier T	ransform Of	A Signa	1.									
9.Laplace	Transform O	f A Sign	al.									
10. Compu Verifying It	tation Of Units	it Sample	e, Unit ty and	Step An Stability	d Sinuso	idal Response O	f The given Lti	System And				
11. Demor	stration Of C	Gibbs Pho	enome	ion.	, i topera							
12. Verific	ation Of Line	earity Ar	d Tim	e Invaria	nce Prop	erties.						
13. Remov	al Of Noise E	By Autoc	orrelat	ion.								
14. Verific	ation Of Wie	ner-Khii	itchine	Relation	ns.							

ADVANCED COMMUNICATION SKILLS LAB (ACSP)

III Semest	er :Common	for all	Branc	hes	Scheme	: 2017				
Course	Category	Hours	s/Wee	k	Credits	Ma	ximum Mar	ks		
Code										
HU203	Foundation	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		0	0	2	1	100	0	100		
						E	nd Exam Du	ration: 3 Hrs		
Course Ou	itcomes : At t	the end	of the	course	e students	will be able to				
CO1: Spea	ık in English o	confider	ntly, fl	uently	and effect	ively.				
CO2: Exhi	bit team playi	ing and	leader	ship sl	kills.					
CO3: Give	Presentations	s effecti	vely.							
CO4: Com	prehend the V	/erbal a	nd No	n-vert	oal texts.					
CO5: Prepare Resume, Company profiles and Project presentations.										
CO6: Enha	6: Enhance possibilities of Job prospects.									
				List o	of Experim	nents				
Focus in th	Focus in the lab is more on fluency than on accuracy									
1. Ice break	king Activities	S								
2. JAM										
3. Listenin	g Comprehens	sion – P	ractice	e tests						
4. Oral Pre	sentation									
5. Presenta	tion Strategie	s								
6. Group D	biscussion $-T$	eam Pla	iying,	Leade	rship Skill	S				
7. Debate	Principles on	d Forma	ta							
9 Informat	ion Transfer -	– Verha	$\frac{1}{1}$ to No	n-ver	hal and Vi	ce-Versa				
10. Resum	e Preparation	Verbu	1 10 1 10							
11. Compa	ny Profiling									
12. Intervie	w Skills – a)	Telepho	onic In	tervie	W					
	b) Perso	nal Int	erviev	V					
13. Project	Presentation									
Deferrere	Deelee :									
1 Commu	BOOKS :	la Sonia	V Vur	noron	d Duchn I	oto Oxford Unix	varaity Drago			
2 English	Language La	borator	ies A (rehensive l	Manual Nira Ko	nar PHI			
3. Technic	cal Communic	cation 3	E, Ra	man a	nd Sharma	, Oxford Univers	sity Press.			
4. Persona	ality Developr	nent and	d Soft	Skills	, Barun k.	Mitra, Oxford U	niversity Pres	58.		

ANALOG ELECTRONIC CIRCUITS (AEC)

IV Seme	ster: Commor	n to ECE&	&EEE		Scheme : 2017						
Course	Category	Н	ours/We	ek	Credits	Maxin	num Marl	ks			
Code				1							
		L	Т	Р	C	Continuous	End	Total			
EC 207	PC					Internal Assessment	Exam				
		3	0	0	3	40	60	100			
Sessional	Exam Durat	ion:2 Hrs				End Exa	m Durati	on: 3Hrs			
Course (Dutcomes: At	the end of	f the cour	rse stude	nts will be	able to					
CO1:Und	O1: Understand the transistor at high frequencies.										
CO2: An	CO2: Analyze Negative feedback amplifiers circuits										
CO3: De	CO3: Design Oscillators circuits.										
CO4: An	alyze large sig	nal ampli	reuite	ts							
CO5 . All	aryze runeu a	inpinier ci	icuits.								
				UNIT-	[
Transisto	r At High Fre	auencies:									
Hybrid-π	[ybrid- π model, Hybrid- π conductances and capacitances CE short circuit current gain										
Parameter	arameters and f_T , Current gain with resistive load, Single stage CE transistor amplifier										
frequency	equency response, Gain-bandwidth product (GBW), Bandwidth of cascaded amplifierstages.										
Analysis	Analysis of CS and CD JFET amplifiers at high frequencies.										
<u>UNIT-II</u>											
Feedback	x Amplifiers:			£ £ 11		<u> </u>		1:6:			
Classifica	tion of ampl	iffiers, Co	oncepts c	i ieedba	ICK, Classi	fication of re	edback ar	nplifiers-			
General	characteristics	of nega	tive feed	iback an	iplifiers- E	Lifect of Neg	ative feed	back on			
Amplifier	characteristic	s. Analys	is of Fee	dback an	nplifier usi	ng Voltage ser	ies, Volta	ge shunt,			
Current s	eries and Curre	ent shunt f	eedback.	Simplep	roblems.						
				UNIT-I	<u>II</u>						
Oscillator	rs:										
Condition	n for oscillation	ns, Barkha	usen crite	erion, RC	Oscillators	s: RC Phase shi	ft oscillato	or using			
FET & B	JT, Wien bridg	ge oscillat	or, LC Os	cillators:	General for	rm of LC oscill	lator circui	lt,			
Hartley a	nd Colpitts osc	cillators, a	nd Crysta	l oscillato	or.						
I ango Sid	mal Amplifian			<u>UNII-I</u>	<u>v</u>						
Classes o	f operation Cl	s. ass A amr	lifiers (S	eries fed	Transform	er counled Pus	h null) Se	econd			
Harmonic	c distortion, Cl	ass R amp	olifiers (P	ush pull.	Compleme	ntary symmetry). Crossov	ver			
distortion	and Class AB	operation	, Class C	amplifie	rs and effici	iency. Transisto	or power	•••			
dissipatio	dissipation, Heat sinks.										
	<u>UNIT-V</u>										
Tuned A	nplifiers:										
Need of	tuned amplifi	iers, Q-fa	ctor, Ana	alysis of	single stag	ge capacitive	coupled, l	Effect of			
cascading	g on bandwidth	n of single	tuned an	iplifies, I	Double Tun	ed amplifiers,	Effect of c	ascading			
on bandw	ath of double	tuned am	plifies, St	ability of	I uned am	piifiers.					
								2			

<u></u>6

I CAL DUURS.

1. Millman and Halkias, Integrated Electronics, 2nd Edition, TMH 2010.

2. llen Mottershed, Electronic Devices and Circuits, 28th Edition, PHI 2006.

3. Donald A.Neamen, Eletcronic Circuit Analysis and Design, 2nd Edition, Mc Graw Hill 2001.

4. G. K. Mithal, Electronic Devices and Circuits, 23rd Edition, Khanna pub. 2006

5. David A.Bell, Solid state Pulse Circuits, 4th Edition, 2002 PHI

Reference Books:

1. Bogart Theodore, Electronic Devices and Circuits, 6th Edition, PE 2008.

2. Millman and Grabel, Microelectronic, 2nd Edition, TMH 2003.

3. Henry Zanger, Semiconductor Devices and Circuits, Johnwiley 1984.

4. Sedra and Smith: Microelectronics Circuits, 4/e, Oxford University Press-1998.

5. Milliman and Taub, Pulse, Digital and Switching Waveforms, McGraw Hill.

Web References:

https://www.electronics-tutorials.ws

www.informationvine.com

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is fromone unit and may contain sub-questions .i.e. there will be two questions from each unit and the student should answer any onequestion.

COMPLEX VARIABLES AND SPECIAL FUNCTIONS (CVSF)

IV Semeste	er : Common to I	ECE&I	EEE				S	cheme : 2017	
Course Code	Category	Hours/Week			Credits	Maximum Marks			
BS203	Foundation	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exam Duration : 2 Hrs					End Exam Duration: 3 Hrs				

Course Outcomes : At the end of the course the student will be able to

CO1:Understand continuity and analyticity of various complex valued functions.

CO2:Find the Taylor's and Laurent's series expansion of complex functions and evaluate definite real integrals using residues theorem.

CO3:Explain the various properties of the Bessel's and Legendre functions.

CO4:Compute interpolating polynomial for the given data

CO5: Solve ordinary differential equations using numerical techniques

UNIT – I

Complex Variables: Analytic functions, Cauchy-Riemann equations, sufficient condition for analyticity, Harmonic function, Method to find the Conjugate function, Milne – Thomson method. Conformal Mapping (e^z , z^2 , sinz, cosz), Bilinear Transformation.

UNIT - II

Complex Integration & Series : Simple and Multiple Connected regions, Cauchy's Integral theorem, Cauchy's integral formula, Generalized Integral formula. Taylor's series, Maclaurin's series and Laurent's series. Residue theorem, Method of finding residues. Evaluation of real integrals by contour integration, Integration round the unit circle and in the interval $(-\infty, \infty)$.

UNIT – III

Bessel Functions : Solution of Bessel's equation, Recurrence relations for Jn(x), Generating function, Jacobi series, Orthogonality of Bessel's function.

Legendre Functions: Solution of Legendre's equation, Rodrigue's formula, Legendre polynomials, Generating function, Recurrence relations for Pn(x) and Orthogonality of Legendre polynomials.

UNIT - IV

Interpolation : Operators, relation between the operators. Newton's forward and backward interpolation formulae. Lagrange's and Inverse Lagrange's interpolation formulae. CubicSpline interpolation.

UNIT - V

Numerical Methods: Solution of first order Differential equations. Taylor's method, Picard's method, Euler's and Modified Euler's methods. Runge-Kutta methods of second and forth order. Predictor - Corrector methods- Milne's method and Adam's method.

Text Books

B.S.Grewal [2012], Higher Engineering Mathematics, Khanna Publishers, NewDelhi
 K.V Iyengar and others [2013], Engineering Mathematics Vol-3, S.Chand & Co. New Delhi

Reference Books

1. S.S.Sastry, -Introductory Methods of Numerical Analysisl, PHI, 2010

2. Erwin Kreyszig - Advanced Engineering Mathematicsl, John Wiley and Sons 8th Edition, 2008

Question Paper Pattern:

InternalAssessment: The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

EndExam: Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any one question

ELECTROMAGNETIC WAVES (EMW)

IV Semester	:ECE						Sch	eme : 2017	
Course Code	Category	Hours/Week			Credits	Maximum Marks			
EC208	РС	L	Т	Р	C	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exam Duration : 2 Hrs End Exam Duration: 3 Hrs									
Course Oute		d of t	h						
Course Outco	omes: At the en		ne cou	irse the	e student w	lli be able to	n physical		
interpre	and the principle	28 01 V	ector	algebi	a, vector ca	liculus and the	r physical		
CO2: Analyz	e Gauss's law ar	nd its	applica	ations					
CO3: Apply of	concepts and prin	nciple	es of el	ectros	tatic fields	to solve compl	ex problems		
CO4: Analyz	e Biot-savart's la	aw an	d Amp	bere's	law to deter	rmine magnetio	c field intensity	y	
CO5:Analyze	e Maxwell's equa	ations	for tir	ne vai	rying electro	omagnetic field	ls and understa	and the	
format	ion and characte	ristics	s of ele	ectrom	agnetic way	ve			
				U	NIT - I				
<i>Co-ordinate Systems and Vector Calculus</i> Vector Algebra, Co-ordinate systems-Cartesian, Cylindrical and Spherical, Transformation of Vector functions from one Co-ordinate system to another. Gradient, Divergence, Curl and their physical interpretations, Stokes theorem, Divergence theorem.									
	T: 11 T			UN	NIT - II				
Coulomb's la Sheet charge a application. M	w, Electric field and Volume cha faxwell's first eq	intens rge di Juatio	sity, Fi stribut n in in	ield du ions. I tegral	e to differe Electric flux and point f	ent charge district and Flux dense orms.	ibutions-Line o sity, Gauss's la	charge, w and its	
				UN	IT – III				
<i>Electro static field-II</i> Energy expended in moving a point charge in an electric field, Line integral, Potential difference and Potential, Potential field of a point charge and system of charges, Potential gradient, Dipole, Energy density in the electrostatic field. Current and current density, Continuity equation and Relaxation time, Metallic conductors, Nature of dielectric materials, Boundary Conditions for perfect dielectrics and conductors, Capacitance, Poisson's and Laplaceequations-examples.									
UNIT - IV Magnato statia Fields									
<i>Magneto static Fields</i> Biot-Savart's law, Ampere's circuital law, Magnetic flux and magnetic flux density, scalar and vector magnetic potentials, Force on a moving charge, Differential current element and force between two differential current elements, force and torque on closed circuit, Magnetization and permeability, Magnetic boundary conditions, Energy stored in a magnetic field, Energy density.									
30									

Time Varying Fields & Maxwell's Equations

Faraday's law, Lorentz Force Equation, Maxwell's equations in various forms, Displacement Current Density.

Uniform Plane Wave

Electromagnetic wave propagation media, Wave motion in free space, perfect and lossless dielectrics, lossy dielectrics and good conductors, skin depth, Surface impedance, Poynting theorem, Polarization, Reflection of plane waves- Normal Incidence and obliqueincidence (Perpendicular and Parallel Polarizations)

Text Books :

- 1. Hayt.W.H, *Engineering Electromagentics*, 7th Edition, TMH.
- 2. Sadiku, *Engineering Electromagnetics*, 3rd Edition, Oxford UniversityPress.
- 3. G.S.N.Raju, EM Field Theory and Transmission Lines, 1st Edition, PearsonEd.

Reference Books :

- 1. Jordan and Balmain, EM Waves and Radiating Systems, 2nd edition, PearsonEd.
- 2. John.D.Kraus, *Electromagnetics*, 6th Edition, McGraw-Hill.
- 3. Nanapeneni Narayana Rao, *Elements of Engg. Electromagnetics*, 6th Edition, PearsonEd.

Web References:

- 1. https://ocw.mit.edu/resources/res-6-001-electromagnetic-fields-and-energy-spring-2008/
- 2. https://www.youtube.com/playlist?list=PL4BE7BAFFAB78FC44
- 3. https://www.youtube.com/watch?v=CZWK0tCrX6k

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion.

NETWORKS AND TRANSMISSION LINES (NTL)

IV Semester	:ECE						Sch	eme : 2017		
Course Code	Category	Hours/Week			Credits	Maximum Marks				
EC209	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Exam Duration : 2 HrsEnd Exam Duration: 3										
Col: Understand the characteristics of two port networks Z X h g and ABCD parameters										
CO1: Understand the characteristics of two port networks $-Z$, Y, h, g and ABCD parameters.										
CO3: Design filters, attenuators and equalizers										
CO4: Unders	tand the signal b	ehavi	our thr	ough	a transmiss	ion line.				
CO5: Analyse	e the reflection c	coeffic	eient, s	tandir	ng wave rati	o, input imped	ance and the lo	ocation of		
maxima	a and minima of	a tran	smissi	on lin	e at UHF.					
CO6: Design Smith C	CO6: Design single stub network and double-stub network for matching load impedances using Smith Chart.									
	7			U	NIT - I					
<i>Two Port Networks</i> Driving point and transfer functions, Two port network parameters, Z, Y, ABCD, h and g parameters, Relationship between parameter sets, Interconnection of Two port networks, Analysis of Reciprocal networks.										
Standard T, II, L sections and Lattice networks. Characteristic impedance and propagation constant. Image and iterative impedances. Image transfer constant& iterative transfer constant										
	UNIT - II									
<i>Filters</i> Filter fundamentals: The Decibel and Neper, Types of Filters, Characteristics of the filter, Constant K filters: Low pass, High pass, Band pass, Band stop filters design. m-derived filters: m-derived low pass, high pass filters and Compositefilters.										
Attenuators: Symmetrical T-type attenuator, L-type attenuator and Π - type attenuators.										
<i>Equalizers:</i> Series and shunt equalizers, T- Type equalizer and L-type equalizer.										
UNIT - III										
Transmission Line Theory										
<i>Transmission Line Theory</i> Types of transmission lines, Primary constants, Skin effect, Transmission line equations from source and load end, Infinite line, Secondary constants, Velocity of propagation, Group velocity. Terminations: Open and short circuited lines, Line distortion, Distortion less line, loading and types of loading.										

UNIT - IV

RF Lines

Properties of transmission lines at UHF, Reflection coefficient, Standing waves, Characteristics of half wave, Quarter wave and 1/8 wave lines.

UNIT - V

Smith Chart

Construction and applications of Smith chart, Transmission line matching. Single and double stub matching.

Text Books :

- 1. Van Valkunberg, Network Analysis (Unit-I).3rdEdition, PHI 1974.
- 2. UmeshSinha, Networks and Transmission Lines, 8thEdition,SatyaPrakashan

Reference Books :

- **1.** John D Ryder, Networks Lines and Fields, 2nd Edition, Prentice Hall2003.
- 2. Johnson, Transmission Lines and Networks, TMH.
- 3. V K AAtre, Network Theory & Filter Design, New AgeInternational.
- 4. A.Sudhakar and S.P.Shyam Mohan, Circuits and Networks, 3rd Edition, TMH2007

Web References:

1. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-763-appliedsuperconductivity-fall-2005/lecture-notes/lecture7.pdf

2. nptel.ac.in/courses/117101056/

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion

COMPUTER ORGANIZATION & ARCHITECTURE (COA)

IV Semester:E	CE							Scheme:2017
Course Code	Category	H	ours/W	eek	Credits	Μ	laximum Marl	ks
EC210	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
SessionalExar	nDuration:2H	rs				I	EndExamDu	ration:3Hrs
				-				
Course outcou	mes:After the c	omplet	ion of t	he cou	rse the st	udent will be a	ble to:	
CO1: Understa	and the concept	$\frac{15 \text{ OI B2}}{15 \text{ CDU}}$	isic Cor	nputer	organiza	tion and its de	sign.	
CO2: Analyze	e concept of C	ompute	r Arith	metic	sing mo	ues.		
CO4: Underst	and the concept	ts of I/C	$\overline{)}$ and \overline{N}	lemorv	v organiz	ation.		
CO5: Analyze	the importance	e of Pip	eline a	nd Vec	tor Proce	essing.		
	T	1				C		
				Uni	t – I			
Register Tran	sfer and Micro	o-Oper	ations:					
Register transf	er, Bus and Me	mory t	ransfers	s, Arith	metic, L	ogic and Shift	micro-operati	ons,
Arithmetic log	ic shift unit.							
			D	Unit	; – 11			
Basic Comput	ter Organizatio	on and	Design	l: outor ir	atruction	a timing and	oontrol Instru	ation avala
Memory refere	es, Computer 1	egister	s, Contpu t /outpu	t and I	nterrupt	Design of basi	c computer	ction cycle,
		s, mpu	i /outpu	Init		Design of basi	e computer.	
Central Proce	ssing Unit:			Cint				
General registe	er organization.	Stack	organiz	ation.	Instructio	on formats, Ad	dressing mode	es, Data
transfer and ma	anipulation, Pro	ogram c	control.	,		,	U	,
Computer Ar	ithmetic:	C						
Algorithms for	fixed point and	d signe	d 2's cc	mplen	nent bina	ry arithmetic o	perations, Flo	ating point
arithmetic oper	rations.							
-				Unit	-IV			
Peripheral devi interrupt, DMA	it Organization ices, Input/Outj A.	1: put inte	rface, A	Asynch	ronous d	ata transfer, M	odes of transf	er, Priority
Memory Orga	anization:						m. Casha mar	
Memory hierai	rchy, Main mer	nory, A	uxiliar	y mem	ory, Asso	ociative memor	ry, Cache mer	nory, virtual
memory.				Unit	- V			
Pipeline and V	Vector Process	ing:		0 1110				
Parallel Proces processing, Ar	sing, Pipelining ray Processing.	g, Arith	imetic I	Pipeline	e, Instruc	tion Pipeline,	RISC pipeline	, Vector
Text Books:			~		•			
1. M.M	lorris Mano, Co	ompute	r Syster	n Arch	itecture,	PHI, 3/e, 2007		<u> </u>
2. Will 8th e	am Stallings ,C	Comput e Hall, I	er Orga New Jei	mizatio rsy,201	on and Ai	rchitecture- des	signing for per	rtormance,

Reference Books:

1. John P. Hayes, Computer Architecture and Organization, McGraw Hill, 3/e, 1998

- 2. Hemachar, Computer Organization, Mc Graw Hill, 5/e, 2002.
- 3.K.Hwang&F.A.Briggs,ComputerArchitectureandParallelProcessing,McGrawHill,Indian Edition, 2013.

Question paper pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions.

i.e there will be two questions from each unit and the student should answer any one question.
I ECTDICAL TECHNOLOCY (ET)

IV Somostor	·FCF	ELE			Scheme ·	2017				
TV Semester		TT	/XX 7]	Scheme.	2017				
Course	Category	Hou	ITS/ VV G	ек	Creatts	IVIE	aximum Mark	<u>s</u>		
Code						Continuous				
		т	Т	D	C	Untrinuous	End Exom	тотат		
EE211	PC	L	1	r	C	Internal Aggggment	Enu Exam	IUIAL		
		2	0	0	2	Assessment	60	100		
Sessional F	van Duration	• 2 H	- -	U	4	Fnd I	Tyam Duratio	n· 3 Hrs		
		• 4 111								
Course Out	tcomes : At the	end of	the co	ourse f	the student	will be able to				
CO1. Underst	tand the construct	rtiona	lasneo	rts and	l analyze th	e operation w	orking and per	formance		
charact	eristics of variou	is de i	machi	nes.	<i>i</i> unury <i>2</i> 0 un	e operation, we	orking und per	loimanee		
CO2: Underst	tand and analyze	the p	erforn	nance	characterist	tics of various t	transformers.			
	- 1.1 ·		1		1 1 .1		1. 1	<u> </u>		
CO3: Underst	tand the construction of different	ctiona	l aspec	ts and	analyze th	e operation, we	orking and per	formance		
characteristics of different types of induction motors.										
charact	aristics of differ	ant sy	nchrou	nous r	aryze the w	olking, operation	on and the per	ine for		
various	applications	ent sy	nemo	lious I.	nachines. S	elect a proper e		line ioi		
various	s applications.			U	NIT - I					
D.C. Generators										
Constructional features-single lap and wave windings-EMF equation-methods of excitation-										
characteristics of shunt, series and compound generators.										
UNIT - II										
D.C. Motors										
Principle of o	peration —torqu	e equa	ation-	speed	-torque char	racteristics of s	hunt, series an	d		
compound Mo	otors – Losses ar	nd effi	ciency	/-testi	ng– Swinbı	urne"s test and	brake test.			
				TINI						
T				UN	11 - 111					
Transformers	nametion constr	ti a m	al fact		ME aquati	on Equivalant	ainavit nhaaa	n dia anama		
on No Load a	peration –constru nd Load		ai ieai	ules-i	zivir equation	on-Equivalent	circuit- pilaso	i ulagrafii		
Performance	of Transformer	c								
Losses and Ef	ficiency of trans	, forme	er and	Regul	ation – OC	and SC tests.				
				UN	IT - IV					
Alternators										
Constructiona	l features – A.C	Wind	lings-F	Pitch f	actor and D	istribution fact	tor- EMF equa	tion -		
concept of syr	nchronous reacta	nce-v	ector o	liagra	m- regulatio	on –determinat	ion by Synchro	onous		
Impedance Method – Conditions for synchronizing.										
Synchronous Motors										
Principle of operation- methods of starting, applications.										
UNII - V Dalu Dhasa Industian Matan										
Constructional factures. Principle of operation. Slip Torque characteristics. Losses and										
Efficiency M	athods of Speed	ipie 0	ol Stor	n dalta	Sup-rorqu	e characteristic	s – Losses and	1		
EnciencyM	culous of Speed	contr	oi-Sta	i-della	i and rolor r	neosial starters	s-applications.			

Single Phase Induction Motors

Construction- Characteristics –starting split phase and shaded pole methods.

Text Books :

6. M.S Naidu and S. Kamakshaiah, Introduction to Electrical Engineering, TMH Publications.

7. T.K. Nagasarkar and M.S.Sukhija, Basic Electrical Engineering, Oxford University Press, 2005

Reference Books :

1. V.K Mehta, Principles of Electrical Engineering, S.Chand Publications.

2. I.J. Nagarath amd D.P Kothari, Theory and Problems of basic electrical engineering, PHI Publications.

3. P.S. Bibmra, Electrical Machineray, khanna publisher.

Web References:

1. http://nptel.ac.in/courses/108108076/

2.<u>http://www.nptelvideos.com/electrical_engineering/basic_electrical_technology_iit_</u>lectutes.php

3. http://www.nptelvideos.in/2012/11/electrical-machines-i.html.

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any onequestion

ENVIRONMENTAL STUDIES(ES)

IV Semester	r: Common for C	SE &	ECE				S	Scheme : 2017			
Course Code	Category	Ho	urs/W	'eek	Credits	Μ	aximum M	arks			
ML201	Mandatory	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		2	0	0	-	-	-	Audit Course			
Sessional E	xam Duration	1:-				End]	Exam Dura	tion:-			
Course Out	comes : At the	e end	of the	course	students w	vill be able to					
CO1: Apply	the knowledg	e of e	enviro	nmenta	l issues in l	his area of work	x. Appreciat	e the need for			
the conservation of Natural resources for sustainable development.											
CO2: Understands the importance of Ecosystem and conservation of biodiversity											
CO3: Understands the problems due to environmental pollution with remedial measures and											
	s related to envious to envious the disast	viron: er ma	ment.	nent in	nrevention	of loss of life a	and property	,			
	viate the use of			ad tash	pievention		nmont & hu	man haalth			
CO5:Appre	clate the use of	11 8	z relat	ed tech	nology to c	conserve enviro	nment & nu	man nealth.			
UNIT - I											
Definition, s public aware Energy resor Hydroelectri exploitation resources- us agriculturean naturalresou	Introduction to Environmental studies and Natural resources Definition, scope, importance and multidisciplinary nature of Environmental studies. Need for public awareness. Energy resources-Growing energy needs nonrenewable and renewable energy resources: Hydroelectric, solar, wind and nuclear energy resources. Water resources-Use and over exploitation of surface and ground water. Dams and its effects on forest and tribal people. Forest resources- uses of forest, deforestation causes and effects. Food resources- changes causedby agricultureandovergrazing. Modernagricultureanditseffects. Roleofindividualinconservation of natural resources.										
				U I	UNIT - II						
Concepts of ecosystem Structure and function of an ecosystem. Energy flow in an ecosystem (single channel energy flow model). Ecological succession. Food chains, food webs and ecological pyramids. Introduction, types, characteristic features and functions of grasslands, desert, pond and ocean ecosystems.											
Biodiversity	and its conser	vatio	n								
Definition, levels of biodiversity. Values of biodiversity- consumptive, productive, social, ethical and ecological services. Hot spots of biodiversity. Biogeographical classification of India. Endangered and endemic species of India. Threats to biodiversity-Habitat loss, poaching of wild life and man-wild life conflict. Conservation strategies- In situ and ex situ conservation. UNIT - IV											
Environmen	tal pollution										

Definition, causes, effects and control measures of air, soil,water and noise pollution. Disaster management- Floods. Earth quake, cyclone and landslides. Global warming, acid rains, ozone layer depletion. Waste management-Municipal solid waste. Role of an -individual in prevention of pollution.

UNIT - V

Social issues and the environment

Consumerism and waste products. From unsustainable development to sustainable development. Salient features of Air Act, water Act and Forest conservation Act. Process involved in the enforcement of environmental legislation. Role of Information Technology in environment and human health.

Text books

1. C.P. Kaushik and Anubha Kaushik, — Environmental Studies New Age International(p) Ltd., New Delhi

2. R.Rajagopalan — Environmental Studies, Oxford University press, Chennai

3. Y.Anjaneyulu — Introduction to Environmental sciences^I, BS Publications, Hyderabad **Reference books**

1. Benny Joseph. -Environmental Studies , Tata McGraw Hill, New Delhi.

2. Barucha Erach, -Environmental studies, Universities press.

ANALOG ELECTRONIC CIRCUITS LAB (AEC (P))

IV Semester: E	CCE	Leinoi					Schen	ne: 2017			
Course					Maximum						
Code	Category	Hours/	Week		Credits		Marks				
EC211	РС	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		0	0	2	1	50	50	100			
End Exam Dura	ation: 2 Hrs										
Course Outcom	es: At the end of the	e course s	tudent	ts wil	l be able	e to					
CO1:Study the F	ET and MOSFET a	nplifier c	haract	teristi	cs.						
CO2: Analyse th	e effect of feedback	on ampli	fier ch	naract	eristics						
CO3: Analyse th	e effect of Negative	and Posit	ive fe	edbad	ck on am	plifiers					
CO4: Determine	the efficiency of Cla	ass A Pow	ver an	nplifie	er and C	lass B Compl	ementary				
Symmetry	Power amplifier	~ 1		11.01							
CO5: Design and analyse two stage RC coupled amplifier, Darlington, Bootstrap and											
Cascode an	CO6: Design single Tuned amplifier and verify its frequency response.										
Cool: Design single Tuned amplituer and verify its frequency response											
Design and Simulation using simulation Software (tina-pro/multisim) and testing in Laboratory.											
(12Experimentsincludingsimulation of 6 experiments and testing in Laboratory.											
Laboratory)	5				0	•					
		List a	of Exp	perim	ents						
1. FETamplifier											
a. To design, con	struct and obtain fre	quency re	spons	e of t	he JFET	amplifiercirc	cuits				
b. To measure sig	gnal nandling capaci	ty, input a	ina oi	itputi	mpedan	ce					
c. Compare performa	ance practically and thro	ughsimulati	on								
2. MOSFETampl	lifier	0									
a. To design, con	struct and obtain fre	quency re	spons	e of t	he MOS	SFET amplifie	ercircuits				
b. To measure sig	gnal handling capaci	ty, input a	and or	ıtputi	mpedan	ce					
c. Compare perfo	ormance practically a	nd throug	ghsim	ulatio	n						
3. Negative feed	backamplifier										
a. To design, con	struct and test respon	nse of i. v	oltage	e shur	it ii. volt	age series fee	dback amplifier	ſS			
with and without	reedback for the giv	enspecifi	cation	IS							
b. To compare their	frequency response throu	ighsimulati	on								
4. RCoscillators		<u></u>									
To design, constr	ruct and test the										
a. RC Phase shift	oscillator b. Wien b	ridge osc	illator	for t	he given	specifications	8				
5. Hartley and Co	olpitts oscillators										
To design, constr	ruct and test the a. H	artley osc	illatoı	-							
b. Colpitts oscillator for the given specifications											
6. Class B compl	ementary symmetry	amplifier									
		· ·									
To obtain the freque	ncy Vs power and load V	/s power ch	aracter	istics							

7. Class C power amplifier

To obtain the frequency Vs power and load Vs power characteristics

8. CascadeAmplifier

a. To design, construct and obtain frequency response of a two stage RC coupledamplifier

b. To measure signal handling capacity, input and outputimpedance

c. Compare performance practically and through simulation

9. Darlington pair

To design, construct and obtain frequency response practically and through simulation

10. Bootstrap Amplifier

To design, construct and obtain frequency response practically and through simulation

11. Cascode amplifiers

To design, construct and obtain frequency response practically and through simulation

12. Single Tuned Amplifier

To design, construct and obtain frequency response practically and through simulation

ELECTRICAL CIRCUITS AND MACHINES LAB (ECM(P))

IV Semester : ECE							Scher	ne: 2017			
Course Code	Category	Hours/	Week		Credits	its Maximum Marks					
EE212	PC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		0	0	2	1	50	50	100			
End Exam	Duration:	2 Hrs									
Course Out		he and a	files			11 ha ahla ta					
Course Out	comes : At	ine end o	or the c	ourse su	idents wi	II be able to					
CO1: Detern	nine load re	gulation	charac	teristics	of genera	ators and Motor.					
CO2: Understand regulation characteristics of 1-phase transformer and Alternators											
co2. Onderstand regulation characteristics of 1 phase transformer and riteritators.											
CO3: Apply	Kirchhoff l	aws									
CO4: Unders	stand netwo	rk theore	ems.								
List of Experiments											
Note : At least 8 of the following experiments shall be conducted											
1. Load tes	st on DC Co	ompound	l Gener	ator.							
2. Swinbur	rne's Test.										
		DI	<u>a ·</u>	1 T	1						
3. Brake T	est on Thre	e Phase	Squirre	el cage li	nduction	Motor.					
4. Regulat	ion of Alter	nator.									
5 L 15		DI									
5. Load Te	est on Single	e Phase	Transfo	ormer.							
6. OC and	SC test on	Single P	hase T	ransform	ner.						
/. Brake I	est on DC S	Shunt Mo	otor.								
8. Determi	nation of se	elf-induc	tance,	Mutual i	nductanc	e and coefficient	of coupling.				
	1 173 /1										
9. KCL and KVL.											
10. Thever	nin's Theor	em.									
11. Nortor	i's Theorem	1.									
12. Superp	osition The	orem.									
13. Locus	diagrams or	n RL &R	C circ	uits.							

SOFT SKILLS LAB (SSP)

IV Semester : Common for all Branches					Scheme : 2017						
Course Code	Category	Ho	urs/\	Week	Credits	Ma	iximum M	larks			
HU204	Foundation	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		0	0	2	1	100	0	100			
Course Out	tcomes • At the	end (of the	COURS	e students u	vill be able to					
CO1: Com	nunicate effectiv		nd e	nhance	e their intern	ersonal relations	ship buildi	ng skills with			
renew	renewed self confidence										
CO2: Work	together in tean	ns an	d acc	complis	sh objective:	s in a cordial atm	nosphere				
CO3: Face interviews, GDs and give presentations											
CO4: Understand and develop the etiquette necessary to present themselves in a professional											
setting CO5: Learn the Principles of Personal effectiveness											
CO3. Learn the Principles of Personal effectiveness											
List of Experiments											
1. Ice break	ing Activities, P	rinci	ples	of Tim	e and Stress	Management					
2. Art of spe	eaking -1 (Prepa	red)									
3. Art of spe	eaking -2 (Exten	npore	e)								
4. Art of wr	iting - Essay / P	icture	e / St	ory							
5. Business	etiquette - Teler	phone	e and	email	_						
6. Presenta	tion Skills - Po	ower	poir	nt mak	ting			1 1.			
7. Group Di	scussion – Obje	ctive	s anc	I Skills	s tested in a	GD, types of GL	D, Dos and	don'ts			
8. Group Di	scussion - Pract rk - Drama / Ski	ice	ole n	lav							
10 Paper / I	Poster Presentati	ion	oic p	lay							
11. Problem	Solving by late	ral th	inki	ng puz	zles						
12. Know y	our General Aw	arene	ess /]	Knowl	edge - Quiz						
13. Principle	es of Personal ex	xcelle	ence		0 (
Reference I	Books :										
1. Stephen F London	R. Covey, -The	Seve	n Hal	bits of	Highly Effe	ctive Peoplel, Po	ocket Book	ts Publishers,			
2. Priyadar Books.	shani Patnaik, -	Grou	ıp Di	scussio	on and Interv	view Skills with	VCDI, Fou	Indation			
3. Sangeeta	a Sharma & Bin 19 Private Limit	od M ed	lishra	a, –Cor	nmunicatior	n Skills for Engin	neers and S	Scientistsl, PHI			
4. Shiv Kh	era, -You Can V	Vinl,	Macl	Millan	India Publis	shers, New Delhi					
5. Campus	Connect Portals	s - T(CS - 1	https://	'campuscom	mune.tcs.com; I	nfosys -				
http://campusconnect.infosys.com/											

ANALOG AND DIGITAL COMMUNICATIONS (ADCM)

V Semester : B	.Tech ECE						Scheme	e: 2017			
Course Code	Course Category	Hours	/Week		Credits	Maximum Marks					
EC301	PC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	0	0	3	40	60	100			
Sessional Exam	Duration : 2 H	rs				End E	xam Duration	: 3 Hrs			
Course Outco	omes : At the end	of the c	ourse tl	he stu	dent will b	e able to					
CO1: Understan	d different ampli	tude, ang	gle mod	lulatio	on and dem	odulation schemes	5.				
CO2: Evaluate t	he Figure of meri	t of vari	ous AN	$\frac{1}{1}$ and	FM schem	les.					
CO3: Understan	d various pulse n	nodulatio	on and	demo	dulation sc	hemes.					
CO4: Analyze v	arious methods o	f base base	and data	a tran	smission a	nd detection metho	ds.	•			
CO5: Evaluate t	he probability of	error an	d powe	r for v	arious coh	erent and digital m	iodulation tech	niques.			
				TINIT	тт						
A man liter da man d				UNI	1-1						
Ampiuuae ana . Block diagram (Angle modulation	n ana ae	emouul	Noc	d for Mod	ulation Constition	and domodule	tion of			
AM Band widt	h Power relations	Gener	ation ar	I, Net	nodulation	of DSBSC and SS	B Erequency				
Modulation and	Phase Modulation	n FM n	arrow h	and a	nd wide h	and techniques Ge	neration of FM				
Demodulation o	f FM- Frequency	discrim	ination	meth	od. Introdu	ction to PAM.PW	M and PPM sch	, nemes.			
	UNIT – II										
Noise											
Various types of noise. Equivalent noise band width. Noise figure. Noise temperature.											
Super heterodyn	e receiver and its	parame	ters, Co	oncep	t of image	frequency.					
Noise in AM an	d FM	1		-	C						
Noise in AM an	d FM, Figure of 1	nerit of	AM, D	SBSC	and FM, T	Threshold effect, Pa	re-emphasis an	d De-			
emphasis circuit	ts.										
				UNII	<u> </u>						
Pulse Code Mo	dulation										
Elements of PC	M, Quantization (Uniform	n and N	on-ur	niform), Co	mpanding, Band w	vidth, Noise in	PCM			
systems, Transn	nitters and receive	ers of Di	fferenti	al Pu	lse code m	odulation (DPCM)	, Delta Modula	tion			
(DM), Adaptive	Delta modulation	n (ADM).								
Dagoh and Dat	Tuananiaria			UNII	- I V						
Basebana Data	Iransmission	on avata	m Dog	ahand	DAM Ny	avist aritarian for 5	oro ISI Doigod	Looging			
pulse shaping I	Juo-binary PAM	on systems	III, Daso M_ary	signa	FAM, Ny	quist cificitoli foi z	elo ISI, Kaiseu	cosme			
puise snaping, i		systems,	, ivi- ai y		$\Gamma = V$	ies, Eye ulagraili.					
Digital modulat	tion and demodul	ation to	chniau	0111							
Optimum receiv	er Coherent rece	ntion of	ASK F	SK a	nd PSK scl	nemes Correlation	Receiver Mate	ched filter			
receiver, Determination of Probability of error for coherent ASK FSK and PSK schemes. Description of											
OPSK.OAM. In	troduction to Not	n-cohere	nt recei	otion	of ASK.FS	K and PSK schem	es. Comparisor	n of			
coherent and no	n-coherent ASK,	PSK and	d PSK	schem	ies.		, <u>-</u>				
Text Books :	,										
1. Simon Hayki	n, Communicatio	n System	$s, 2^{nd} E$	Edition	n, Wiley Ea	astern, 2008.					
2. K. Sam Shan	mugam, <i>Digital a</i>	nd Anal	og Com	ımuni	cation Syst	ems, 2 nd Edition, V	Viley-India, 200	08.			
					-						

Reference Books :

Taub, H and D.Schilling, *Principles of communication systems*, 3rd edition, Tata McGraw Hill, 2013
 R.P.Singh and S.D.Sapre, *Communication systems- Analog & Digital*, 2nd edition, TMH, 2008.

3. B.P.Lathi, *Communication Systems*, 3rd edition, BS publications, 2007.

Web References:

1.https://nptel.ac.in/courses/117105143/

2. <u>http://www.nptelvideos.in/2012/12/digital-communication.html</u>

3. http://www.digimat.in/nptel/courses/video/117105143/L51.html

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

MICROPROCESSORS AND MICROCONTROLLERS (MPMC)

V Semester :Co	ommon for ECE	&EEE					Schem	e: 2017		
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks			
	Category		1	1			I			
		т	т	D	C	Continuous	End Exom	тотат		
EC302	PC	L	1	ſ	C	Assessment	Ellu Exalli	IUIAL		
		3	0	0	3	40	60	100		
Sessional Exa	am Duration : 2	Hrs				End Exa	m Duration:	3 Hrs		
Course Outcon	nes: At the end of	f the cou	rse the	stude	nt will be a	able to				
CO1: Underst	and the definition	, archite	cture a	nd spe	ecial featur	es of 8086 micropr	rocessor			
CO2: Apply the	ne programming i	nodel of	f 8086 i	nicro	processor t	o frame assembly l	anguage progra	ams.		
CO3: Underst	and the interfacin	g conce	pts of 8	086 n	nicroproces	ssor for various per	ipherals.			
CO4: Understand the definition, architecture and working details of 8051 microcontroller										
CO 5: Utilize the Programming model and port interfacing concepts of 8051to program variousperipherals.										
$\frac{1}{\text{UNIT}-I}$										
Introduction of Microprocessors										
8-bit, 16-bit microprocessors. 8086: 8086 CPU architecture, segmented memory, Physical Memory										
Organization.										
UNIT – II										
8086 Programming model										
Addressing mod	les, 8086 instructi	on set, F	Basic A	ssemt	oler Directi	ves, Simple progra	ms on Arithmo	etic		
operations Sorting, Searching, Code conversions, and String manipulations.										
UNIT –III										
Peripheral Inter	facing		0055		aatiana T	Desis Made Annlie	stiene Sterre	u Matau		
8255 (Programm	interfacing Way	nterface), 8233 Ionorati	appii	d A DC int	asic Mode Application	ations - Steppe	r MOIOF		
8259 (Programn	able Interrupt Co	ntroller)	on an	u ADC III	erracing. Introducti	1011 10 8231(03	AK1),		
0237 (110g1aiiii		muomer).	UNI	T –IV					
Introduction to	MCS51 family									
8051 Micro con	troller Architectur	re. Input	/ Outp	ut por	ts and circ	uits. External mem	orv. counters a	nd		
Timers. Serial d	ata input/output, i	nterrupt	s.	er por						
,		i		UN	IT-V					
Programming a	nd Interfacing									
Addressing Mod	les, Instruction se	t. Basic	Program	nmin	g with 805	1 Micro controller.	Interfacing LO	CD,		
LEDs, Stepper N	Aotor.		_		-		_			
Text Books :										
1. A K Ray,	K M Bhurchandi	, Advano	ced Mic	ropro	ocessors an	d Peripherals, 2nd	Edition, Tata	McGraw		
Hill Edu	cation Private Lto	l, 2010.								
2. Mazidi Muhammad Ali, Mazidi Janice Gillespie & McKinlay Rolin D, The 8051 Microcontroller										
and Embedded Systems, 2nd Edition, Pearson Education, 2008.										
<i>I</i> . John Uffe	nbeck, <i>The 8086/</i>	8088 Fa	mily: L	Pesign	i, Program	ming, and Interfac	ing, 3rd Editio	n,		
Pearson	Ed. 2006.	•		A 1		. 17	4 6 0.1	⊡ al:4:		
2. Barry B. I Princetor	n Hall India. 2009	icroproc).	essors-	Archi	tecture, Pr	ogramming and In	terfacing, 8th	Edition,		
3. Kenneth J	. Ayala, The 805	l Microo	controll	er, Pe	enram Inter	national Publicatio	on Ltd, 2006.			
h										

- **4.** Gaonkar Ramesh, *Microprocessors Architecture, Programming & Applications with 8085/8080A*, 5th Edition, Penram International publication Ltd, 2010.
- 5. N. Senthil Kumar, M. Saravanan, S. Jeevananthan, *Microprocessors and Interfacing*, OUP India, 2012.

Web References:

1.<u>www.nptel.onlinecourseac.in/.microprocessorsandmicrocontrollers</u>

2. https://onlinecourses.nptel.ac.in/noc18_ec03/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

INTRODUCTION TO VLSI DESIGN (IVLSID)

V Semeste	er:ECE							Scheme:2017			
Course	Course	Hours/	Week		Credits	Ma	ximum Marks				
Code	Category										
						Continuous					
ECE202	DC	L	Т	Р	С	Internal	End Exam	TOTAL			
ECE303	PC					Assessment					
		3	0	0	3	40	60	100			
Sessiona	l Exam Dur	ation: 2	Hrs				End Exam Du	ration: 3 Hrs			
Course (Dutcomes: A	t the end	l of the	cours	e the studer	nt will be able to					
CO1: Abso	orb the ASIC	classific	ation ar	nd det	ailed steps	followed in moder	n IC fabrication				
CO2: Deriv	ve the MOSF	ET I-V	characte	eristic	s from basi	c understanding of	n, p channel de	vices.			
CO3: Anal	yze the CMC	OS circui	ts, their	chara	acteristics d	elays, power and the	ransistor sizing.				
CO4: Com	CO4: Comprehend other logic variations viz. pass-transistor, dynamic, pseudo NMOS, logic.										
CO5: Gras	p the semicor	nductor 1	nemori	es nar	nely RAMs	, ROMs, for their	feature set.				
					UNIT-1						
VLSI Fabi	rication Tech	nology:									
Introductio	Introduction to ASICs, ASICs classification, Typical ASIC/VLSI Design Flow, IC Fabrication Steps,										
Art of miniaturization, VLSIProcesses: Twin-Well CMOS Process, MOSFET, Resistors, Capacitors, pn											
junction Diodes, BiCMOS Process, Lateral pnp Transistor, p-Base and Pinched-Base Resistors, VLSI											
Design Rules, VLSI Layout, Layouts for CMOS Inverter, CMOS NAND and NOR gates, Beyond											
20nm Tech	inology- Finl	FET									
	UNIT-2										
Introductio	Introduction to MOSFETs:										
Introductio	n,Device Str	ucture ar	nd Phys	ical O	peration, C	urrent–Voltage Ch	aracteristics, M	OSFET			
Circuits at	DC, The Boo	ay Effect	and Ot	ner I	opics, Com	parison of MOSFE	ET and BJT, Sur	nmary,			
Problems					LINIT_3						
CMOS Die	rital Logic C	ircuite			0111-5						
Introductio	on CMOSIC	ncic-Gate	Circui	ts Di	oital Logic	Inverters The CM	OS Inverter Dy	mamic			
Operation	of the CMOS	S Inverter	· Trans	istor S	Sizing Pow	er Dissipation Su	mmary Problem	18			
operation			, 114 115	15101	UNIT-4	er Dissipution, ou	, 1 100101	10			
Advanced	Topics in Di	gital IC	Design:	•							
Introductio	n. Implicatio	ons of Te	chnolog	zv Sca	aling in Dee	p Submicron Desi	gns, Digital IC '	Technologies.			
Logic-Circ	uit Families.	Design 1	Method	ologie	es. Pseudo-	NMOS Logic Circ	uits. Pass-Trans	istor Logic			
Circuits, D	vnamic MOS	S Logic (Circuits	, Bipo	olar and BiC	CMOS Logic Circu	its, Summary, H	Problems.			
	5	0		/ 1	UNIT-5	0	, ,				
Memory C	ircuits:										
Introductio	n, Latches a	nd Flip-F	lops, So	emico	onductor Me	emories-Types and	Architectures,	Random-			
Access Memory (RAM) Cells, Sense Amplifiers and Address Decoders, Read-Only Memory (ROM),											
CMOS Image Sensors, Summary, Problems.											
Text Books:											
1. Adel	S. Sedra and	d Kennet	h C. Sn	nith. 2	015. Micro	electronic Circuits	Revised Editio	n (7 th ed.).			
Oxt	ford Universi	ity Press,	Inc., N	lew Y	ork, NY, U	SA.					
2. Neil	Weste and D	avid Ha	rris. 201	10. <i>Cl</i>	MOS VLSI I	Design: A Circuits	and Systems Pe	rspective			
(4 th	(4 th ed.). Addison-Wesley Publishing Company, USA.										
	,			0	1 . , , ,						
L											

Reference Books:

- 1. Jan M. Rabaey, AnanthaChandrakasan, and Borivoje Nikolic. 2008. *Digital IntegratedCircuits* (3rded.). Prentice Hall Press, Upper Saddle River, NJ, USA.
- Michael John Sebastian Smith. 2008. Application-Specific Integrated Circuits (1st ed.). Addison-Wesley Professional.
- 3. Wayne Wolf. 2008. *Modern VLSI Design: Ip-Based Design* (4th ed.). Prentice Hall PTR, Upper Saddle River, NJ, USA.
- 4. Douglas A. Pucknell and Kamran Eshraghian. 1994. *Basic VLSI Design* (3rd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Web References:

- 1.https://nptel.ac.in/courses/117101058/
- 2. https://www.intel.in/content/www/in/en/company-overview/intel-museum.html
- 3. http://global.oup.com/us/companion.websites/9780199339136/
- 4. www.cmosvlsi.com/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

LINEAR IC APPLICATIONS (LICA)

V Semester : ECE						Sche	me: 2017			
Course Code	Course	Hours	s/Week	I.	Credits	Maxir	num Marks			
	Category			T			1			
		_		_	~	Continuous	End			
EC304	PC	L	T	P	С	Internal	Exam	TOTAL		
		3	0	0	3	Assessment	60	100		
Sessional Exam 1	Duration : 2 Hr	<u> </u>	U	U	5	End Ex	am Duration	: 3 Hrs		
Course Outcomes :	At the end of th	$\frac{3}{6}$ course	e the sti	udent	will be ab	le to				
CO1: Understand ba	sic concepts and	charact	teristics	s of di	fferential a	amplifier and opan	np using BJT	and FET		
CO2: Analyze basic	application circu	its of o	pamp v	vith n	egative and	d positive feedbac	k			
CO3: Design variou	s opamp applica	tion cire	cuits us	ing s	pecial ICs	namely 555 timer.	IC8038 & IC	2566.		
IC565 PLL	s opump uppneu					numery see unier,		,		
CO4:Understand the	CO4: Understand the principle of operation and applications of IC regulators and data converters.									
CO5:Understand the	CO5: Understand the specifications and operation of logic families using BJT and MOSFETs.									
<u>UNIT – I</u>										
Op-Amp Fundamen	stals:									
Differential amplifier: Basic operation, CMRR, DC and AC Analysis of dual input-balanced output and										
dual input-unbalanced output modes, characteristics.										
Op-amp ideal characteristics, Study of typical IC op-amp and its different stages, Practical inverting and										
non-inverting op-amp										
dc characteristics: i/j	p bias current, i/j	p offset	current	, Offs	set voltage	s, Offset balance,	Thermal drift	, ac		
characteristics: frequ	iency response, s	stability	of op-a	amp,	Frequency	compensation, Sle	ew rate, op-a	mp		
TI 082 og a general t	s of 741 op-amp.	Brief a	nalysis	or op	amp using	JFE1, Introduction	footures	-AMP		
TLU62 as a general p	pulpose JFET -II	nput ope				configuration and	leatures.			
On amp Application	ng I ·		UI	- 11	• 11					
Summing amplifier	r Difference a	mnlifie	r Cur	rent	to voltage	e and voltage t	o current c	onverters		
Instrumentation amr	olifier. Clippers a	and clan	npers. F	Precis	ion AC to	DC converters. Inf	tegrator. Diff	erentiator.		
Log & antilog ampli	fier, Sample and	l hold ci	rcuits.					,		
Op-amp Application	ns-II									
Comparators and ad	ctive filters:									
Comparators, windo	w detector, Schr	nitt trig	ger, Pul	lse, S	quare and	triangle wave gene	erators, Wein	Bridge		
oscillator, Active filt	ters (Butterworth	n filters	up to se	econd	order only	<i>y</i>).				
			UN	IT –	III					
Timers & Waveforn	n Generators:	1	A 1'	<i>.</i> .	C			20		
555 Timer: Astable a	and Monostable	modes,	Applic	ations	s, wavefori	n generators: IC 5	66 and IC 80	38.		
Principle of operation	s: I cale and can	tura ran	aas da	tailad	study of d	ifferent blocks of	DI I IC 565	DII and		
Applications of PLI	ii, Lock and cap	luie Iali	ges, ue	laneu	study of d		FLL, IC 303	FLL, allu		
UNIT – IV										
IC Regulators										
General form of seri	General form of series Regulators, Fixed voltage regulator (78XX, 79XX), IC 723 voltage regulator,									
switching regulators	(SMPS).		5	0	````	,,	0 0 0	,		
D/A and A/D Conve	erters : DACs :									
Weighted resistor, R	-2R ladder type	and inv	erted R	-2R 1	adder, AD	Cs: Parallel compa	arator type, S	uccessive		
approximation and d	approximation and dual slope types, Sigma-Delta ADC, Specifications of converters.									
								50		

$\mathbf{UNIT} - \mathbf{V}$

Logic Families:

Specifications of logic gates, DTL, HTL, TTL, ECL, MOS and CMOS circuits, CMOS bilateral switch, Comparison of logic families, TTL driving CMOS and CMOS driving TTL.

Text Books :

1. Roy Choudhury & Shail B.Jain, *Linear Integrated Circuits*, 4/e, New Age Int. Pub. 2010.

2. Ramakanth A. Gayakwad, Op-Amps & Linear ICs, 4/e, PHI, 2003.

3. Moris Mano, Digital Logic and Computer Design, Pearson Ed., 2011.

Reference Books :

1. S. Salivahanan, V.S.K. Bhaaskaran, *Linear Integrated Circuits*, TMH, 2008.

2. Anand Kumar, Pulse and digital Circuits, PHI, 2/e, 2010.

3. R.P. Jain, Modern Digital Electronics, TMH, 3/e, 2003.

Web References:

1. TL082: Data sheet: http://www.ti.com/lit/ds/symlink/tl082.pdf

2. Application note: <u>http://www.ti.com/lit/an/sloa020a/sloa020a.pdf</u>

3. https://www.youtube.com/watch?v=nb11AipMJd4

4.<u>https://www.youtube.com/watch?v=9Rt7iuqSVJ8</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer quest ions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

ANALOG AND DIGITAL COMMUNICATION LAB (ADCM(P))

V Sem	V Semester : B.Tech ECE							Schen	ne: 2017		
Cour	se Code	Course	Hours	/Week		Credits	Maxi	mum Marks			
		Category					Continuous				
E	C305	PC	L	Т	Р	С	Internal	End Exam	TOTAL		
			0	0	2	1	Assessment 50	50	100		
			U	v	-	-	End E	Exam Duration	n: 3 Hrs		
Course	e Outcome	es: At the end of	the cour	se the	studer	nt will be a	ble to				
CO1:	Analyze	various analog m	odulatio	n and d	lemod	ulationsch	emes.	aucina chaotru			
02:	analyzer.	nd the spectral cl	laractern	sucs of	vario	us analog l	modulation scheme	esusing spectru	1111		
CO3 :	Understa	nd various pulse	modulat	ion and	dem	odulations	chemes.				
CO4:	Analyze	various digital me	odulation	n and d	emod	ulationtech	iniques.		•		
005:	simulatio	n.	ia algita	modu	ation	and demo	unation schemes u	SINGMATLAB)		
CY	<u>LIST OFEXPERIMENTS</u> CVCLE I: Experiments using Communication Trainarkits										
	Demonstr	ation of Amplitu	de modu	lationa	ndden	nodulation		[CO1	1		
1. 2	Demonstr	ation of English	uc modu	lationa	nddan	adulation			·] 1		
2.	Demonstr	ation of Frequence		lational			1,• 1 •]		
3.	Demonstr	ation of Frequence	cy Divisi	on mul	tiplex	ingandDe-	multiplexing.]		
4.	Analysis of	of Spectrum Ana	lyzer to a	measur	e AM	andFMspe	ectra.	[CO2	2]		
5.	Demonstr	ation of Pulse am	plitude	modula	tionai	nddemodul	ation.	[CO3	5]		
6.	Demonstr	ation of Pulse wi	dth and	Pulse p	ositio	n modulati	onand demodulation	on. [CO3	8]		
7.	Demonstr	ation of ASK mo	dulation	andden	nodula	ation.		[CO4	!]		
8.	Demonstr	ation of FSK mo	dulation	anddem	odula	tion.		[CO4]		
CY	CLE – II:	: Simulation exp	eriment	s using	g MA'	TLAB soft	tware				
9.	Simulation	n of Amplitude n	nodulatio	onandd	emod	ulation.		[CO5]]		
10.	Simulatio	n of DSBSC mod	lulationa	inddem	odula	tion.		[CO5]			
11.	Simulatio	n of Linecodingto	echnique	es.				[CO5]			
12.	Simulation	n of PSK modula	tionando	demodu	latior	1.		[CO5]			
ADDI	FIONAL I	EXPERIMENTS	5								
13.	Demonstr	ation of SSB mod	dulationa	anddem	odula	tion.		[CO1]			
14.	14. Demonstration of Delta modulationanddemodulation. [CO4]										
15.	Simulation	n of ASK and FS	K modu	lationa	ndden	nodulation		[CO5]			

MICROPROCESSORS AND MICROCONTROLLERS LAB (MPMC (P))

V Semester : E	СЕ						Schem	e: 2017		
Course Code	Course Category	Hours	/Week		Credits	Maxi	mum Marks			
EC306	PC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		0	0	2	1	50	50	100		
						End Exa	m Duration: 3	8 Hrs		
Course Outco	$\frac{\text{mes}}{0.86}$ programs up	of the co	urse the	e stud	ent will be	able to	n lzit			
CO1: Execute 8 CO2:Utilize env	vironments like	Furbo As	sembler	and o	debug to ex	cecute programs				
CO3: Compile p	programs of 805	1 using K	eil soft	ware a	and Interfa	ce 8086 with perip	herals.			
CO4: Implemen	t 8051 Microcon	ntroller-ir	terfaci	ng app	plications of	on embedded traine	r board.			
		<u> </u>	IST O	F EXI	<u>PERIMEN</u>	<u>TS</u>				
					_					
CYCLE – I	: Introduction	to Assem	bly La	nguag	ge Progran	ns Using 8086 Kit	S			
(8086 RELA	ATED PROGRA	MS)								
1. Execute	the 8086 asseml	bly langu	age prog	grams	onarithme	ticoperations.	[CO	1]		
2. Execute	the 8086 assemb	bly langu	age pro	grams	s on series o	ofdataoperations.	[CO	1]		
3. i) Execut	te the 8086 asser	mbly lang	guage p	rograi	ms on facto	orial ofa number	[CO	1]		
ii) Execu	te the 8086 asse	embly lan	guage p	orogra	ums on Fibe	onacci series gener	ation			
4. Execute	the 8086 asseml	bly langu	age prog	grams	usingDeb	ugEnvironment	[CO2	2]		
5. Execute	the 8086 TASM	I Progran	nmingU	JsingS	Strings		[CO	2]		
6. Execute	the 8086 TASM	I Progran	nmingU	JsingF	Procedures		[CO	2]		
Cycle – II:]	Introduction to	Microco	ntrolle	r Pro	gramming	g and Usage of Sof	tware and Bo	ards		
(Interfacing	Programs)									
7. Interface	e and execute LC	CD function	oning u	sing8	086Microp	rocessor	[CO3	3]		
8. Interface	e and execute Pe	ripheral /	Alterna	ate Da	ata Display	using 8086 Microp	processor.[CO3	3]		
9. Interface	e and execute Da	uncing LE	Ds patt	ern us	singAT89S	52Microcontroller	[CO4	ŀ]		
10. Interface	e and execute LC	CD operat	ion usir	ngAT	89S52Micr	ocontroller	[CO	4]		
11. Interface	e and execute Se	nsor oper	ations	using	AT89S52N	licrocontroller	[CO	4]		
12. Interface	12. Interface and execute the 7 segment Display using AT89S52Microcontroller [CO 4]									

ADDITIONAL EXPERIMENTS 13. Using Debug Environment perform the addition, multiplication & divisiononno's. [CO2] 14. Using 8086 boards display the department and college name intworows. [CO3] 15. Using AT89S52 board interface a temperature sensor and display the value on LCD. [CO4] 16. Using AT89S52 interface a switches & LEDs & display the count of LEDsON. [CO4]

LINEAR IC APPLICATIONS LAB (LICA(P))

V Semester :E	CE						Scheme	: 2017			
Course Code	Course Category	Hours	/Week		Credits	Maxi	mum Marks				
EC307	PC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		0	0	2	1	50	50	100			
						End Exa	m Duration: 3	Hrs			
Course Outco CO1: Design in verify the	omes : At the end verting and non-in ir operation.	l of the c nverting	ourse th amplifi	ne stu iers, p	dent will b precision re	e able to ectifiers using opam	p 741 and				
CO2: Design ap Subtractio	plication circuits on, differentiation	using IC and inte	2741 to gration	perfo	orm mather verify their	matical operations	such as Additio	'n,			
CO3: Design an	d test waveform	generato	r circui	ts usi	ng IC741, 1	IC 555 Timer and I	C 8038				
CO4: Design se	cond order active	filters (LPF and	d HPI	F) and veri	fy their frequency r	response				
CO5: Verify the IC 723 V	IC 723 Voltage regulator.										
LIST OF EXPERIMENTS											
1. Inverting and non-inverting amplifiers (CO1) a. To design and verify the operation of amplifiers using opamp IC741, in inverting and non-inverting mode											
b. To obtain	frequency respon	nse and b	oandwic	lth of	amplifiers.						
2. Summing and a. To design addition,s	differenceamplif application circu subtraction.	iers iits using	; IC 741	to po	erform mat	hematical operatio	nssuchas	(CO2)			
b. To study	the operation of c	arcuits b	y comp	aring	the theore	tical values with pr	acticalvalues	(CO2)			
a. To design differenti	circuits using IC ation	741 to j	perform	math	nematical o	perations of Integra	ntionand	(CO2)			
b. To study	the performance of	of circuit	ts by ap	plyin	g different	input waveforms.		(2.2.1)			
4. PrecisionRec a. To study	tifiers the operation of H	Ialf-wav	e and F	ull-w	ave rectifie	er circuits construct	ed usingIC741	(CO1)			
5. Schmitt trigg a. To design b. To condu and outpu	 5. Schmitt trigger and squarewavegenerator a. To design Schmitt trigger and square wave generator circuits for givenspecifications. b. To conduct comparative study of the circuit performance for the parameters such asUTP,LTP and outputfrequency. 										
6. Triangularwavegenerator (CO3)											
a. 10 design	or its closeness to	theoretic	wave ge alvalue		tor for give	an specifications all	u vennyme				
7. Active filters	: LowPassFilter		ai vulut	•				(CO4)			
a. To design	n a Second order	Butterwo	orth LP	F for	given high	er cutofffrequency.					
8 Active filters	· HighDoggEiltor		practica	u vali	ue of upper	cut officquency.		$(\mathbf{CO}A)$			
a. To design b. To obtain	n a Second order	Butterwo	orth HP Practica	F for al valu	given lowe	er cutofffrequency. r cut offrequency.		(004)			

9. Multivibrators using IC 555Timer	(CO3)
a. To design multivibrator circuits using IC 555 Timer in monostable and astable modesfor	· · /
givenspecifications.	
b. To study the performance of the circuits and obtain width ofo/p pulse from monostable and	
frequency of o/p square wave from astable circuit.	
10. IC 8038 wave formgenerator	(CO3)
a. To design and study the performance of waveform generator circuit using IC8038.	
11. VoltageRegulator	(CO5)
a. To study the regulation performance of IC 723 in low voltage and high voltagemodes.	
12. Digital to AnalogConverter	(CO5)
a. To study the performance of R-2R ladder type digital to analogconverter.	
b. To calculate values of LSB, MSB and full scale o/p voltage theoretically and practically.	

EMBEDDED SYSTEMS AND PROGRAMMING (ESP)

VI Semester :E	CE						Scheme	e: 2017	
Course Code	Course Category	Hours	/Week		Credits	Maximum Marks			
EC308	PC	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
~		3	0	0	3	40	60	100	
Sessional Exa	am Duration : 2	Hrs				End Exa	m Duration: 3	8 Hrs	
Course Outco	omes : At the end	of the c	ourse th	ne stu	dent will b	e able to	4		
CO2: Underst	and the character	istics, at	tributes	and a	pplications	s of Embedded Sys	ientions		
CO_2 : Onderst	allu the core shu	$\frac{d}{d} \frac{d}{d} \frac{d}$	unes of	Embe	dded C in	interfacing ports of	Franciscontroll	ore	
CO4: Utilize	the architecture a	nd progr	ammin	σ mo	tel of MSP	430 for peripheral	interface	C15	
CO5: Understand the architecture and programming model of ARM processors.									
		are and j	program		, 1110 avr 01				
UNIT I									
INTRODUCIO	N: Definition of	Embedde	ed Syste	m, Er	nbedded Sy	stems Vs General C	Computing Syst	ems,	
Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes									
of Embedded Systems									
CORE OF EMBEDDED SYSTEMS: Programming languages for embedded systems, Structural units in									
embedded proce	essor, Microcontr	oller Por	t Struct	ures,	Timer Con	cepts, interrupts.			
PROGRAMM	ING IN C. Introd	luction t	o Embe	dded	C Data tvi	nes Functions Hell	o world progra	m Super	
Loop architectu	re delay function	Contro	lling th	e port	nins Read	ling switches Basi	c techniques fo	n super r reading	
and writing the	port pins. Examp	le: Coun	ting goa	ats.	. pino, recu	ang switches, Busi	e teeninques re	i reading	
			00	UN	IT IV				
MSP430: Family	y, Architecture – I	MSP430,	Addres	s Spa	ce, On Chij	Peripheralsand Re	gister sets, Add	ressing	
Modes, Program	ming GPIO Interf	aces in C	langua	ge-L	ED, Switch	es, Motor			
		.1 1	DIGG			1.0	<u>'I DI I D'</u>		
ARM Processor	ARM Design Ph	ilosophy	, KISC '	vs CR	SC, ARM / n Pineline	and 9 processor far	nily, Block Dia	gram, tion Set:	
Data Processing	Instructions. Add	essing N	age mst Iode. In	trodu	ction to Th	imb Instruction Set.	evision. mstrue	uon set.	
Text Books :	,,								
1. Frank Val	hid, <i>Embedded S</i> y	stem De	esign, 2 ¹	nd Edi	tion Wiley	Publications,2009			
2. Michael J	. Point, Embedded	d C", 1 st I	Edtion,	A Pea	arson Educ	ation, 2002.			
3. John H. D	Davies, MSP430 N	Aicrocon	ntroller	Basic	s, Elsevier	, 2008			
4. Steve Furl	per, ARM System of	on Chip A	Architec	ture,	2nd Edition	, Addsion Wesley F	Professional,200	00.	
Reference Bool	KS :								
1 Rai Kama	1 Embaddad Syste	msArch	itactura	Proc	rammina	and design and Edit	ion TMH 2004	5	
2. Arnold S I	Burger, Embedded	System 1	Design A	An Int	roduction t	o Processes, Tools d	and Techniques	, 1st	
3. Shibu K V	. Introduction to	Embedde	ed Syster	ms. Tr	ata Mc Gray	w Hill, 2009			
Web Reference	S:			, 1					
1. <u>www</u> .r	nptel.onlinecours	e.ac.in/ei	mbedde	<u>dsys</u> t	emsdesgin				
2. <u>www</u> .	nptel.onlinecours	e.ac.in/r	nicroco	ntroll	ersapplicat	ions.			

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

DIGITAL SIGNAL PROCESSING (DSP)

VI Semester :1	ECE						Sche	me:2017	
Course	Course Category	Ho	urs/Wee	ek	Credits	Maxim	um Mar	·ks	
EC309	PC	L	Т	Р	С	Continuous Internal AssessmentEnd ExamTot			
		3	0	0	3	40	60	100	
Sessional Exar	n Duration:2Hrs					End Exan	n Durati	on:3Hrs	
Course Outcon	mes: On completion of	of this su	bject, th	e stud	ent will be	able to:			
CO1: Understand Digital Signal processing and analyze the Signals and SystemsusingFourier									
AnalyzingTools.									
CO2: Understa	ind the significance of	t DFT ar	nd its fas	$\frac{\text{ter cor}}{1}$	nputation	using FFT Alge	orithms		
CO3: Design I	IR digital filters with	the give	n specifi	$\frac{\text{cation}}{\frac{1}{2}}$	s and realize	ze the Filter de	signs.		
CO4: Design F	TR digital filters with	the give	en specif	ication	is and real	ize the Filter de	esigns.		
COS: Understa	ind the need for Multi	-rate Sig	gnal Proc	essing	g and Adap	otive Signal pro	cessing.		
			TINIT	- T					
Introduction			UNII	-1					
UNIT - I Introduction: Introduction to Digital Signal Processing, conversion of continuous time signal to discrete time signal, classification of Discrete Time Signals, Testing the Causality and Stability of Linear Shift Invariant Systems, Representing the Discrete Time System as Mathematical Model usingLinear Constant Coefficient Difference Equation, Frequency Domain analysis of Discrete Time Signals and Systems using DFS and DTFT. UNIT - II Discrete Fourier Transforms: Advantages of DFT over DTFT, Relationship of DFT with DFS, DTFT, and Z-Transforms, Properties of DFT, Circular Convolution, Linear Convolution using circular convolution, Filtering of long data sequences using DFT: Over-Lap Add Method, Over-Lap Save Method, Computational complexity of direct computation of DFT, Introduction to Fast Fourier Transforms, computing N- pointDFTusingRadix-2Decimation-in-TimeandDecimation-in-FrequencyFFTAlgorithmsand Split Radix FFT algorithms, Radix-2 Inverse FFT algorithms. UNIT - III									
Need for Analo of IIR Digital Invariant metho and Digital dom	<i>IIR Digital Filters:</i> Need for Analog filter approximations, Design of Analog Butterworth and Chebyshev filters, Design of IIR Digital Filters from Analog Filters using Approximation of derivatives method, Impulse Invariant method, and Bilinear Transformation Method, Filter transformations in Analog Domains and Digital domains, Realization of IIR digital filters using direct formstructures.								
			UNIT -	IV					
FIR Digital File Characteristics Method, Winde Realization of I	<i>Iters:</i> of FIR Digital Filters owing Method and F Direct Form and linea	s, Freque Frequenc ar phase l	ncy Res y Samp FIR digi	ponse, ling m talfilte	Design of nethod, Co rs.	FIR Filters us mparison of II	ing Four IR & FII	ierSeries ? filters,	

Multirate Digital Signal Processing:

Introduction, Down Sampling, Up-sampling, Sampling Rate Conversion, Multistage decimator and interpolator, Applications of Multi Rate Signal Processing, Introduction to TMS 320C6713 DSP processor and architecture.

Text Books:

1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007

2. Discrete Time Signal Processing – A. V. Oppenheim and R.W. Schaffer, PHI, 2009

3. Fundamentals of Digital Signal Processing – Loney Ludeman, John Wiley, 2009

4. B. Venkata Ramani and M. Bhaskar, Digital Signal Processors, Architecture, Programming and Applications, TMH, 2004.

Reference Text Books:

1. Digital Signal Processing - Fundamentals and Applications - Li Tan, Elsevier, 2008

2. Fundamentals of Digital Signal Processing using MATLAB – Robert J. Schilling, Sandra L. Harris, Thomson, 2007

3. Digital Signal Processing - A Computer based approach , Sanjit K Mitra, 3nd Edition, McGrawHill,2008

Web References:

http://www.nptelvideos.in/2012/12/digital-signal-processing.html

https://nptel.ac.in/courses/108105055/34

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach.

End Exam: Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain subquestions. i.e. there will be two questions from each unit and the student should answer any onequestion.

ANTENNAS & WAVE PROPAGAION (AWP)

VI Semester :E	СЕ						Schem	e:2017		
Course Code	Course	Hours	/Week		Credits	Maximum Marks				
	Category		-							
						Continuous				
EC310	PC	L	Т	P	С	Internal	End Exam	TOTAL		
		2	0	Δ	2	Assessment	60	100		
Soccional Evan	Duration · 2 Hr	5	U	U	3	40 End Evo	00 m Duration:	100 3 Hrs		
Course Outcom	Duration . 2 III	.s f the cou	irse the	stude	nt will be g	able to		51115		
Coll: Underst	and the basic con	cents of	Antonn	as an	d Analyza	the Electric and M	agnetic field or	iontation		
from ant	ennas through m	athemati	calform	as and mlatic	u Allalyze		agricult field of	lentation		
CO2: Understa	and & Evaluate d	ifferent	Arrays	$\frac{1}{2}$ its	parameters	while designingth	at.			
CO3: AnalyzethePracticalantennadesigncharacteristicstomeettherequirementofmodernwireless										
commur	ications.	inaacoigi	ionarao							
CO4: Measure	the different Par	ameters	of anter	nnas d	& Evaluate	the designperform	ance.			
CO5: Aware of	the wave spectrum	m and re	spectiv	e ban	d antenna u	usage and also to k	now the propag	gation		
of the waves at different frequencies through different layers in the existing layered free space										
environmentstructure.										
				<u>UNI'</u>	$\Gamma - I$					
Antenna Basics	Antenna Basics									
Introduction, Ba	asic Antenna Para	meters -	- Patterr	is, Be	am Area, I	Radiation Intensity.	, Beam Efficie	ncy,		
Directivity-Gain	-Resolution, Ante	enna Ap	ertures,	Effec	ctive Heigh	it. Related Problem	IS.			
Inin Linear Will Dediction from	Small Electric	Dinala	Quart		ava Mone	mole and Helf w	vava Dinala	Current		
Distributions F	Siliali Eleculic	s Radi	ated P	ower	Radiation	n Resistance Rea	ave Dipole -	- Current		
Effective Area	and Effective H	s, Rauf eight N	aicu 1 Iatural	currei	nt distribu	tions fields and i	natterns of Th	in Linear		
Centre-fed Anter	nnas of Different	Lengths	. Illustr	ative	Problems.	Loop Antennas - I	ntroduction.Sn	nall		
Loop, Comparis	on of Far Fields of	of Small	Loop a	nd Sh	ort Dipole	, Radiation Resista	nces			
			1	UNIT	I – II	,				
Array of Point S	Sources & Linear	Arrays								
Arrays with Par	asitic Elements,	Yagi - U	da Arra	ys, -]	BSA and E	EFA, Parasitic array	, Point source,	Power		
pattern, Example	es of power patter	ms, Field	d patter	ns, Ai	rray of two	isotropic point sou	arces, Pattern			
multiplication, L	inear array of n I	sotropic	point s	ource	s of equal	amplitude and spac	ing (EFA and	BSA),		
Null directions,	Binomial array. F	Folded D	ipoles &	& thei	r character	ristics.				
				JNIT	– III					
VHF, UHF AN	D Microwave An	tennas -	Ι		. .			. 1		
Introduction Re	sonant Antenna	and Non	Reson	ant A	Intenna, Lo	ong wire antenna,	V –Antenna Ir	iverted V-		
Deflectors Derel	nc Antenna, Hel	Ical An	uenna R	cenec	tor Anteni horostorist	has - Introduction,	Plat Sneet an DeflectorTure	na Corner		
Micro-strip Ante	ennas - Introducti	on Feat	ires A	dvante	ages and I	imitations Rectand	ular Patch An	es. tennas		
	indo introducti	on, i cut		UNIT	$-\mathbf{IV}$	minutions, rectang		termus		
VHF. UHF AND	D Microwave An	tennas I	<u>,</u> Т		- 1					
Lens Antennas,	Geometry of Non	-metalli	c Dieleo	ctric I	Lenses, Log	g periodic antenna,	Introduction t	o Smart		
antennas.	-				· ·					

Antenna Measurements:

Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

Wave Propagation

UNIT –V

Introduction, Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts.

Ground Wave Propagation

Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections. *Sky Wave Propagation*Sky wave propagation (neglecting earth's magnetic field), Virtual Height, Critical Frequency, MUF, Skip distance.

Space Wave Propagation

Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super retraction, M-Curves and Duct Propagation, Tropospheric Propagation.

Text Books :

1. J.D. Kraus, Antennas and wave propagation, McGraw Hill, 2010.

2. C.A. Balanis, Antenna Theory - Analysis and Design, John Wiley, 2005

3. K.D.Prasad, Antennas and wave propagation, ST India Publications, New Delhi, 2001

Reference Books :

6. E.V.D. Glazier and H.R.L, Lamont Transmission and Propagation, The services text book of Radio, vol.5, Standard Publishers Distributors, Delhi

7. Jordan E.C. and Balmain Electromagnetic waves and Radiating Systems, PHI, Reprint 2003

8. R.E.Collins, Antennas and radio propagation, McGraw-Hill

Web References:

1.www.educypedia.org

2. <u>www.edutalks.org</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

LINEAR CONTROL SYSTEMS (LCS)

VI Semester : H	CE						S	cheme : 2017		
Course Code	Category	Ho	urs/W	eek	Credits	Maximum Marks				
EE311	РС	L	T	P	C	Continuous Internal Assessment	End Exam	Total		
Sessional Evan	n Duration •	2 Hrs	U	U	5		l Evam Du	ration: 3 Hrs		
Course Outc	$\mathbf{D}\mathbf{u}$ and \mathbf{U}	$\frac{2}{2}$ md of	the co	urse th	e student wi	ll be able to	I LAIII DU			
CO1:Understand the mathematical model and behavior of open loop and closed control system.										
CO2: Apply blo	ock diagram r	eductic	n tech	niques	and Mason's	s gain formula for	finding the	transfer		
function of a gi	function of a given control system.									
CO3: Understand standard test inputs, controllers, transient and steady state response for a 2 nd order										
control system for unit step input.										
CO4: Apply an	alytical and g	graphica	l techr	niques	to determine	the stability of co	ntrol systen	n in both time		
and frequency d	lomains.									
CO5: Understand concept of compensation, state model, controllability & observability of a systems.										
UNIT – I										
Equations and Models of Linear Systems:										
Open-loop and closed-loop systems, control system components, servomotor, tachometer, synchros,										
Transfer functions, Determination of transfer function of electrical and mechanical systems, problems.										
Block Diagram & Signal flow graph:										
Block diagram	representation	n and m	anipul	ation,	signal flow g	raphs-mason's ga	in formula t	to determine		
overall system	gain of contro	ol syster	n, proł	olems.						
				U	NIT - II					
Feedback Char	acteristics:		66		11 1					
Feedback and n	on-feedback	systems	s, effec	ets of fe	eedback, rege	enerative feedback	ζ.			
Time Response	:									
Types of input,	transient resp	onse of	f secon	d orde	r system for	step input, time-de	omain speci	fications,		
steady state erro	or and error co	onstant	s, prop	ortiona	al, derivative	and integral contr	ols.			
~ ^ ~ ~				U	III – TII					
Concept of Stal	bility:	гт ·,	•,	• ,	1	1.1		1.1		
Stability of syst	ems - Routh	Hurwitz	z criter	10n to	determine sta	ability of control s	ystems, pro	blems,		
Relative stabilit	y.									
Root Locus:										
Concept of root	locus, Procee	dure to	plot ro	ot locu	ıs, Stability a	nalysis of control	system by a	root locus		
technique, prob	lems.									
				U	NIT - IV					
Frequency Res	ponse:	1.0			C	1				
and resonant fre	veen time and equency (Wp)	for a s	ency re	sponse order s	system, gain	margin(GM) and	ons, resona phase margi	nt peak (Mp) in (PM).		
Fraguenes Plas	fa•				-		C C			
Bode plots Pol	o. ar nlots Nya	iist stak	vility c	riterior	n for control	system problems				
	u pioto, nyqt	aist stat		1101101		system, problems.				

UNIT - V

Compensation (Without Design):

The necessity of compensation, series and parallel compensation, Realization of basic lead, Lag and lead-Lag compensators.

State Variable Analysis:

Introduction, concepts of state, state variables, state vector, state space, state space representation, state model, state model of linear systems, state transition matrix, solution of state equations. Concept of Controllability and Observability.

Text Books

1. Nagrath and Gopal), -Control systems Engineeringl, New Age International Publications, 2003.

2. B.C.Kuo, -Automatic Control Systemsl, Oxford, 2003.

3. K. Ogata, -Modern control Engineeringl, Pearson, 2003.

4. Naresh - K.Sinha, -Control Systems, New Age International Publishers, 1998.

5. B.S.Manke, -Linear Control Systems, 1996.

Reference Books

1. Madan Gopal, -Control Systemsl, TMH. 2003.

2. Dorf, Bishop, -Modern Conrtol systems, Addison Wesley, 1998.

3. Shaum's out line series , -Feedback control systems, TMH, 1986.

4. R.C.Shukla, -Control Systemsl, Dhanpat Rai, 2004.

5. Ashok Kumar, -Control Systems-, TMH, 2006.

Web References:

1.https://nptel.ac.in/courses/108106098/

2. <u>https://onlinecourses.nptel.ac.in/noc18_ee41/preview</u>

Question Paper Pattern:

InternalAssessment: The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

EndExam: Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any one question

DIGITAL SIGNAL PROCESSING LAB (DSP(P))

VI Semester : EC	E						Schen	ne: 2017		
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks			
	Category									
						Continuous				
EC311	РС	L	Т	Р	С	Internal	End Exam	TOTAL		
20011		0	0	•	1	Assessment	50	100		
		0	0	2	1	50	50	100		
Course Outcom	has a At the and a	fthe ee	unce the	atud	ont will be	End Exa	am Duration:	3 Hrs		
Course Outcom	les: At the end t	n the col	ation o	f give	ent will be	able to				
CO2: Design III	R and FIR digital	filters f	or the c	iven	specificati	one using MATLAD.	B			
CO3: Use DFT-	IDFT to perform	linear a	nd circ	ular c	onvolutior	of given sequence	5. s usingMATI	AB		
CO4: Perform multirate signal processing usingMATLAB.										
CO5: Use DSK (TMS320C6713) to implement real time signal processing applications.										
		1	List of	Exp	eriments					
Note : At least 12 of the following experiments shall be conducted										
MATLAB Experiments:										
1. Linear Convolu	1. Linear Convolution of the given DT sequences.									
2. Autocorrelation	& Cross correla	tion and	verific	ation	of Auto co	orrelation Propertie	s.			
3. IIR Filter Desig	n – Butterworth									
4. IIR Filter Desig	n – Chebyshev	N (1 1								
5. FIR Filter Desig	gn – Windowing	Method		1						
6. Circular Convol	iution using DF1	- IDF1	method	4						
8 Implementation	of interpolation	and deci	imation	oper	ations					
9 Implementation	of I/D sampling	rate con	verters	oper	ations.					
Using DSP Starte	r Kit (TMS329	1000000000000000000000000000000000000	,							
10. Linear convolu	tion & Circular	Convolu	ition.							
11. N-Point DFT &	& Computation of	of non-re	al time	PSD.						
12. Design of FIR	Filters.									
Additional Exper	riments:									
13. To find freque	ncy response of	a given s	system	given	in Transfe	er Function/Differe	ntial equation			
form.(MATLAB)							_			
14. Implementatio	n of audio loopb	ack. (TN	AS329	C6713	3)					
15. Implementatio	n of adaptive alg	orithm f	or nois	e can	cellation. (TMS329C6713)				
Text Books:										
1. Digital Signal P Manolakis, Pearso	Processing, Princi on Education / PH	iples, Al II, 2007	gorithn	ns, an	d Applicat	ions: John G. Proa	kis, Dimitris (j.		
2. Discrete Time S	Signal Processing	g - A. V.	Opper	heim	and R.W.	Schaffer, PHI, 200)9			
3. Fundamentals o	f Digital Signal	Processi	ng – Lo	oney I	Ludeman, J	John Wiley, 2009				
4.Digital Signal Pr	rocessing - A Co	mputer b	based a	pproa	ch , Sanjit	K Mitra, 3nd Editi	on, McGrawH	4ill,2008		

VLSI AND EMBEDDED SYSTEMS LAB (VES(P))

VI Semester	r: ECE						Scl	neme:2017	
Course	Course	Hours	s/Week	Σ.	Credits	Max	imum Marks		
Code	Category								
						Continuous			
FC312	PC	L	Т	Р	С	Internal	End Exam	TOTAL	
EC312	10					Assessment			
		0	0	2	1	50	50	100	
						En	d Exam Durat	ion: 3 Hrs	
Course O	utcomes: At	the end	of the	course	the student	will be able to			
CO1: Design	n back-end d	esign of	combi	nationa	al and seque	ential circuits			
CO2: Analyz	ze MOSFET	based a	pplicat	ions lik	ke amplifier	s, oscillators, mem	ories		
CO3 :Perform programming on MSP430 and TIVA processors.									
CO4: Interface and control real time peripherals using MSP430 and TIVA processors.									
	LIST OFEXPERIMENTS								
1. CMOS gates {INV, NAND, AND, NOR, OR, XNOR, XOR, AOI, OAI, MUX}									
2. Transmission Gates+ TG based Applications									
3. HA, FA, HS, FS									
4. Latche	es, FFs with	RESET	S capat	oility					
5. Ampli	ifiers {CS ^b ,	CD, CG	, Diffe	rential,	Op-Amp}				
6. Integr	ator, Differe	ntiator,	Filters ^a	a					
7. DAC ³	a {R-2R Lad	der, SA	R}						
8. Memo	ory Design&-	- SRAM	I/DRAI	Μ					
9. Write	a C program	for con	figurat	ion of (GPIO ports	for MSP430 to inte	erface LEDs.		
10. Write	e a C prograi	n for co	nfigura	tion of	GPIO port	s for MSP430 to in	iterface pushbut	tons	
11. Write	e a C prograi	n for co	nfigura	tion of	GPIO port	s for MSP430 blin	king Array of L	EDs	
12. Write	e a C prograi	n for in	terfacir	ig a DC	C Motor wit	h MSP430.			
13. Write	e a C prograi	n for In	terface	with o	nboard Ten	perature Sensor			
14. Inter	facing of on	board le	ed using	g tiva p	rocessor TM	M4C123GXL			
15. Inter	facing of On	- Board	Button	LED ι	using tiva p	rocessor TM4C123	3GXL		
16. Inter	facing of RG	B LED	using t	iva pro	cessor TM	4C123GXL			
Analysis use	ed On	e or mo	ore of T	ransien	it, DC and A	AC analysis			
Platform	RE	EDHAT	Enterp	rise LI	NUX 6.5				
EDA Tools	Ca	dence V	⁷ irtuoso)					
ASIC Techn	ology gp	dk180n	n/gpdk	90nm/g	gpdk45nm				
Steps Follow	ved De Par	sign the rasitic E	schem	$atic \rightarrow on \rightarrow S$	Simulation -	a using stimuli →L → GDSII generation	ayout \rightarrow DRC-	→LVS→	

MICROWAVE ENGINEERING (MWE)

VII Semester :	ECE						Sche	eme: 2017	
Course Code	Course Category	Hours	/Week		Credits	Maxi	mum Marks		
EC401	PC	L	T	P	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exam	Duration : 2 H	rs				End	Exam Durati	on: 3 Hrs	
Course Outco	omes : At the end	of the co	ourse th	e stuc	lent will be	e able to			
COI: Understan	d the operation o	f guided	waves	and v	vaveguides				
CO2: Analyze p	assive microwave	e device	s using	scatte	ering param	neters.	11		
CO3: Study the	performance of s	pecialize	ed micro	owave	e tubes suc	h as klystron, refle	x klystron, mag	gnetron	
and Travelling V	vave tube.	of origi			has and as	lid state dervises at	mionorrorro fa	avanaiaa	
CO4: Understand the limitations of existing vacuum tubes and solid state devices at microwave frequencies									
COS: Analyze microwave components and circuits with standard microwave bench									
<u>UNIT – I</u>									
Guided Waves and Wave Guides:									
Microwave frequencies advantages and applications, Rectangular and circular wave guides. Wave equations									
rectangular and circular wave guides for TE and TM modes, Cutoff frequency and wave length, Group and									
phase velocity, Wave impedance, Guide attenuation, Rectangular and cylindrical resonators, Q of the									
resonators.	-				-		_		
	UNIT – II								
Passive Microw Introduction to Magic tee, direc Circulator and is	<i>ave Devices:</i> Scattering param tional couplers, H solators.	eters and Iybrid ri	l its pro ng. Mic	opertie crowa	es, Derivati ve propaga	ion of S- matrix for ation in ferrites, Far	E-plane, H-pl aday rotation,	ane, Gyrator	
			1	UNIT	- III				
Microwave Tub	es:								
Velocity modula klystron oscillat frequency pushi	ation, Current mo or Travelling wav ng and frequency	dulation ve tube (pulling	, Opera TWT) a and app	tion a ampli plicati	nd perforn fier. Magne ions.	nance of two-Cavit etron: Magnetron-	y klystron, Ref mode separatio	lex m,	
				UNII	$\Gamma - IV$				
<i>Microwave Soli</i> PIN diode, Vara	d State Devices: actor diode,GUNN	N diode,	IMPAT	[T, T]	RAPATT a	and BARITT Diode	es		
				UNI	T –V				
<i>Microwave Med</i> Bolometric and Impedance mea	<i>Microwave Measurements:</i> Bolometric and thermocouple methods for measurement of power, Frequency, Attenuation, VSWR, Impedance measurement and measurement of scattering parameter for 3 and 4 port devices.								
Text Books :	.		-		ard				
1. Samuel Y	Liao, Microwave	e devices	s and ci	rcuits	r, 3 ^{ra} Editio	n, PHI 2003.			
2. M. Kulka	rni, <i>Microwave</i> &	Radar	Engine	ering,	3 rd Editior	n, Umesh Publicatio	ons 2003.		

Reference Books :

- 1. O P Gandhi, Microwave Engineering and Applications, Pergamon Press 1989.
- 2. R.E. Collins, *Foundation of Microwave Engineering*, 2nd Edition, Wiley 2003.
- 3. E.C. Jordan and Balmain, *EM Fields & Waves and Radiating System*, 2nd Edition, PHI 2003.
- 4. Sushrut Das, *Microwave Engineering*, 1st Edition, Oxford University Press, 2014

Web References:

- 1.http://nptel.ac.in/courses/117106086/1
- 2.http://www.nptelvideos.in/2012/12/digital-systems-design.html
- 3.http://www.nptelvideos.in/2012/12/digital-circuits-and-systems.html
- 4.http://nptel.ac.in/courses/117105080/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains hree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

DIGITAL SYSTEM DESIGN USING VERILOG (DSDV)

VII Semest	er: ECE						Scl	heme:2017		
Course	Course	Hours	/Week		Credits	Maximum Marks				
Code	Category									
						Continuous				
EC402	DC	L	Т	Р	С	Internal	End Exam	TOTAL		
EC402	PC					Assessment				
		3	0	0	3	40	60	100		
Sessional E	xam Duratio	on: 2 Hr	5			En	d Exam Durat	tion: 3 Hrs		
Course Ou	tcomes: At th	ne end of	the cou	irse th	e student w	vill be able to				
CO1: Analyze the digital design and verification flow and importance of Verilog in that flow										
CO2:Under	CO2:Understand Verilog language constructs which will be used for design and verification.									
CO3: Simulate the combinatorial logic circuits with Verilog coding styles.										
CO4. Repre	esent the secu	ential cir	cuits w	ith Ve	erilog by us	ing suitable coding	, styles			
CO5: Model the switch-level components with the help of Verilog language constructs										
UNIT_1										
Disital Suga	an Darian A		11/241	Vari						
Digital Syst	em Design A	<i>uiomaiic</i> Flow Vo	n wun	veru Di	log					
Detailed Digital Design Flow, Verilog HDL Register Transfor Level Design With Verilog										
Register Transfer Level Design with verilog PT Level Design Elements of Verilog Component Description in Verilog Testbenches Summary										
Problems	Problems									
					UNIT-2					
Verilog Lar	nguage Conc	ents			011212					
Characteriz	ing Hardware	Langua	ges. Mo	dule	Basics. Ver	ilog Simulation M	odel. Compiler	Directives.		
System Tas	ks and Functi	ons. Sun	imarv.	Proble	ems.		ouon, compiler	,		
		,	,		UNIT-3					
Combinatio	nal Circuit L	Descriptio	on and a second s							
Module Win	res, Gate Lev	el Logic,	Hierar	chical	Structures,	Describing Expre	ssions with Ass	ign		
Statements,	Behavioral C	Combinat	ional D	escrip	otions, Com	binational Synthes	is, Summary, P	roblems		
					UNIT-4					
Sequential	Circuit Desci	ription								
Sequential I	Models, Basic	e Memor	y Comp	onen	ts, Function	al Registers, State	Machine Codin	ıg,		
Sequential S	Synthesis, Su	mmary, l	Problem	ıs						
					UNIT-5					
Detailed M	odeling									
Switch Leve	el Modeling,	Strength	Modeli	ng: S	trength valu	ies, Strength used i	in resolution, St	rength		
reduction, S	Summary, Pro	blems								
Text Books	.				1.0					
1. Zaina	labedinNava	51. 2005.	Verilog	g Digi	tal System I	Design. McGraw-F	Hill Professiona	l.		
2. Samin	r Palnitkar. 20)03. Veri	log® H	DL: A	A Guide to I	Digital Design and	Synthesis, Seco	ond		
Edit	ion $(2^{\text{nu}}\text{ed.})$. I	Prentice	Hall Pre	ess, Uj	pper Saddle	e River, NJ, USA.				
Keierence	DOOKS:			17			····	.1		
1. Steph	en D. Brown	and Zvo	nko G.	vrane	esic. 2002. I	Fundamentals of L	ngital Logic wit	n		
VER	ALUG Design	<i>i</i> (1 st ed.)	McGra	aw-Hi	II, Inc., Nev	W YORK, NY, USA.				
2. Mano	, M. Morris,	and Micl	nael D.	Cilett	1. 2018. <i>Dig</i>	gital design: with a	in introduction	to the		
Veri	log HDL. VH	DL. and	System	Verila	og.					

3. J. Bhasker. 1998. Verilog HDL Synthesis: A Practical Primer. Star Galaxy Publishing.

4. Michael D. Ciletti. 2010. *Advanced Digital Design with the Verilog HDL* (2nd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.

Web References:

1.https://semiengineering.com/entities/open-verilog-international/

2. https://www.doulos.com/knowhow/verilog_designers_guide/

3. <u>http://www.verilog.com/</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

MICROWAVE COMMUNICATIONS LAB (MWC(P))

VII Semester : H	ECE			Scheme :					
	Correct	Harry		_		Mariana Maria			
Course	Course	Hours/ week			Creatts	Maxii	Maximum Marks		
Code	Category					Continuous			
EC403	РС	L	Т	Р	С	Internal Assessment	End Exam	TOTAL	
		0	0	2	1	50	50	100	
End Exam Duration: 3 Hrs									
Course Outcomes : At the end of the course the student will be able to									
CO1: Understand the working principle and measure characteristics of various microwave active devices.									
CO2: Measure fro	equency, wavelengt	h and V	SWR :	at micr	owave freq	uencies.			
CO3: Measure the S-Matrix of various microwave passive devices.									
CO4: Demonstrate analog and digital fiber optic communication link and measure propagation loss,									
numerica	l Aperture of a fiber	· optice	able.						
					•				
			<u>_ist Of</u>	<u>Exper</u>	<u>iments</u>				
1. Reflex klys	stron oscillator char	acterist	ics						
2. Frequency,	wave length and V	SWR m	easure	ment					
3. Gunn diod	e characteristics	1	1 1						
4. Impedance	measurement of ur	iknown	load						
5. S - Matrix	of e plane tee and h	i plane	tee						
6. S - Matrix	of magic tee								
7. S – Matrix	of circulator	1							
8. S – Matrix	of directional coup	ler							
9. Radiation \mathbf{I}	pattern of norn anter		•	. 1	• 1				
IU. A) Analog	g and digital fiber o	ptic coi	nmunic	cation I	1NK	tu der of			
D)Measur	a loss	on loss,	numeri	car ape	siture and s	tudy of			
11 Radiation	g 1088 nattern of heliv ant	enna							
12 Dediction	pattern of out nord	voloid "	ofloator	ronton	n 0				
12. Kaulation	patiern of cut parat	Joioid r	enector	anten	lia				
DIGITAL SYSTEM DESIGN LAB (DSD(P))

VII Semester:	II Semester: ECE						Scl	neme:2017		
Course	Course	Hours	Week		Credits	Max	ximum Marks			
Code	Category									
						Continuous				
EC404	РС	L	Т	P	С	Internal	End Exam	TOTAL		
Letter	ĨĊ					Assessment	= -	100		
		0	0	2	1	50	50	100		
						E	nd Exam Durat	ion: 3 Hrs		
Course Outc	omes: At th	e end of	the lab	the st	udent will b	be able to				
CO1: Design co	ombinationa	l logic ci	rcuits.							
CO2: Design se	equential log	gic circui	ts.							
CO3:Design sin	mple ALU [Design.								
			LIST	COF 1	EXPERIM	ENTS				
1. Arithmet	1. Arithmetic Circuits {Adders, Subtractors, Multiplier}									
2.	2. Digital Circuits {MUX, DEMUX, DECODER,ENCODER}									
3. Code Co	nverters {BI	N2GRA	Y, GRA	AY2B	IN, BCD2E	EXCESS3, EXCES	SS32BCD}			
4. Flip-Flop	os Sync/Asyn	nc. RES	ETS {D), T, S	-R, J-K}					
5. Counters	{UP/DOW	N, Ring,	Johnso	n}						
6. FSMs {N	/lealy/Moore	e/Sequen	ce dete	ctor}						
7. Shift Reg	gister {SISO	, SIPO, l	PISO, P	PIPO}						
8. Memorie	s {ROM, RA	AM, FIF	O(Quei	1e), C	AM}					
9. Cache {I	-cache, D-ca	ache}								
10. Simple	ALU Design	n 		~	~ /~					
HDL used	Verilo	og in beh	avioral/	Data-	flow/Struct	ural modelling sty	les where applie	cable		
Platform	REDF	IAT Ent	erprise	LINU	X 6.5/Winc	lows 10 (64-bit)				
EDA Tools	Caden	ice NCS	IM (Sin	nulatio	on) Cadence	e Encounter/Xilin	x Vivado IDE (S	Synthesis		
	and In	nplemen	tation)							
FPGA Board	Xilinx	x NexysA	A7 boar	d						
ASIC Technol	ogy gpdk1	80nm/gj	odk90ni	m/gpd	lk45nm					
Steps Followed	d Verilo	og RTL (Coding	\rightarrow Sir	nulation us	ing Testbenches –	→ RTL Synthesi	$s \rightarrow$		
	- Implei	mentatio	$n \rightarrow FF$	'GA (Configuratio	on/GDSII file gene	eration			

PYTHON PROGRAMMING (PP)

V Semester :E	CE						Scheme	e: 2017		
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks			
	Category									
						Continuous				
FCFI 1	DF I	L	Т	Р	С	Internal	End Exam	TOTAL		
ECELI	I IZ-1					Assessment				
		3	0	0	3	40	60	100		
Sessional Ex	am Duration : 2	Hrs				End Exa	m Duration: 3	8 Hrs		
Course Outco	omes : At the end	of the c	ourse tl	he stu	dent will b	e able to				
CO1: Understar	nd the features and	d applica	ations o	f pyth	ion program	nming				
CO2: Write sim	ple programs usin	ng the da	ata type	s and	variables					
CO3: Write pro	grams using contr	rol struct	tures an	id ope	erators					
CO4: Utilize the	e functions in frar	ning sin	ple pro	gram	s with argu	iments				
CO5: Understar	CO5: Understand the modules and packages of python programming									
	UNIT I									
Introduction: H	History of Python	, Need o	f Pytho	n Pro	gramming,	Applications Basic	cs of Python			
Programming U	sing the REPL (S	Shell), V	ariables	s, Ass	ignment, K	Keywords, Input-Ou	itput, Indentati	on.		
	UNIT II Variables and Types - Types - Integers Strings Booleans Variables Data Types - Strings Numbers									
Variables and	Variables and Types: Types - Integers, Strings, Booleans Variables, Data Types- Strings, Numbers, Booleans, Date and Time, Lists, Tuples, Dictionaries									
Booleans, Date and Time. Lists, Tuples, Dictionaries.										
	UNIT III									
Operators: Ari	thmetic Operators	s, Comp	arison (Relat	ional) Ope	rators, Assignment	Operators, Log	gical		
Operators, Bitw	ise Operators, Me	embersh	ip Oper	ators,	Identity O	perators. 11, 11-eli1-	else, for, while	, break,		
continue, pass				TINI						
Functions De	fining Functions	Calling	a Func	tion I	Function A	raumants: Paquira	d arguments K	avword		
arguments Defe	ault Arguments V	Cannig Zariable-	length	aroun	$\frac{1}{2} \text{ and } \Delta n \alpha$	nymous Functions	The Return St	atement		
	unt ingumento, v		lengti	UN	IT-V	irymous runctions,	The Return Bu			
Modules: Defir	ing module, nam	e spacin	g. Impo	orting	modules a	nd module attribute	es from Impor	۰t		
statement. Mod	ule built-in functi	ons. Intr	oductio	on to I	Packages.		s, nom mpor			
		,								
Text Books :										
1. VamsiKu	rama ,Python Pro	grammi	ng: A N	Ioder	n Approac	h, Pearson, 1 st Edit	ion,2018			
2. Wesley J.	Chun ,Core Pyth	on Appl	ication	s Prog	gramming,	Prentice Hall, 2012	2			
Reference Bool	ks :	11								
1. Andrew J	ohansen Python -	The Ulti	imate B	eginn	er''s Guide	e! ,				
2. Mark Lut	z Learning Pytho	n, Oriell	y	0						
Web References:										
1 www 1	nptel onlinecourse	e ac in/n	vthonn	norar	nming					
2	notel onlinecours	$\frac{1}{2}$	ythono	nnlig	tionsandd	atastructuras				
2. <u>www</u> .	inpren.onninecours	<u>v.av.111/</u>	<u>y 11011a</u>	ppne	monsanuu	<u>atasti uctul 55</u>				

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION (EMI)

V Semester : E	СЕ						Scheme	e:2017	
Course Code	Course Category	Hours	Week		Credits	Maxi	mum Marks		
ECEL2	PE-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Ex	am Duration : 2	Hrs		4	1	End Exa	m Duration: 3	Hrs	
Course Outco	d the characterist	for the c	instru	ne stu	tion system	e able to	rrors in		
measurem	ents and their rec	tificatio	n.	пепта	uon system	ii and analyze the e	nois m		
CO2: Analyze d	lifferent AC Bridg	ge circui	ts used	for th	e measure	ment and also Anal	og & Digital		
Instrumer	Instruments.								
CO3: Understand the major components present in CRO and different types of Sensors and									
Transduce	ers.								
				TINIT	тт				
Magguramont	and Error Ma	acuromo	nt G	UNI	<u>1 – 1</u> izod moo	suramant system	Statia and	dynamia	
characteristics o	f Instrumentation	asurenne i system	nt, Ot Calibr	ation	errors and	their statistical and	alvsis PMMC	uynanne	
instrument, specifications of an instrument, Electronic voltmeters-AC voltmeters using rectifiers, ammeters									
and multimeters.									
				UNI	Γ–II				
AC bridges: Co	ndition for Bridge	e Balanco	e, Meas	urem	ent of Indu	ctance-Maxwell br	ridge, Measure	ment of	
capacitance-Sch Wein Bridge, L	ering bridge. Mea CR Bridge and Q	asuremei -meter.	nt of Re	esistar	nce- Kelvir	h bridge, Wheatstor	he bridge. Hay's	s bridge,	
			ا	UNIT	I – III				
Analog & Digita Wave analyzers	al Instruments: St , Harmonic distor	andard a tion ana	ind AF lyzer, S	sine &	& square w um analyze	ave signal generato er, Analog Vs Digit	ors, Function ge tal instruments	enerators,	
Principle & ope	ration of DVMs-I	amp typ	pe, Dua	l slop	e type, Suc	ccessive approxima	tion type,Digit	al	
frequency meter	•				' – IV				
CRO: Basic CR	O operation. Def	ection se	ensitivi	tv. Ca	thode ray	tube. Time base cir	cuits. Delav lir	ie, CRO	
probes, measure oscilloscope.	ements with CRO	, Lissajo	us Figu	res, A	Analog stor	age CRO, Digital s	torage CRO, S	ampling	
1				UNI	$\Gamma - V$				
Transducers: Se	nsors and Transd	ucers, C	lassifica	ation	& Selection	n of transducers, Te	emperature Ser	isors,	
Temperature tra	nsducers, Strain g	gauges, I	LVDT,	Piezo	electric tra	ansducers. Measure	ement of physic	cal	
parameters-Force, Velocity, Acceleration, Pressure, Speed, Displacement and Humidity.									
1 ext Books :	Cooman 0- A 11	wt D II-	Ifmial- 1	Mada	m Elacture	io Instrumentation	and Magazza	aant	
T. william I Techniq	ues, PHI, 2 nd Edit	ion, 199	ппск, 1 0.	viode		ne instrumentation	and Measuren	lent	
2. A.K. Saw	hney, A course in	Electric	al and	Elect	ronic Meas	urements and Instr	umentation, Dl	nanpat	
Rai & C	o., (Pvt). Ltd., Ni	neteenth	Edition	n, 201	1.				

Reference Books :

- 1. K. Lal Kishore, Electronic Measurements and Instrumentation, Pearson Education, 2012.
- 2. J.B. Gupta, A course in Electronics & Electrical Measurements and Instrumentation, S.K. Kataria and Sons, 2012.

3. D.V.S Murthy, Transducers and Instrumentation, PHI, 2nd Edition, 2013.

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

ADVANCED COMPUTER ARCHITECTURE (ACA)

V Semester:	ECE						S	Scheme:2017		
Course	Course	Hours/	Week		Credits	Ma	ximum Marks			
Code	Category									
ECEL3	PE-I	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional l	Exam Durat	tion: 2 H	[rs]	End Exam Dur	ration: 3 Hrs		
Course Ou	itcomes: At	the end	of the co	ourse	the student	will be able to				
CO1: Discus	s various co	mputer a	bstracti	ons ai	nd technolo	gies.				
CO2: Interpr	et instruction	ns which	are use	ful in	a compute	r system.				
CO3: Break-	down the de	sign of p	rocesso	r into	basic mod	ules.				
CO4: Apply	memory hie	rarchy fo	r better	ment	of compute	er operation.				
CO5: Infer th	CO5: Infer the working and need of parallel processors.									
	UNIT-1									
Computer Abstractions and Technology:										
Introduction,	Introduction, Eight Great Ideas in Computer Architecture, High-Level Language to the Language of									
Hardware, T	echnologies	for Build	ling Pro	cesso	ors and Mer	nory, Performance	, The Power Wa	all, The		
Switch from Uniprocessors to Multiprocessors, SPEC CPU Benchmark, SPEC Power Benchmark,										
Measuring Performance										
UNIT-2										
Instructions, Introduction, Unsigned Nu Computer Ha	Operations Operations Imbers, Logi ardware, Par	of the Co ical Oper allelism	e Comp omputer ations, and Inst	uter: Harc Instru tructio	lware, Open actions for Nons: Synchi	rands of the Comp Making Decisions, ronization, Transla	uter Hardware, Supporting Pro ting and Starting	Signed and cedures in g a Program		
					UNIT-3					
The Processo Introduction, Implementat Control Haza Multiply	or: Logic Desig ion Scheme, ards, Excepti	gn Conve An Over ions, Para	entions, rview o allelism	Cloc f Pipe via I	king Metho lining, Pipe nstructions,	dology, Building a elined Datapath and Instruction-Level	a Datapath, A Si d Control, Data Parallelism and	imple Hazards, l Matrix		
					UNIT-4					
UNIT-4 Exploring Memory Hierarchy: Introduction, Memory Technologies, The Basics of Caches, Measuring andImprovingCache Performance, Dependable Memory Hierarchy, Virtual Machines, Virtual Memory, Using an FSM to Control a Simple Cache, Parallelism and Memory Hierarchy, Cache Blocking and MatrixMultiply UNIT-5 Parallel Processors: Introduction, The Difficulty of Creating Parallel Processing Programs, SISD, MIMD, SIMD, SPMD,Hardware Multithreading, Multicore and Other Shared Memory Multiprocessors, Introduction to Graphics Processing Units, Clusters, Warehouse Scale Computers, and Other Message-Passing Multiprocessors, Introduction to Multiprocessor Network Topologies, Communicating to the Outside World: Cluster Networking										

Text Books:

- David A. Patterson and John L. Hennessy. *Computer Organization and Design: The Hardware Software Interface ARM Edition* (1sted.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2016.
- 2. John L. Hennessy and David A. Patterson, *Computer Architecture, Sixth Edition: A Quantitative Approach* (6thed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2017.

Reference Books:

- 1. David A. Patterson and John L. Hennessy, *Computer Organization and Design RISC-V Edition: The Hardware Software Interface* (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2017.
- Kai Hwang and Faye A. Briggs, *Computer Architecture and Parallel Processing* (1sted.). McGraw-Hill, Inc., New York, NY, USA, 1990.
- 3. Kai Hwang, *Advanced Computer Architecture: Parallelism*, *Scalability*, *Programmability* (1sted.). McGraw-Hill Higher Education, 1992.
- 4. William Stallings, *Computer Organization and Architecture: Designing for Performance* (11th ed.). Prentice Hall Press, Upper Saddle River, NJ, USA, 2009.

Web References:

1.https://nptel.ac.in/courses/106105033/

2. https://nptel.ac.in/courses/106102062/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam:

DATA COMMUNICATIONS AND NETWORKING (DCN)

VI Comercian D							C - h -		
VI Semester :B	.Tech ECE				0.114		Sche	me: 2017	
Course Code	Course Category	Hours/	Week		Credits	Maxi	mum Marks		
ECEL4	PE-II	L	Т	P	С	Continuous Internal Assessment	End Exam	TOTAL	
~		3	0	0	3	40	60	100	
Sessional Exam	Duration : 2 H	rs				End	Exam Durati	on: 3 Hrs	
Course Outco	omes : At the end	of the co	ourse th	e stuc	lent will be	e able to			
concepts o and multir	e knowledge abou of Physical Layer l plexing standards.	it the laye	mission	medi	a, transmiss	sion impairments, da	ata modems, sw	ne ritching	
CO2: Understan Data Link	d the principles of Layer and IEEE s	f Error d tandards	letection for LA	n, erro Ns.	or correction	n, Flow control, mee	lium access cor	trol in the	
CO3:Understand in Network	CO3:Understand the various types of static and dynamic routing algorithms, congestion control and avoidance in Network Layer								
CO4:Analyze the algorithms	e Process to Proce like DES and RSA	ss Delive A in sessi	ery usin on laye	g TCI r.	P, UDP in t	ransport layer and th	ne cryptography	T	
CO5:Understand	d various applicat	ion laye	r protoc	ols li	ke DNS, F	TP, HTTP,WWW,	SMTP, SNMP	•	
UNIT – I Introduction to Data Communication Networks: Network Services and Architecture. The Internet, Protocols and Standards, Network Models: Layered Tasks, OSI Reference model, TCP/IP Protocol suite, Data communication circuits, Serial and parallel data transmission, Data communication circuit arrangements. Physical Layer and Media: Periodic Analog Signals, Digital Signals, Transmission impairment, Data Rate Limits, Performance., Transmission media, Data modems, Switching and Multiplexing (FDM, TDM & WDM). UNIT – II Data Link Layer: introduction, Framing, Error Detection and Correction- Parity, LRC, CRC, Hamming code, Flow and Error Control Protocols, HDLC, Multiple Access: Aloha, Controlled Access, Channelization, IEEE Standards: Standard Ethernet, Changes in the Standard, Fast Ethernet, Gigabit Ethernet, wireless LANs.									
Network Layer	: Virtual circuit a	nd datag	gram ap	proac	h in subne	ts, Shortest path rot	uting, Flooding	5,	
Hierarchical rou control algorithm	iting, Broadcast ro ns	outing, n	nulticas	t rout	ing and dis	stant vector routing	algorithms, Co	ongestion	
	The second se	• •	<u> </u>	UNII	<u> </u>	1 1,• 1			
Transport Layer: Transport services, addressing, upward and downward multiplexing, TCP and UDP. Session Layer:- Encryption, Ciphers, Types of ciphers, DES Algorithm, Public key cryptography-RSA Algorithm.									
				UNI	Γ-V				
Application Lay	ver: DNS, DNS in	internet,	, FTP, H	ITTP,	WWW, SI	MTP, SNMP			
Text Books :						~			
1.Behrouz.A. Fo	prouzan, <i>Data cor</i>	nmunica	tions and	nd Ne	tworking,	Second edition, TN	1H, 2003.		
2. Andrew S. Tai 3. Wayne Toma	si (2005), Introdu	er <u>Netwo</u> ction to	Data Co	ommi	unications	and Networking, Po	earson Educati	on, India.	

1. William Stallings, Data and Computer Communications, 3rd edition, Pearson, 2007.

Web References:

1.https://nptel.ac.in/courses/106105081/

2. https://nptel.ac.in/downloads/106105080/

3. https://nptel.ac.in/courses/106106091/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 40 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

ANALOG VLSI (AVLSI)

VI Semest	er: ECE							Scheme:2017				
Course	Course	Hours/	Week		Credits	Μ	aximum Mark	S				
Code	Category			1			1	ſ				
ECEL5	PE-II	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL				
		3	0	0	3	40	60	100				
Sessiona	l Exam Dura	tion: 2 H	lrs				End Exam D	uration: 3 Hrs				
Course (Dutcomes: At	the end	of the c	ourse	the student	will be able to						
CO1: Unde	erstand MOS of	levice Ph	ysics w	r.t to	Analog de	sign.						
CO2: Eval	uate the differ	ences bet	ween s	ingle-	state ampli	fiers and differenti	al amplifiers.	1:0				
CO3: Anal	yze current m	Irrors wit	h biasii	ng tec	hniques as	well as frequency	response of amp	olifiers.				
CO4: Expl	oring operatio	nal ampl	iffers w	ith po	ossible appli	cations.	l conscitor circu	ita				
COS.Study	UNIT-1											
Introductio	UNIT-1 Introduction to Analog Design and Basic MOS Device Physics											
General Co	General Considerations, MOS I/V Characteristics, Second-Order Effects, MOS Device Models, FinFETs,											
Behavior o	f a MOS Devi	ice as a C	apacito	or.				<i>i i i i i i i i i i</i>				
	UNIT-2											
Single-Stag	Single-Stage Amplifiers:											
Application	ns, General Co	onsiderati	ions, Co	omme	on-Source S	tage, Source Follo	wer, Common-	Gate Stage,				
Cascode St	age, Choice o	f Device	Models	s. Dif	ferential A	mplifiers: Single-l	Ended and Diffe	erential				
Operation,	Basic Differen	ntial Pair	, Comn	non-N	Iode Respo	nse, Differential P	air with MOS L	oads, Gilbert				
					UNIT-3							
Current M	irrors and Bid	sing Tec	chnique	es:								
Basic Curr	ent Mirrors, C	ascode C	Consid	Mirro	rs, Active (Current Mirrors, Bi	asing Techniqu	es. Frequency				
Gate Stage	Cascode Star	. Oelleral	consid rential I	Dair (Jiis,Comine Fain-Bandu	vidth Trade-Offs		s, common-				
	, cascode Stag	se, Diffe		<u>un, (</u>	UNIT-4							
Operation	al Amplifiers:											
General Co	onsideration, C	One-Stage	e Op Ai	mps, [Two-Stage	Op Amps, Gain Bo	oosting, Compar	rison, Output				
Swing Calo	culations, Con	nmon-Mo	ode Fee	dback	, Input Ran	ge Limitations, Sl	ew Rate, High-S	Slew-Rate Op				
Amps, Pow	ver Supply Re	jection, N	Noise in	Op A	Amps							
					UNIT-5							
Stability ar	nd Frequency	Compen	sation:									
General Considerations, Multipole Systems, Phase Margin, Basic Frequency Compensation, Compensation of Two-Stage Op Amps, Slewing in Two-Stage Op Amps, Other Compensation Techniques, Nyquist's Stability Criterion. Switched-Capacitor Circuits :General Considerations, Sampling Switches,Switched-CapacitorAmplifiers,Switched-CapacitorIntegrator,Switched-CapacitorCommon- Mode Feedback												
Text Book	Text Books:											
1. Behz Nev	 Behzad Razavi. 2016. Design of Analog CMOS Integrated Circuits (2nd ed.). McGraw-Hill, Inc., New York, NY, USA. 											

Reference Books:

- 1. Paul R. Gray. 2009. Analysis and Design of Analog Integrated Circuits (5thed.). Wiley Publishing.
- T. C.Carusone, Martin D Johns, K. W. Martin. 2012. Analog Integrated Circuit Design(2nd ed.). John Wiley & Sons

Web References:

- 1.https://nptel.ac.in/syllabus/117106030/
- 2.https://nptel.ac.in/courses/117101106/
- 3.https://nptel.ac.in/syllabus/108106105/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam:

INTERNET OF THINGS (IoT)

VI Semester : 1	/I Semester : ECE						Sche	me: 2017	
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks		
	Category								
						Continuous			
ECEL6	PE-II	L	Т	Р	С	Internal	End Exam	TOTAL	
			0	0	2	Assessment	(0)	100	
Coggional En	om Dunction + 2	<u> </u>	U	U	3	40 End Eng	60 Durations (100	
Sessional Ex	am Duration : 2	Hrs of the or	www.a.th	o otra	lont will be	Eng Exa	m Duration:	Hrs	
Course Outco	d the basic know	ledge of	Interne	e stuc	vings and i	ts design			
CO2: Understar	d the purpose of	sensors	and Act	uator	ings and r	is design			
CO3: Analyze V	Various IoT Proto	cols		uutor	5 111 101				
CO4: Design Io	T Projects Using	Arduino							
CO5: Understar	d Raspberry-Pi F	rocessor	and Ra	aspbia	n Operatin	g Systems			
<u>UNIT – I</u>									
Introduction to	o IoT:								
Definition and (There exteristics of	LOT Dhy	voicel D	acian	and Logic	al Davian JoT Ena	bling Tashnal	and InT	
Levels and Don	lovmont Tomplat	IOT, PHy		esign 1		ai Desigii, 101 Ella	ioning recimolo	Jgles, IOI	
Levels and Dep	ioyment rempiat	es, 101 v	S W12W	1					
UNIT – II									
Sensing and Actuation:									
Definition of Se	nsor Sensor feat	ures Res		Clas	ses Differ	ent types of sensor	s Actuator Di	fferent	
types of Actuato	ors purpose of Se	encors an	d Actus	i, Cias ators i	n IoT	ent types of sensor	s, Actuator, D	merent	
types of Actual	ns, purpose of se	115015 di	u Actu	10151	11 10 1				
				UNIT	' – III				
Wireless Techr	ologies and Dat	a Trans	mission	for l	oT:				
Wi-Max, Wi-Fi	(802.11). Blueto	oth/Blue	tooth si	nart.Z	Zigbee/Zigl	oee smart. Cellular.	NFC.Serial		
Transmission, R	S-232, RS-485, 1	2C Inter	-Integra	ated C	Circuit, Eth	ernet, CAN bus, U	SB, Firewall, S	Serial	
ATA, Parallel T	ransmission		0		,	, , ,	, ,		
	• • • • • • • •	· 151		UNII	$\frac{1}{1} - \mathbf{IV}$				
Building IoT w	ith Arduino:Ard	luino IDI	E, Prog	ramm	ing of Ard	uino, Interfacing L	ED, switch,		
potentiometer, S	Sensors, LCD, Bl	uetooth,	W1-F1,	,GPS	, RFID wit	h Arduino			
				UNI	Г – V				
Raspberry Pi :									
Linux basica L	inux Filo system	Novico	ting the		avetom T	avt Editors Accord	ing Files Dom	missions	
Drocossos Linu	nux rite system	, Inaviga Intorfoco		borry	Di Drococ	ext Editors, Access	Ve Arduine	Operating	
system benefits	Raspherry Pi Se	t up Cor	, Nasp Sigurat	ion	ri rioces	sol, Kaspbelly FI	vs Aldullo,	Operating	
system benefits,	Raspoerry 11 Se	i up, coi	inguiai	1011,					
Text Books :									
1. Arsheep	Bahga , Vijay <mark>M</mark> a	, disetti	Internet	of Th	ings: A \overline{H}	ands-On Approach	Paperback, 201	5	
2. Rajkuma	ar Bhuyya ,Intern	et of Thi	ngs: Pa	rincip	les and Par	adigms,2016.			
3. Adeel Ja	ved, Building A	rduino P	rojects	for th	e Internet o	of Things, Apress, 20)16.		
4. Wolfram	n Donat, Learn Ra	aspberry	-Pi with	Pytho	on,Apress,2	2016.			
								83	

Reference Books :

- 1. Charles Bell, Beginning Sensor Networks with Arduino and Raspberry-Pi, Apress, 2016
- 2. AndrianMcEwen, Hakim Casimally, Designing of Internet of Things, John Wiley, 2014
- 3. Warren Gay, Masteringthe Raspberry-Pi, Apress, 2016

Web References:

- 1. https://nptel.ac.in/courses/106105166/
- 2. <u>https://onlinecourses.nptel.ac.in/noc17_cs22/course</u>
- 3. https://nptel.ac.in/courses/108108098/4
- 4. <u>https://onlinecourses.nptel.ac.in/noc19_ee28</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains hree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

CODING TECHNIQUES (CTH)

VII Semester :	ECE						Scheme	e:2017		
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks			
ECEL7	PE-III	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Exa	m Duration : 2	Hrs				End Exa	m Duration: 3	3 Hrs		
Course Outco	mes : At the end	l of the c	ourse th	ne stu	dent will b	e able to				
COI: Understand	d mathematical c	oncepts	related	to co	ding ·					
CO2: Analyze so	ource-coding and	channel	-coding	g tech	niques.	avalia andra				
CO3: Analyze er	icoding and deco	oding of	the line	ar blo	OCK COdes,	des				
CO4: Familiar W	CO5: Explain the concepts involved in formulation and computation Codes Binary BCH Codes									
COS. Explain the	COS: Explain the concepts involved in formulation and computation Codes Binary BCH Codes.									
	LINIT – I									
Source Coding:				UII						
Mathematical mo	odels for informa	ation. A	logarith	mic r	neasure of	information. Avera	age and Mutual	l		
information and	Entropy, Inform	ation me	asures 1	for co	ntinuous ra	andom variable. Co	oding for discre	ete		
sources: Coding	for discrete men	nory less	source	s disc	rete station	ary source, Shanno	on-Fano coding	5,		
Huffman code, Huffman code applied for pair of symbols, efficiency calculations, Lempel-Ziv codes.										
UNIT – II										
Channel Capaci	ty And Coding:									
Channel models,	channel capacit	y, achiev	ving cha	innel	capacity w	ith orthogonal sign	als, channel re	liability		
functions, Rando	om selection of c	odes, Co	mmuni	catioi	n system de	esign based on the	cutoff rate.			
Lincan Plack Co	dag And Cualia	Codea		UNII	- 111					
The generator ma codes, Nonbinary	atrix and parity of block codes an	check ma d concat	atrix, Ogenated	ptimu block	m soft and codes, Inte	hard decision deco erleaving of coded	oding linear blo data for channe	ock els with		
			I	UNIT	- IV					
<i>Convolutinal Co</i> Convolutional er Decoding convol decoding.	odes: ncoder: code tree lutional codes: N	,state tra Iaximum	nsition 1 likelih	diagr 100d c	am, trellis lecoding, V	diagram Vozencrafts sequer	ntial decoding,	fans		
				UNI	$\Gamma - V$					
BCH Codes: Idempotent and I Alternate, Goppa	Mattson – Solom a and Generalize	ion Poly d BCH C	nomials Codes, S	s, Ree Spectr	d-Solomor al properti	1 Codes, Justin Coo es.	les, MDS Code	es,		
Text Books :	1	· · ·								
1.John G.Proa	akis, Digital Cor	nmunica	$\frac{1000}{1000}$	rd edi	tion, McG	raw Hill, 1995.				
2. S. Hayki	in, Digital Comn	nunicatio	ons, Joh	n Wil	ley & Sons	, 2009.				
3. Error Co	ontrol Coding- Fi	ındamen	tals and	l App	lications –	Shu Lin, Daniel J.C	Costello,Jr, Pre	ntice all.		

Reference Books :

- 1. Shu Lin, Daniel J. Costello, Jr., -Error Control Coding, Pearson Publications, Second Edition, 2011.
- 2. Digital Communications-Fundamental and Application Bernard Sklar, PE.2010, TMH
- 3. K. Sam Shanmugam, -Digital and Analog Communication Systemsl, Wisely Publications, 2009

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

EMBEDDED RTOS (ERTOS)

VII Semester :	ECE						Scheme	e: 2017	
Course Code	Course Category	Hours	/Week		Credits	Maxi	mum Marks		
ECEL8	PE-III	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Ex	am Duration : 2	Hrs			1	End Exa	m Duration: 3	8 Hrs	
Course Outco	omes: At the end	of the c	ourse fl	he stu	dent will b	e able to			
CO2: Understar	d the Real Time	Systems	and an	nlicat	ions	iai components			
CO3: Understar	d the debugging	tools for	suitabl	e RT	OS Enviror	ments			
CO4: Analyse t	he Inter process c	ommuni	cation a	algori	thms to avo	oid deadlocks			
CO5: Utilize the	e UNIX and Linu	x file co	mmand	s for s	system call	and shell program	ming		
UNIT I									
Hardware and	Software: Evolu	tion of C	OS, Pro	cesso	r selection	for an embedded sy	ystem,Software	e	
languages for er	nbedded systems	, Board i	nemory	y: RO	M – RAM	– cache – auxiliar	y memory –me	emory	
management –	memory performa	ance.							
UNIT II Deal Time Systems Hand Deal time systems. Soft Deal time systems. Time based application. Event									
Real Time Systems: Hard Real-time systems, Soft Real-time systems. Time based application, Event									
I riggered applie	cations, Elevator,	Digital	Camera	i, Mot	olle Phone,	A set of Robots			
RTOS Functio	ning: Differences	betwee	n Tradi	tional	OS and R'	TOS Architecture	of OS (Monoli	thic	
Microkernel, La	vered, Exo-kerne	and Hv	/brid ke	ernel s	structures).	RTOS Kernel & Pi	rocess Manage	ment.	
Create, Ready, I	Run, Interrupt, W	ait and T	Termina	te Sta	ates. Inter ta	ask Communication	n & Synchroni	zation,	
Context Switchi	ing.								
	· · · ·		1 D	UN					
Inter process C	Communication:	Deadloc	ks, Prev	ventio	on, Avoidai	nce, Classical Unip	rocessor Schee	luling	
Pipes and Event	Flags	EDF. IP	C throu	ign Se	emaphores,	Mutex, Mandoxes	s, Message Que	eues or	
Tipes and Even	1 1465.			UN	IT-V				
UNIX Operation	ng System: UNIX	K Kernel	, File sy	ystem	, Concepts	of, Process, Concu	rrent Executio	n &	
Interrupts. Proce	ess Management,	forks &	executi	ion. P	rogrammin	g with system calls	s, Process Sche	eduling,	
Shell programm	ing and filters, L	inux fun	ctions.						
Trank Disk									
1 Poi Korre	1 Empaddad Cru	4 a ma a - A m		Da Da		a and design and I		2006	
1. Raj Kamal, Embedded Systems Architecture, Programming and design, 2nd Edition, 1MH, 2006.									
2. Flank Valid, Tony Givargis, -Endedded System Design Whey- India 5 Edition, 2009.									
Reference Roo	ks :	ns jur E	noeuue	u sys		, 2011			
1. Silbersch	atz. Galvin and G	agneOn	erating	Syste	m Concept.	s. 8th Edition ©200)9		
2. Dr. Craig	HollabaughEmbe	edded Li	nux: Ho	ardwa	<i>ire</i> , Softwa	re and Interfacing	Dr. Craig Holla	abaugh	
3. Jean.J.La	brosse , <i>MicroC/C</i>	<i>S-II</i> , , 2 ¹	nd Editic	on,Els	evier, 2012	2, CMP Books.	<u> </u>		

Web References:

- 1.www.nptel.onlinecourse.ac.in/embeddedsystemsdesgin.
- 2. <u>www.nptel.onlinecourse.ac.in/realtimeoperatingsystems</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

DIGITAL IMAGE PROCESSING (DIP)

VII Semester : ECI	£						Scheme	e: 2017
Course Code	Course Category	Hours	s/Week		Credits	Maxi	mum Marks	
ECEL9	PE-III	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
Sessional Exam I	Duration : 2 Hrs	·				End Exa	m Duration: 3	B Hrs
Course Outcomes	s: At the end of t	he cours	e the st	udent	will be abl	e to		
CO1: Understand the images.	concepts of imag	e, image	process	sing sy	vstem and v	arious operations th	at can perform	on digital
CO2: Analyze image	es in the spatial a	nd frequ	ency do	mains	8			
CO3: Apply various	image restoration	techniqu	ues on in	mages				
CO4: Analyze vario	us image compres	sion and	segmer	ntation	techniques	5		
CO5: Apply the vari	ous mathematica	l transfo	rms and	l coloi	r image co	ncepts on digital in	nages	
			U	INIT -	<u>- I</u>			
Definition, Application Human Visual System Resolution, Image Int	ons Of Digital Ima n, Simple Image I terpolation, Some	age Proce Formation Basic Re	essing, I n Mode elationsl	Fundaı l, Imaş hips B	mental Step ge Samplin etween Pix	os, Components Of I g And Quantization els, Linear And Nor	Image Processin , Spatial And G n Linear Operat	ng System, ray Level ions.
			U	NIT -	-II			
Image Enhancemen	t:							
Spatial Domain: Ba Arithmetic Operation Spatial Filters, Comb Frequency Domain Steps In Filtering In Filters, Homomorphic	asic Gray Level is, Image Subtract ining Spatial Enha Introduction To Frequency Dom Filtering.	Transfor ion, Ima ancemen Fourier T nain, Sm	rmations ge Aver t Metho Fransfor oothing	s, His aging, ds. ms, B Frequ	togram Pro , Basic Of S asics Of Fil uency Don	ocessing, Enhancen Spatial Filtering, Sr Itering In Frequency nain Filters, Sharpe	nent Using Log noothing And S 7 Domain, Fund ening Frequency	gical And harpening amental y Domain
		0 1	<u> </u>	NII -	-111			
Image Restoration: Noise Only-Spatial F Derivations, Algebrai Squares Restoration,	Model Of Image I iltering, Periodic I ic Approach To R	Degradat Noise Re estoratio	duction/Res duction n, Inver	By Fi se Filt	on Model, N requency D rering, Leas	Noise Models, Resto omain Filtering, Lii It Mean Square Filte	near PositionInvers, Constrained	ariant Least
			Ul	NIT –	· IV			
Image Compression Models, Error Free C Compression: Lossy	n: File format (b Compression: VL Predictive Coding n: Fundamentals,	omp, tiff C, Arith , Block 7 Detectio	, pcx, g metic C Fransfor	gif, jp Coding mcodi	eg.), Com , Bit plane ing, nuities: Po	pression fundamen Coding, Lossless int, Line, Edge det	tals, Image Co Predictive Codi ection, Edge Li	ompression ing, Lossy nking and
Boundary Detection:	Local Processing,	, Global I	Processi	ing via	Hough Tr	ansform.		
Image Trees Press	atao du stisse O	ad T-	Dim	INIT -		union Trees of (D)	DT) D	of DET
Properties of Discrete	e Cosine and Sine	transform	Dimens ns, Prop	perties	of Slant, K	L transforms.	F1), Properties	of DF1,
Color Image Process RGB to HIS, HIS to I Processing.	sing: Color funda RGB manipulating	mentals, g HIS co	Color n mponen	nodels t imag	: RGB, CM ges, Pseudo	IY and CMYK, HS color Image Proces	I, Converting co ssing, Full Color	olors from r Image
			_					

Text Books :

1. Rafael Gonzalez & Richard Woods, *Digital Image Processing*, 3rd Edition. Pearson publications, 2012. 2. Anil K. Jain, *Fundamental of Digital Image Processing*, PHI publication, 2013.

Reference Books :

1. Pratt, Digital Image Processing, 2nd Edition, Wiley Publication, 1991.

2. S. Jayaraman, S. Esakkirajan & T. Veera Kumar, Digital Image Processing, Mc. Graw Hill, 2011.

3. S. Sridhar, *Digital Image Processing*, Oxford University Press, 2011.

Web References:

1.<u>https://nptel.ac.in/courses/117105079/</u>

2. https://nptel.ac.in/courses/117104069/

3. https://nptel.ac.in/courses/106105032/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach.

End Exam:

FIBER OPTIC COMMUNICATIONS (FOC)

VII - Semester	: ECE						Scheme	e: 2017		
Course Code	Course Category	Hours	/Week		Credits	Maxi	mum Marks			
ECEL10	PE-IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Ex	am Duration : 2	Hrs	.1		1 4 111	End Exa	m Duration: 3	5 Hrs		
Course Outc	omes : At the end	of the c	ourse th	<u>ne stu</u>	dent will b	e able to		1		
optical	laws and definition	ons.	iccom	nunic		mandtheirworking	principlesbased	on		
CO2: Evalua	te the attenuation	and disp	persion	in opt	icalfibers.					
CO3: Unders perforr	CO3: Understand the Structures, working principles of optical sources and detectors and analyze the performance of analog and digital receivers.									
CO4: Analyz analysi	the fiber optic of the fiber optic optic of the fiber optic	communi	ication	syster	n through	power budget and r	risetimebudget			
CO5: Unders	stand basics of ks likeSONET/SI	source DH	to fi	ber	power lau	nching, optical	amplifiers and	optical		
	<u>UNIT – I</u>									
Overview of Op Introduction and Applications of Optical Fiber V Nature of light- and configurati materials and fall	d Historical backs optical fibers. <i>Vaveguides:</i> -Spherical and pl ons, Mode theory brication.	ations: ground, I anar wa y of circ	Element ve front cular w	ts of o ts, Ba avegu	optical fiber nsic optical nides, Sing	r communication, A laws and definition le and multimode	Advantages & ons, Optical fil step index fib	ber modes bers, Fiber		
				UNI	II – I					
Signal Degrada Attenuation-Ab Signal dispersion Intra modal disp Broadening	<i>ution in Optical F</i> sorption, Scatterin <i>on in optical wave</i> persion (Material	<i>ibers:</i> ng and b eguides: dispersio	ending	losses wave	s in optical guide dispo	fibers, Core and cl ersion), Intermodal	adding losses. dispersion, Pu	lse		
				UNII	I – III					
<i>Optical Sources</i> LED's –Structur and operation o detectors.	<i>Optical Sources and Photo Detectors:</i> LED's –Structures, Light source materials, Internal quantum efficiency, Modulation capability, principles and operation of Febry perot and DFB laser diodes, Physical principles of PIN and APD, Noise in photo detectors.									
	UNIT – IV									
<i>Optical Receive</i> Fundamental re links, Link pow <i>Power Launchi</i> Source-to-fiber	er and Digital Tra ceiver operation, ver budget, Rise-ti ing in Optical fib power launching	<i>insmissi</i> Digital r me budg e rs: basics, f	on Syst eceiver get, Wav ïber joi	<i>ems</i> : perfo veleng nts an	ormance ca gth Divisio nd splices, t	lculation, Analog r on Multiplexing (W	eceivers, Point DM)	-to-point		

UNIT – V

Optical Amplifiers:

Basic operation of Semiconductor optical amplifiers, Amplifier gain, Amplification mechanism of Erbiumdoped fiber amplifiers, EDFA architecture,

Optical Networks:

Basic concepts of SONET/SDH, Transmission formats and speeds, SONET/SDH Rings, SONET/SDH Networks.

Text Books :

1. Gerd Keiser, Optical Fiber Communications, 3rd Edition, Mc Graw Hill,2004.

2. John M. Senior, Optical Fiber Communications Principles and Practice, 2nd Edition, Pearson, 2009.

Reference Books :

1. D.C. Agarwal, Fiber Optic Communication, 2nd Edition, S.Chand& Co, 2004.

2. Djafar K. Mynbaev, Fiber Optic Communications Technology, Pearson, 2001.

3. John Gowar, Optical Communication Systems, 2nd Edition, PHI, 2004.

Web References:

1.https://onlinecourses.nptel.ac.in/noc18_ee28/

2.<u>https://nptel.ac.in/courses/108104113/</u>

3. https://nptel.ac.in/downloads/117101054/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

ADVANCED DIGITAL SIGNAL PROCESSING (ADSP)

VII Semester :	ECE						Scheme	e: 2017	
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks		
	Category								
						Continuous			
ECEL11	PE-IV	L	Т	P	С	Internal	End Exam	TOTAL	
LOLLII			0			Assessment	(0)	100	
Sector of Fr	Duration . 2	<u> </u>	U	U	3	40 End Eng	60 Durations 2		
Sessional Exa	am Duration : 2	Hrs of the o	011000 41	a a ata	dont will h		m Duration:) Hrs	
Course Outco	D & IID Filters &	Comput	to DET	using	EFT algor	e able to			
CO2:Understand	d Multirate Signa	1 Proces	$\frac{1}{\sin \sigma k}$	its Sti	netures				
CO3:Understand	the Linear Opti	mum Fil	ter Stru	cture	$\frac{1}{8}$ & their A	pplications			
CO4: Analyze th	e Performance of	² Parame	tric & I	Non F	arametric	Power Spectral Est	imations		
		1 urunie		UNI	T - I	rower opeental Est			
Filter Design: De	esign of FIR filters	- FIR D	ifferenti	ators,	FIR Hilbert	Transformer. Design	n of Elleptic IIR	filters	
FFTAlgorithms:	Radix-3, Radix-4	and com	posite R	adix I	DIT and DIF	algorithms, applicat	tions of DFT to 1	real time	
DSP									
				UNI	$\Gamma - II$				
Multirate Digita	al Signal Process	ing: Intr	oductio	on, De	ecimation b	by a Factor D, Inter	polation bya Fa	actor I,	
Sampling Rate Conversion by a Rational Factor I/D, Filter Design and Implementation for sampling rate									
Conversion Multistage Implementation of Sampling Rate Conversion, Applications of Multirate Signal									
Processing, and Sampling Rate Conversion of Band pass Signals.									
UNIT - III Linear Bradiction And Ontinum Linear Eiltern Inneustices Democentation of a Stationary Dandam									
Linear Prealche	on Ana Optimum	linger nr	Futers	: Inno	vations Re	epresentation of a S	a Droportion of	lom	
prediction-Frror	Filter AR I attic	e and A	RMA I	1, 501 attice	-I adder Fi	ilters	s, Properties of	Inteal	
prediction-Error	Thier, AR Lattic				-IV	inters.			
Power Spectral	<i>Estimation</i> : Esti	mation o	of Spect	ra fro	m Finite D	uration Observatio	ns of a signal.	the	
Periodogram. U	se DFT in power	Spectral	Estima	ation.	Bartlett. W	elch and Blackma	n. Tukev metho	ods.	
Comparison of p	performance of N	on-Para	metric I	Power	· Spectrum	Estimation Metho	ds	··· ,	
	-			UNI	$\Gamma - V$				
Parametric Met	hod OfPower Sp	ectrum .	Estima	tion:	Parametric	Methods for powe	er spectrum est	imation,	
Relationship bet	ween Auto-Corre	elation a	nd Moo	lel Pa	rameters, A	AR (Auto-Regressi	ve) Process and	d Linear	
Prediction, Yule	e-Walker, Burg an	nd Unco	nstraine	ed Lea	ast Squares	Methods, Sequent	tial Estimation,	Moving	
Average(MA) as	nd ARMA Mode	ls Minin	num Va	riance	e Method.				
Text Books :									
1. Proakis JG and	d Manolakis DG	Digital S	Signal F	Proces	sing Princi	ples, Algorithms a	nd Application	,PHI.	
2. Openheim AV	& Schafer RW,	Discrete	Time S	Signal	Processing	gPHI.			
Reference Simi	ilation Text Boo		•	• .1	1 •				
1.Samuel D Stea	arns, -Digital Sigi	nal Proc	essing v	with e	xamples in	Matlab. – CRC Pr	ess.		
2. ES GopiAl	gorithm collection	ns for D	igital Si	gnal	Processing	Applications using	g Matlab, – Spri	inger.	
3. Taan S.Elali,	-Discrete System	s and Di	igital Si	gnal l	Processing	with Matlab, - CR	C Press,2005.		
Web Reference	s:								
1. <u>www.educ</u>	cypedia.org								
2. <u>www.edu</u>	talks.org								

Question Paper Pattern: Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

LOW POWER VLSI (LPV)

VII Semest	er: ECE							Scheme:2017		
Course	Course	Hours/Week			Credits	Maximum Marks				
Code	Category									
ECEL12	PE-IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional	Exam Dura	tion: 2 H	lrs				End Exam Du	ration: 3 Hrs		
Course O	utcomes: At	the end	of the c	ourse	the student	will be able to				
CO1: Comp	rehend differ	ent sourc	ces of p	ower	dissipation.					
CO2: Realize switched capacitance and arrive at ways to minimize.										
CO3: Analy	ze and minin	nize dyna	amic an	d stati	ic power co	nsumption in VLS	SI circuits.			
CO4: Outlin	e the workin	g princip	oles of a	diaba	tic logic.					
CO5: Establ	ish ways to r	ninimize	power	in sof	tware desig	gn.				
	.				UNIT-1					
Sources of I	Power Dissip	ation:	G 1	· •	о D'		D D''	· • •		
Short-Circui	it Power Dis	sipation,	Switch	ning F	ower Diss	ipation, Glitching	Power Dissipa	tion, Leakage		
Voltage Sea	pation, Powe	P ower:	s- 10f 1	ow pe	ower circuit	schargeable and	i disposable dat	teries, Supply		
Device Feat	ung jor Low	ing Arcl	hitectur	al_Lev	vel Approa	ohes Voltage Scal	ing Using High	Level		
Transformat	ions Multile	vel Volt	age Sca	ling (Thallenges	in MVS Dynamic	: Voltage and Fr	equency		
Scaling, Ad	aptive Voltag	vel Volu	ge Sea	ireshc	old Logic C	ircuits	voltage and 11	equency		
		,e seam	5, 5464		UNIT-2	in curres				
Switched Capacitance Minimization:										
System-Lev	el Approach:	Hardwa	re–Soft	ware	Codesign, 7	Fransmeta's Cruso	e Processor, Bu	s Encoding,		
Clock Gatin	g, Gated-Clo	ck FSMs	, FSM	State	Encoding, l	FSM Partitioning,	Operand Isolation	on,		
Precomputat	tion, Glitchin	g Power	Minim	izatio	n, Logic St	yles for Low Powe	er: Static CMOS	Logic,		
Dynamic CN	MOS Logic, l	PTL; Soi	ne Rela	ted T	echniques f	or Dynamic Powe	r Reduction			
					UNIT-3					
VTCMOS A transistor, S	Approach, Tra tate Retention	ansistor S n Strateg	Stacking y, Dyna	g, MT umic V	CMOS App V _{th} Scaling	proach, Power Gat	ing, Isolation St	rategy, Sleep		
					UNIT-4					
Adiabatic C Charging Ci	harging, Adia	abatic Aı	nplifica	tion,	Adiabatic L	Logic Gates, Pulse	d Power Supply	, Stepwise		
					UNIT-5					
Introduction	, Machine-In	depende	nt Softv	vare (Optimizatio	ns, Combining Lo	op Optimization	s with		
DVFS:Loop	Unrolling, L	.oop Tili	ng, Loo	p Per	mutation, S	trength Reduction	, Loop Fusion, I	Loop Peeling,		
Loop Un-sw	vitching									
Text Books	•									
1. Ajit P	al, Low-Pow	er VLSI (Circuits	and S	<i>Systems</i> , Sp	ringer,2015				
2. J. Rab	aey, Low Po	wer Desi	ign Esse	entials	s, 1 st Edition	n, Springer, 2010				
Reference H	Books:									
1. Kaush Publ	ik Roy and S ications, 200	Sharat Pr 0	asad, <i>L</i> a	ow-Pa	ower CMOS	S VLSI Circuit Des	ign, Wiley Inter	-science		
2. Micha Meth	ael Keating, I aodology Mar	David Fly nual for 1	ynn, Ro System-	bert A On-C	aitken, Alar hip Design,	n Gibbons, Kaijian Springer,2007	Shi,Low Power			

3. Christian Piguet, *Low Power CMOS Circuits Technology, Logic Design and CAD Tools*, 1st Indian Reprint, CRC Press, 2010

Web References:

- 1.https://nptel.ac.in/courses/106105034/
- 2.<u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/</u>
- 3.www.ece.ucdavis.edu/~vojin/CLASSES/EEC280/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

CELLULAR AND MOBILE COMMUNICATIONS (CMC)

VIII Semester :	ECE						Schem	e: 2017	
Course Code	Course Category	Hours	/Week		Credits	Maximum Marks			
ECEL13 PE-V		L	L T P		С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exam	Duration : 2 Hr	S			End Exa	am Duration: 3 H	rs		
Course Outco	mes : At the end	of the co	ourse th	e stuc	lent will be	e able to			
CO1: Understand the fundamental concepts of cellular& mobile communication and its Radiopropagation									
CO2: Understa	nd the cell site an	d mobil	eantenr	$\frac{1}{2}$			- 4		
CO3: Analyze	different ABO to	hniques	and an	alog a	ind digital	switchingequipme	nt.		
CO4: Analyze	nd the GSM arch	itecture	$\frac{110}{\text{SS7 pr}}$	unipie otoco	$\frac{1}{1} \mod \frac{1}{2}$	IN for mobilecom	munication		
		neeture,	557 pi	01000	i mouer, A		indification.		
				UNI	I – I				
Introduction:									
Basic Cellular Sy	ystem, Operation	of Cellu	lar syst	em, H	Iexagonal	cells, Frequency re	use of channel	s,	
Co-channel inter	ference reduction	, Cell sp	litting.		_				
Cell Coverage fo	or signal and traf	fic:							
Incident, Reflect	ion & Elevation a	ingles, P	oint to	point	model, Pat	th loss formula, pro	opagation over	water or	
flat Open Ares, I	Land-to mobile tra	ansmissi	on, pat	h loss	from poin	t to point prediction	n model, Mob	le to	
Mobile propagat	ion.		1		тт				
Coll site Antonn	as & Mohile Ante	ททสรา			-11				
Antenna at cell s	ite and mobileant	ennas							
Frequency Man	agement & Chan	nel Assi	gnmen	t:					
Frequency mana	igement, Frequen	cy-spect	rum uti	ilizati	on, Set-up	channels,			
Channel assignm	ent to cell site &	mobile	units, F	ixed a	& non-fixe	d channel assignme	ent.		
			U	JNIT	– III				
<i>Hand offs:</i> Why hand off (H.O), Types of H.O, Initiation of H.O, Delaying H.O, Forced H.O, Queuing H.O, Power difference H.O, Mobile assisted H.O, Soft H.O, Intersystem H.O. <i>Switching & Traffic:</i>									
Space & Time switching, Analog switching equipment for cellular mobile system, Cellular digital switching equipment, MTSO inter connections.									
			U	JNIT	- IV				
<i>Introduction to I</i> Introduction to d ARQ, Multiple a	<i>Introduction to Digital Mobile Telephony:</i> Introduction to digital technology, ARQ techniques, Stop and wait ARQ, Selective reference mission with ARO. Multiple access schemes.								
]	UNIT	$\mathbf{V} - \mathbf{V}$				
<i>Digital Cellular</i> Global system fo	System: or mobile commu	nication	(GSM)	, GSN	A architect	ure, layer modeling	g, Transmissio	n, GSM	

channels & channel modes, Radio resources management, Mobility management, Communication management, Network management.

Intelligent Network for Wireless Communication:

Advanced intelligent network (AIN) & Its architecture, SS7 protocol model, AIN for mobile communication.

Text Books :

- 1. Lee William.C.Y, *Mobile Cellular Telecommunications Analog and Digital System*, Mc Graw Hill, 2nd Edition.
- 2. T.S.Rappaport, Wireless communications, Pearson Ed, 2nd Edition.

Reference Books :

- 1. Pandya Raj, *Mobile and Personal Communication Services and Systems*, PHI, 2nd Edition, March, 2004.
- 2. Jochen Schiller H, Mobile Communications, Pearson Ed, 2nd Edition, 2008.

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

VLSI DESIGN FOR TESTABILITY (VDFT)

VIII Semester	r: ECE						Sch	eme: 2017	
Course	Course	Hours/Week			Credits	Maximum Marks			
Code	Category								
ECEL14	PE -V	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exa	m Duration	a: 2 Hrs				Er	nd Exam Durat	tion: 3 Hrs	
Course Outco	omes: At the	end of the	he cour	se the	student wil	ll be able to			
CO1:Understand all the levels of testing done in VLSI circuits									
CO2: Understand the DFT principles in VLSI circuits									
CO3:Understa	and logic and	fault sin	nulation	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	LSI circuits	8			
CO4:Understa	ind Memory	Testing a	and Bu	ilt-in s	Self-Test				
COS: Understa	and Analog	Testing							
Introduction	to Tosting.	Increation	as of T	lacting	UNII-I	wing the VI CII:	facuala Challer		
VI SI Testing	Challenges	importan	Tostin	esting	, Tesung L	for the second s	iecycle, Challer	iges in	
VLSI Tesuing-	· Chanenges	III VLSI I Test Te	chnolog	з, гаи	It Models;	Levels of Abstract	IOII III VLSI TES	sung,	
			cimolož	5y	UNIT-2				
Design for Te	stability. In	troductio	n Testa	hility	Analysis	-SCOAP Testabilit	v Analysis Pro	hahility-	
Based Testabil	lity Analysis	. Simulat	ion-Bas	ed Te	stability An	alvsis: Design for	Testability Basi	cs Ad	
Hoc Approach	, Structured	Approach	n; Scan	Cell I	DesignsMu	ixed-D Scan Cell,	Clocked-Scan C	ell, LSSD	
Scan Cell; Sca	n Architectu	res Fu	ll-Scan	Desig	n, Partial-S	can Design, Rando	m-Access Scan	Design;	
Scan Design R	Rules, Scan E	Design Flo	ow diag	gram a	nd brief des	scription of each st	ages only, RTL	Design for	
Testability									
					UNIT-3				
Logic and Fa	ult Simulati	i on: Log	ic Simu	ilatior	for Design	n Verification, Fau	It Simulation for	or Test and	
Diagnosis, Si	mulation Mo	odels	Gate-L	evel 1	Network, L	logic Symbols, L	ogic Element I	Evaluation,	
Timing Model	ls; Logic Sin	nulation,	Fault S	imula	tion seria	al, parallel, deduct	ive, concurrent	and	
differential fat	ult simulation	n; fault d	etectior	n, com	parison of	Fault Simulation 1	echniques, Alte	ernatives	
to Fault Simul	ation			· · ·					
Momory Tost	ing and Rui	lt In Solf	Tost.D	• • • • •	UNII-4	Foult Models and T	act Algorithme.	ΟΛΝ	
Functional Fau	ilig allu Dui ili Models R	AM Dyn	- Test: N	AIVI I aulte I	Functional T	Sect Patterns and A	loorithms Marc	NAIVI h Tests	
Comparison of	f RAM Test	Patterns	Word-	Drient	ed Memory	Multi-Port Memo	ry Memory Bui	ilt-In Self-	
Test:RAM Spe	ecification ar	nd BIST	Design	Strate	gy.BIST A	rchitecturesand Fun	ctions. BIST		
Implementatio	on		2 00181	2000					
					UNIT-5				
Analog Testir	ng:Analog C	ircuit Pro	operties	:Cont	inuous Sigi	nals,Large Range of	of Circuits, Non	linear	
Characteristics	s, Feedback	Ambigui	ty, Con	nplica	ted Cause-	Effect Relationship	p, Absence of S	uitable	
Fault Model, Analog Defect Mechanisms and Fault Models:Hard Faults, Soft Faults, Analog Circuit									
Testing: Analog Test Approaches, Analog Test Waveforms, DC Parametric Testing, AC Parametric									
Testing									
Text Books:									
1. Laung-	-Terng Wang	g, Cheng	-Wen V	Vu, Xi	iaoqing We	n, -VLSI Test Prir	ciples and Arch	itectures:	
Design	n for Testabil	lity , 1st	Edition	, Mor	gan Kaufm	ann, 2006 .			

Reference Books:

- 1. 1.M.L.Bushnell,V.D.Agrawal,-EssentialsofElectronicTesting forDigital,Memoryand Mixed Signal VLSI Circuits^{||}, Kluwer AcademicPublishers,2000
- 2. M.Abramovici, M.A.Breuer and A.D. Friedman, -Digital systems and Testable Designl, Jaico Publishing House, 2002

3. Parag K. Lala, -Digital Circuits Testing and Testabilityl, Academic Press Inc, 1997

Web References:

1.http://booksite.elsevier.com/9780123705976/

2.https://onlinecourses.nptel.ac.in/noc17_ec02/preview

3.http://nptel.ac.in/courses/106103116/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam:

RADAR AND SATELLITE SYSTEMS (RSS)

VIII Semester	: ECE				Scheme : 2017					
Course Code	Course	Hours/Week			Credits	Maximum Marks				
	Category									
						Continuous	us I EndEmm TO			
ECEL15	PE-V	L	Т	Р	C	Internal	End Exam	TOTAL		
			0	0	2	Assessment	(0)	100		
Sector of Fr	on Dunction ()	<u> </u>	U	U	3	40 End Eus	60 Durations 2	100 <u>1</u> 11ma		
Sessional Ex	am Duration : 2	Hrs of the e	ourso t		dont will b	End Exa	m Duration: 3) Hrs		
CO1:Understand the basic concents of Radar system										
CO2: Understand the basic operation of MTI and Pulse Doppler radar systems										
CO3: Analyze suitable radar tracking methods										
CO4: Understan	d the basic conce	ents of Se	atellite	comm	unication	system				
CO5: Understan	d the application	s of sate	llite cor	nmiin	ication sys	system				
COS. Onderstan	la une application	s of succ		minun	lieution sys					
				UNI	T – I					
Basic Radar an	d Radar Equatio	n								
Introduction .Ba	sic Radar .Radar	Frequen	cv ban	ds . Si	imple form	of Radar equation	.Radar Freque	ncies.		
Probabilities of	detection and fals	se alarm	, Integr	ation	of Radar p	ulses, Radar cross	-section of Tar	gets		
,Radar cross-sec	ction fluctuations	, Transn	nitter Po	ower,	, PRF , Ant	tenna Parameters a	nd System loss	es		
				UNI	Γ-II		-			
MTI and Pulse	Doppler Radar									
Introduction to l	Doppler and MTI	Radar,	Delay-	line ca	ancellers,	Blind speeds , Stag	gered PRF, De	oppler		
filter banks , Di	gital MTI perform	nance, L	imitatic	ons to	MTI perfo	rmance				
Tracking with R	ladar , Mono-puls	se, conic	al scan	and so	equential le	obbing , Limitation	s to Tracking a	iccuracy,		
Tracking in rang	ge, angle and Dop	opler , Co	omparis	son of	trackers, I	Doppler effect, CW	radar, FM CW	/ radar,		
Multiple freque	ncy CW radar.									
				UNIT	$-\mathbf{III}$					
Tracking Radar			a							
Tracking with ra	adar, Sequential I	obbing,	Conical	scan	, Monopuls	se amplitude Comp	arison and pha	se		
comparison trac	king radars.	NT ' (" т		• • • •		1 • •			
Kadar Keceiver,	s: Radar receiver	, Noise I	igure, I	Low n	oise front	ends, Duplexers and	d receiver prot	ectors.		
Satellite Orbits	& Space Segmen	1								
Kenler's laws	Lewton's laws O	u rhital na	rameter	·s Orl	hital pertur	hations Station kee	ening geostatio	onary and		
Non-geostation	ary orbits	ionai pa	ianicici	s, on	onai pertui	bations, Station Kee	ping, geostatic	mary and		
Space craft tec	chnology Structu	ire Prii	narv n	ower	Attitude	and orbit control	Thermal co	ntrol and		
propulsion con	nmunication pay	load an	d supp	orting	subsyste	ms Telemetry Ti	acking and C	'ommand		
Uplink and dow	nlink analysis an	d design	. Link H	Budge	t. E/Ncalci	ulation	ucking und c	,ommuna,		
- F	j ~_~		,	8-	., _,					
UNIT – IV										
Earth Segment	and Satellite Acc	ess:								
Transmit – Rece	eive Earth Statior	ns – EIR	P – Tra	nsmis	sion Losse	es – Feeder Losses	– Antenna mis	alignment		
losses – Atmosp	oheric & Ionosph	eric loss	es – Lir	nk pov	wer budget	– System Noise, A	Antenna noise,	C/N ratio,		
Digital Video bi	roadcast.									

UNIT – V

Satellite Applications

Intelsat series, INSAT, VSAT, Mobile Satellite Services: GSM, GPS, INMARSAT, LEO, MEO, Satellite Navigational System, Direct Broadcast Satellites (DBS) – Direct to Home Broadcast (DTH), Digital Audio Broadcast (DAB).

Specialized Services: e-mail, Video Conferencing, Internet

Text Books :

1. M.I. Skolnik, Introduction Radar Systems, Second Edition, Mc Graw Hill Book Co., 1981.

2. M.I.Skolnik, Introduction to Radar Systems, 3rd Edition, TMH, 2008.

3. F.E. Terman, Radio Engineering, Fourth Edition Mc Graw Hill Book Co. 1955 .

4. Dennis Roddy, Satellite Communications, 4th Edition, McGraw-Hill International Edition, 2006.

5. Sapna Katiyar, Satellite Communications, 3rd Edition, S.K. Kataria & Sons, 2013.

6. Dennis Roddy, *Satellite Communications*, 4th Edition, McGraw-Hill International Edition, 2006. **Reference Books :**

1. Kulkarni M, Microwave and Radar Engineering, 4th Edition, Umesh Pub, 2010.

2. Simon Kingsley & Shaun Quegan, Understanding RADAR Systems, McGraw Hill, 1993.

- 3. Timothy Pratt, Charles Bostian and Jeremy Allnutt , *Satellite Communications*, 2nd Edition, John Wiley & Sons, 2003.
- 4. W. L. Pitchand, H. L. Suyderhoud, R. A. Nelson, *Satellite Communication Systems Engineering*, 2nd Ed., Pearson Education, 2007.

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

WIRELESS COMMUNICATIONS (WCM)

VIII Semester :	ECE					Schem	e: 2017		
Course Code	Course	Hours	/Week		Credits	Maximum Marks			
	Category								
ECEL16	PE-VI	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Exam	Duration : 2 Hr	S			End Exa	am Duration: 3 H	rs		
Course Outco	mes : At the end	of the co	ourse th	e stuc	lent will be	e able to			
CO1: Understand the characteristics of Mobile Radiopropagation.									
CO2: Analyze factors influencing small scale Mutipathpropagation.									
CO3: Understat	nd the parameters	s of wire	less mu	ltipat	hchannels.				
CO4: Analyze	the operation of I	Equalizer	rs and I	Divers	sitytechniq	ues.			
CO5: Understat	nd the multicarrie	er modul	ation a	nd tec	chnical cha	llengesinvolved.			
				UNI	Γ-Ι				
Mobile Radio Pr	opagation:								
Introduction to R	adio Wave Propa	gation, 1	Free Sp	ace P	ropagation	Model, Relating F	Power to Electr	ric Field,	
The Three Basic Propagation Mechanisms, Reflection-Reflection from Dielectrics, Brewster Angle,									
Reflection from j	prefect conductor	s, Groun	d Refle	ection	(Two-Ray) Model, Diffraction	on-Fresnel Zoi	ne	
Geometry, Knife	Geometry, Knife-edge Diffraction Model, Multiple knife-edge diffraction, Scattering.								
UNIT – II									
Small Scale fading in Mobile Radio Propagation:									
Small Scale Mul	tipath propagation	n-Factor	s influe	ncing	small scal	le fading, Doppler	shift, Impulse	Response	
Model of a multi	path channel- Re	lationshi	p betwo	een B	andwidth a	and Received powe	er, Small-Scale	;	
Multipath Measu	rements-Direct R	F Pulse	System	i, Spr	ead Spectru	um, Frequency don	nain channelso	ounding.	
			<u> </u>	NIT	- 111				
Parameters of W	ireless Multipati	i Chann	els:		1 0	1 101	T : T	6.0 11	
Time Dispersion	Parameters, Coh	erence B		ith, D	oppler Spr	ead and Coherence	e Time, Types	of Small-	
Scale Fading-Fac	ling effects due to	o Multip	ath Tin	ie De	lay Spread	, Rayleigh & Ricea	an Distribution	s, Fading	
effects due to Do	ppler Spread, Sta	tistical I	viodels	10r m	ultipath Fa	ading Channels-Cla	arke's model to	or flat	
fading, Spectral s	shape due to Dop	pler spre	ad in C	larke	's model.				
			U	JNIT	– IV				
Equalization and	d Diversity:								
Introduction, Fu	ndamentals of Ed	qualizati	on, Equ	ıalize	rs in a con	mmunication Rece	iver, Linear E	Equalizers,	
Non-Linear Equ	alization, Decis	ion Fee	edback	Equ	alization ((DFE), Maximum	Likelihood	Sequence	
Estimation (MLS	SE) Equalizer, A	lgorithm	s for a	daptiv	ve equaliza	tion-Zero Forcing	Algorithm, L	east Mean	
Square (LMS) A	lgorithm, Recurs	ve Least	t Square	es(RL	S) Algorit	hm.			
Diversity Techr	niques-Maximal	Ratio	Combir	ning,	Equal G	ain Combining,	Polarization	Diversity,	
Frequency Diver	sity, Time Divers	ity, RAI	KERece	eiver.	-	-		·	
				UNIT	$\mathbf{V} - \mathbf{V}$				
Multicarrier mod	dulation :								
Data transmissio	on using multip	le carrie	ers, M	ulti c	carrier mo	dulation with over	erlapping sub	-channels,	
Mitigation of a	hooring Foding	Codin	- with	Inton	looving D	ra adina Adanti	va Looding		

Mitigation of subcarrier Fading- Coding with Interleaving, Pre-coding, Adaptive Loading, Frequency Equalization, Discrete implementation of Multicarrier modulation- The cyclic prefix, Orthogonal Frequency division multiplexing (OFDM), Matrix representation of OFDM, Challenges in Multicarrier systems- Peak-to-Average power ratio, Frequency and timing offsets.

Text Books :

1.T.S.Rappaport, -Wireless Communications - Principles & Practice", 2ndEdition, PHI.

2. Andrea Goldsmith, *–Wireless Communications*", 2nd Edition, Cambridge University Press, 2009. **Reference Books :**

1. William Stallings, -Wireless communications & Networks", 2ndEdition, Pearson Education.

2. William C.Y. Lee, -Mobile Cellular Telecommunications", 2nd Edition, McGraw-Hill.

3. Simon Haykin, -Modern wireless communications, 1st edition, Pearson, 2004.

Web References :

- 1. https://nptel.ac.in/courses/117102062/
- 2. <u>https://www.youtube.com/watch?v=4R1qHE0E8IE</u>
- 3. <u>https://www.youtube.com/watch?v=XUXmfrbNJns</u>

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

FPGAs &ASIC ARCHITECTURES AND APPLICATIONS (FPGA)

VIII Seme	ester: ECE							Scheme:2017			
Course	Course	Hour	s/We	ek	Credits	Maximum Marks					
Code	Category										
						Continuous					
ECEL17	PE-VI	L	T	Р	C	Internal	End Exam	TOTAL			
LULLI			•	0		Assessment	(0)	100			
G		3	0	0	3	40	60	100			
Sessional Exam Duration: 2 Hrs End Exam Duration: 3 Hrs											
Course Outcomes: At the end of the course the student will be able to											
CO1: Understand and differentiate various types of FPGAs available in the commercial world.											
CO2: Expl	CO2: Disport EDCA design flow and the choose EDA tools switch a fee design and walification										
CO_1 : Page	con the EPGA	design	w allu moth	odolo	nuose EDA	v power	design and ven	incation.			
CO4. Reas	on the advance	d topic	s viz		$\frac{1}{4}$ asynchro	nous FPGAs 3-D	FPGAs and LV	ZDS			
	sp the advance	u topic	5 VIZ	COR	n, asyncine	nous 11 0/45, 5-D		D5.			
					UNIT	-1					
Basics Of	FPGA:				CIUI	•					
History of	FPGAs. Posit	ion of I	FPGA	. Cor	nponents of	f an FPGA. Progra	mming Techno	logy: Flash			
Memory, A	Antifuse Tech	nology	, Stati	c Me	mory Techr	ology, Summary	of Programming	Technology.			
Logic Circ	uit Represent	ation of	f FPG	A: Ci	rcuit Imple	mentation on FPG	A, Logical Exp	ression by			
Product Te	erm, Logical H	Express	ion by	y Loo	kup Table,	Structure of Looku	up Table, Logic	al Expression			
by other M	lethods.	_			-						
					UNIT	-2					
FPGA Str	ucture										
Logic Bloo	ck, Logic Clus	ster, Ac	laptiv	e LU	Γ Routing,	Switch Block, Con	nection Block,	/O Block,DSP			
Block, Har	rd Macros, En	nbedde	d Mer	nory,	Configurat	ion Chain, PLL an	d DLL				
	4 15 1	T 1			UNIT	-3					
Design Fl	ow And Desig	n Tool	S		I 10	1					
Design Flo	ow, Design Flo	ow by I	HDL,	High	Level Synt	hesis Design, Intel	llectual Property	(IP) Based			
Design, De	esign with Pro	cessor			UNIT	1					
Design M	athodology				UNII	-4					
FDGA Des	rign Flow Te	hnolog	w Ma	nning	Clusterin	n Place and Poute	Low Power D	esign Tools			
Summary	sign riow, red	JIIIOIOE	<i>zy</i> wia	րրոչ	z, Clustering	g, I lace and Route	, LOW I OWEI D	esign 1001s,			
Summary.					UNIT	-5					
Advanced	Devices And	Archite	ecture	s		-					
Coarse-Gr	ained Reconfi	gurable	e Arch	nitecti	ure. Asvnch	ronous FPGA. 3D	FPGA, High-S	peed Serial			
I/O.		0				,	, U	1			
Text Books:											
1. Hideharu Amano. 2018. Principles and Structures of FPGAs. Springer, Singapore.											
2. Ian	2. Ian Grout. 2008. Digital Systems Design with FPGAs and CPLDs. Newnes, Newton, MA.										
USA.											
Reference	Reference Books:										
1. <u>Cem</u>	<u>Unsalan,Bora</u>	<u>Tar</u> . 20)17. <i>L</i>	Digita	l System De	sign with FPGA: I	Implementation	Using			
Vei	rilog and VHI	DL, Mc	Graw	Hill	Education I	ndia.					
2. Mic	hael John Seb	astian S	Smith	. 2008	8. Applicati	on-Specific Integra	ated Circuits (1	st ed.).			
Ad	dison-Wesley	Profes	sional	l.							
L											

3. Pak K Chan&Samiha Mourad. 1994. *Digital design using field programmable gate arrays*. PTR Prentice Hall,Englewood Cliffs, N.J.

Web References:

1. https://nptel.ac.in/courses/117108040/

2. https://nptel.ac.in/courses/108105113/45

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall beEITHER/OR type questions carrying 8 markseach

End Exam:

ADAPTIVE SIGNAL PROCESSING (ASP)

VIII Semester	:ECE				Scheme:2017					
Course Code	Category	Ho	urs/\	Veek	Credits	Credits Maximum Marks				
ECEL18	PE-VI	L	T	P	C	Continuous Internal Assessment	End Exam	Total		
Sectional Even	- Dunation 211	3	U	U	3	40	OU End Eve	100 m Dunation 211m		
Course Outcor	nes: On completi	$\frac{1}{0}$	fthic	subjec	t the stude	nt will be able to		III Duration:5618		
CO1: Understand the fundamentals of Adaptive Filters										
CO2: Analyze	the concept of Di	scret	e tim	e rando	om process					
CO3: Understa	CO3: Understand linear predictors and Lattice Predictors of Wiener Filter.									
CO4: Analyze	Linear FIR Adapt	tive I	Filters	s using	steepest d	escent and Least	square approa	ches.		
CO5: Analyze	the Linear Adapti	ve fi	lters	using l	kalman Filt	ering Algorithm.				
					UNIT – I					
Adaptive filters	, Filter structures	, App	oroac	hes to	the develop	ment of Adaptiv	e Filter theory	, Applications .		
~	UNIT - II									
Stochastic Proc	Stochastic Process, Stationary Process, Wide Sense Stationary process, Strict Sense Stationary Process									
Spectrum Analy	Spectrum Analysis, Eigen Analysis.									
Weiner Filters Linear Dradictors Lattice predictors Method of steepast descent Mean squared error Least										
mean square Adaptive algorithm Gradient Adaptive lattice Algorithm										
mean square m	INIT - IV									
Standard Recursive Least squares estimation, comparison of RLS and LMS algorithms. Fast recursive										
algorithm, Ada	algorithm, Adaptive Forward and Backward linear perdition. Fast Transversal Filters.									
					UNIT - V					
Convergence a	nd Stability Ana	lyse	5.	_						
Convergence ar	alysis of the LM	S alg	orith	m, Lea	rning curv	e and mean squar	re error behavi	or, Weight error		
correlation mati	rix, Dynamics of	the s	teady	state 1	mean squar	e error(mse), Mi	sadjustment ar	id stability of		
Text Books:										
1 Bernard Wid	row and Samuel	D St	earns	"Ad	antive Sigr	al Processing"	Pearson Educ	ation (Δ sia) Pte		
Ltd., 2001.		D . 50	carns	, nu	aptive bigi	an i rocessing,	I carson Lauca	ation (Asia) I te.		
2. Simon Hayki	n, "Adaptive Fil	ters'	', Pea	arson E	Education (Asia) Pte. Ltd, 4t	h edition, 2002	2.		
3.J.G. Proakis,	C.M. Rader, F. Li	ng, C	.L. 1	Nikias,	M. Moone	n and I.K. Proud	ller, "Algorithr	ns for Statistical		
Signal Processi	ngl	0,		,						
4. "Adaptive Fil	lter Theory" by S	. Hay	vkin,	Prentic	e Hall, En	glewood Cliffs, I	NJ,1991 (end E	Ed.).		
5. "Adaptive Fil	lters – Theory and	d Ap	plicat	tions",	by B. Farh	ang-Boroujeny,J	ohn Wiley and	Sons, 1999.		
Reference Text	t Books:			~ *						
1. Monson H. H	layes, "Statistica	I Dig	gital S	Signal	Processing	g and Modelling	g", John Wiley	& Sons (Asia)		
2 Dimitrie G N	Janolakia Vinav	K I	مام	and C+	enhen M V	ogon "Statistic	al and Adapt	ive Signal		
2. Dimuis G. N Processing: Sn	ectral Estimatio	тх. 11 n Сі.	igie, mol	anu Su Madal	lling Ader	tive Filtering en	ai anu Auapi. nd Array Prod	ressing"		
McGraw-Hill I	nternational Editi	ion 🤇	2000	TATORE	ning, Auap	and rulering a	uu Airay 110	cosing,		
3.Adaptive Sign	nal Processing - B	Berna	rd V	Vidrov	v, Samuel	D. Strearns. 200)5, PE			
1 0	0					,	-			
Web References:

1.nptel.ac.in/syllabus/syllabus_pdf/117105026.pdf

2.https://books.google.co.in/books?isbn=0470575743

3.https://www.spsc.tugraz.at/courses/adaptive

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam: Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

	ARTIFICIAL I	NTEL	LIG	ENCE	E & EXPE	RT SYSTEMS	S (AIES)				
V Semester: B.	Tech						Schem	ne: 2017			
Course Code	Category	Hou	rs/We	eek	Credits	Ma	aximum Marks	-			
OE301	Open Elective - 1	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	0	0	3	40	60	100			
Sess	ional Exam Duratio	on:2 H	[rs			Er	d Exam Durati	ion:3 Hrs			
Course Outco	omes: At the end of	the co	urse s	stude	nts will be	able to					
CO1:Understa	and how to formulate	an ef	ficient	t prob	lem state s	pace for a prob	lem				
CO2:Discuss states and testi	CO2: Discuss how search strategies will find solutions to problems by systematically generating new states and testing them against goals										
CO3:Apply Hill-climbing, simulated annealing, Local Beam Search, Genetic Algorithms (Local search problems) for Agent's Problems											
CO4: Describes how to solve unpredictability, contingencies of agent's problem-solving process, in which the agents' GAME goals are in conflict.											
CO5:Understa	CO5:Understand the features and working of Expert System.										
UNIT I											
Introduction · W	hat Is AI? The Four	Idatio	us of a	Artific	ial Intellio	ence					
Intelligent Agen of Environments Solving Problem	<i>uts:</i> Agents and Envir s, And the Structure of <i>the Structure</i> of <i>the Structure</i> of <i>th</i>	onme of Age blem-	nts, G ents. Solviu	ood B	Behaviour:	The Concept of	f Rationality, Th Searching for So	e Nature			
	is by Scarching. 110		U	NIT-J			Searching for Se				
Uninformed Sea	arch Strategies: BFS	, DFS	, Dept	th –lir	nited searc	h, IDA, Bidired	ctional search				
<i>Informed (Heur</i> search, Learning	<i>ristic) Search Strateg</i> g to search better. Here	ries - Curistic	reedy Func	v best- tions.	first search	n, A* search, M	lemory-bounded	heuristic			
			UN	I-TIN	II						
Beyond Classica Continuous Space	el Search: Local Sear es, Searching With P	ch Al	gorith Obser	ms an vatior	d Optimiza is. Searchin	ation Problems ng with Nondet	, Local Search Interministic Action	a ons			
			UN	I-TIN	V						
Adversarial Sea Constraint Satis Inference InCsp	Adversarial Search: Games, Optimal Decisions In Games, Alpha—Beta Pruning Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation: Inference InCsps, Backtracking Search For Csps, Local Search For Csps, The Structure Of Problems										
	UNIT-V										
<i>Introduction to</i> expert system, I system and con problems, Prosp	Introduction to Expert System: What are Expert Systems, Features of Expert system, Features of good expert system, Role of human in Expert system, Expert system organization, Difference between expert system and conventional program, Basic activities of expert system and the areas in which they solve problems, Prospector system features, working.										

Text Books:

1. Stuart Russell and Peter Norvig, -Artificial Intelligence: A Modern Approachl, Third Edition, 2010. PearsonEducation.

2. Donald A.Water man, A Guide to expert systems, Addison Wesley publishing company.

Reference Books:

1. Elaine Richie Kevin Knight [2008], [3rd Edition], Artificial Intelligence, TMH

Web References:

- 1. https://onlinecourses.nptel.ac.in/noc18_cs51
- 2. https://www.geeksforgeeks.org/artificial-intelligence-an-introduction/

3. https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_expert_systems.htm

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any one question.

INTRODUCTION TO INFORMATION SYSTEMS (IIS)

V Semester: B	J.Tech				1		Sche	eme: 2017	
Course Code	Category	Ηοι	ars/We	eek	Credits	Ma	ximum Marks		
OE302	Open Elective -1	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Ex	xam Duration:2 I	Irs	-			E	nd Exam Dura	tion:3 Hrs	
					-1				
Course Outo	comes: At the end	l of tl	ne cou	rse stu	Idents will l	be able to			
CO1: Under	stand the concepts	s of C	omput	er arch	nitecture and	I functionalities	s of System soft	ware	
CO2: Under	stand the page rep	lacer	nent ar	nd CPI	J Schedulin	g Algorithms			
CO3: Under	stand the phases c	of sof	tware c	levelo	pment life cy	ycle and proces	ss models.		
CO4: Design	n ER model for re	al life	e scena	rios					
CO5: Apply SQL commands to create, update, modify and retrieve data from the data bases.									
CO6: Apply normalization techniques to normalize the database.									
				UN	IT–I				
Fundamentals	of Computers & (Com	outer A	rchite	ecture:				
Introduction, Or	rganization of a sn	nalleo	ompute	er, Cen	tral Processi	ng Unit, Execut	tion cycle, Instru	uction	
categories, mea	sure of CPU perfor	rmano	ce, Mei	mory,	Input/output	devices, BUS,	addressing mode	2S	
System Softwa	<i>re:</i> and linkers	Con	milara	and in	tornrotore				
Assemblers, Lo	Daders and mikers,	, Con	ipners	anu m	terpreters.				
				UN	IT– II				
Operating Syst	tem:								
Introduction, N	femory manageme	ent sc	hemes	, Page	replacemen	t algorithms, Pr	rocess managem	ient,CPU	
schedulingalgo	rithms.								
Softwareengin	eering:		~ 0		- • •		~ •	2	
Software engin	eering: Introduction	on to	Softwa	are eng	gineering, Li	ife cycle of a so	oftware project,	software	
Development n	nodels.								
				UN					
Relational Dat	tabase Manageme	nt Sy	stem:						
Introduction to	DBMS, the datab	ase te	echnolo	ogy, da	atamodels, D	Database Users.			
Entity Relation	ıship (E-R) Mode	lling:	:	c.					
Introduction, N	lotations, Modellir	ng E-l	R Diag	grams,	CaseStudies	s, Merits and D	emerits of E-R 1	modelling.	
				UNJ	[T - IV				
Structured Qu	ery Language (SQ	<u>)L):</u>							
Introductionto	SQL, Data type	s, D	ata De	efinitic	on language	commands, Da	ta Manipulation	n Language	
Commands and	Commands and Data control Language Commands, Candidate Key, Primary key, Foreign key, Selec								
Clause, Where	Clause, Logical Co	onnect	tives –	AND,	OR, Range	Search, Pattern	Matching, Orde	er By, Grou	
By, Set Operation	ons – Union, Inters	ect an	id Mini	us, Agg	gregate Func	tions,JoinOpera	itions.		

UNIT-V

Normalization:

Introduction, Need for Normalization, Process of Normalization, Types of NormalForms (1 NF, 2 NF, 3 NF & BCNF), Merits and Demerits of Normalization.

Text Books:

1. Campus Connect Foundation Program – Computer Hardware and System Software Concepts, Programming Fundamentals- Vol. – 1, INFOSYS.

2.Campus Connect Foundation Program – Relational Database Management System, Client Server Concepts, Introduction to Web Technologies - Vol. – 4, INFOSYS

3.Henry F. Korth& Abraham Silberschatz, - Data Base System Concepts, 5th Edition, 2005, Mc Graw ill

Reference Books:

1. M. Morris Mano [2011], [3 rd Edition], Computer system architecture, Pearson Education, 2011 2. Sommerville [2008], [7th Edition], Software Engineering, Pearson education.

- 3. Raghu Ramakrishna and Johannes Gehrke [2003], [3rd Edition], Data Base Management Systems, TATA Mc GrawHil
- 4. Tanenbaum [2000], Modern Operating System, Pearson Education.

Web References:

1. https://www.w3schools.com/sql/

2. https://www.geeksforgeeks.org/dbms/

3.<u>https://www.tutorialride.com/software-engineering/software-engineering-tutorial.htm</u>

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No.1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER / OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

WEB DEVELOPMENT PROGRAMMING (WDP)

V Semester: B	.Tech						Scher	ne: 2017
Course Code	Category	Hou	rs/We	ek	Credits	Ma	ximum Marks	
OE303	Open Elective - 1	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
Sessional Ex	am Duration: 2 H	rs				End E	xam Duration	3 Hrs
Course Outc	omes: At the end o	of the	course	e stud	ents will be	able to		
CO1: Unders	stand the fundamen	tal coi	ncepts	of wel	o designing.			
CO2: Design	a static web page	using	HTML	tags a	and attribute	es.		
CO3: Develo	op web pages using	HTM	L and	Casca	ding Styles	sheets.		
CO4: Under	stand the concepts of	of serv	ver side	e prog	ramming.			
CO5: Create	dynamic and intera	active	websit	tes usi	ng database	connection.		
				UNIT	<u> </u>			
Web Technolo and itsAnatomy	gy Fundamentals , Message Format,	Intro Persis	ductio	n to th nd Noi	ne Web, We n-persistent	eb servers and (connections, W	Clients, Resour Veb Caching, Pr	ces, URL oxy, Java
and the Net, Jav	a Network Classes	and I	nterfac	es, Lo	окing up In	ternet Address.		

UNIT-II

HTML: HTML and its Flavors, HTML basics, Elements, Attributes and Tags, Basic Tags, Advanced Tags, Frames, Images, Meta tag, Planning of Web page, Model and Structure for a Website, Designing Web pages, Multimedia content.

UNIT-III

Cascading style sheets: Advantages, Adding CSS, Browser compatibility, CSS and page layout, Selectors.

UNIT-IV

Server side programming: Server-side Java, Advantages over Applets, Servlet alternatives, Servlet strengths, Servlet architecture, Servlet life cycle, Generic and HTTP Servelet, First servlet, Passing parameters to servlets, Retrieving parameters, Server-side include, Cookies, Filters, Problems with servlet, Security issues, JSP and HTTP, JSP Engines, How JSP works, JSP and Servlet, Anatomy of a JSP page, JSP syntax, JSPcomponents.

UNIT-V

Database Connectivity: Database connectivity, JDBC drivers, Basic steps, Loading a driver, Making a connection, Execute and SQL statement, SQL statements, Retrieving the result, Getting database information.

Text Books :

1. UtamK.Roy, -Web Technologies ", Oxford Higher Education, 1st Edition, Seventh Impression.

2. K.L.James, -The Internet- A User Guide", 2nd Edition, PHI Publications.

Reference Books :

1. Introduction to Java Programming, Y.Daniel Liang, 6th Edition, Pearson Education, 2007

2. Web Technologies Srinivasan, Pearson Education, 2012.

3.Kognet Learning Solutions inc., IHTML5 in Simple StepsI, DreamTech press.

4. Java EE 5 for Beginners, Ivan Bayross, Sharanam Shah, Cynthia Bayrossand. Vaishalishai, SPD.

Web References:

1. https://www.tutorialspoint.com/html/

2. https://www.tutorialspoint.com/css/

3. https://www.javatpoint.com/java-tutorial

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No 1which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions i.e there will be two questions from each unit and the student should answer any one question.

INTRODUCTION TO CYBER SECURITY(ICS)

V Semester: B	B.Tech						Sche	me: 2017
CourseCode	Category	Hou	irs/We	eek	Credits	Ma	ximum Marks	
OE304	Open Elective -1	L	Т	Р	С	Continuous Internal Assessment	EndExam	TOTAL
~		3	0	0	3	40	60	100
Sessional E	xamDuration:2 H	lrs				End E	xam Duration	3 Hrs
		6.41			1 4 111			
Course Out	comes: At the end	l of th	e cou	rse stu	idents will I	be able to		
CO1: Cyber	Security architect	ure pi	fottoo	es lro				
CO2: Identi	tying different cla	sses o	of attac	KS pobilo	and wirelas	davicas		
CO4.Under	stand about the too	le and	d meth	ode us	and where so	rime		
CO5.Under	stand about the tot		try and			lating		
	stand about cyber	securi	ity and	socia	i media mar	keung.		
				UN	IT_I			
Introduction to	o Cyhorcrimo			UN	11-1			
Introduction, C Who are Cyber Cybercrimes: A Cybercrimes, C	Cybercrime: Defin percriminals? Cla An Indian Perspec Cybercrime Era: Su	ition ssifica ctive, urviva	and O ations Cyber al Man	rigins of C crime tra for	of the Wor ybercrimes, and the Inc the Netizen	d, Cybercrime Cybercrime: lian ITA 2000, s.	and Informatio The Legal Pe A Global Pers	n Security, rspectives, pective on
				TINI	T_ II			
<i>Cyber offenses</i> How Criminal stalking, Cybe Computing.	s Plan Them –Intr er cafe and Cybe	oduct ercrim	ion, H ies, B	low C: otnets	riminals Pla : The Fuel	n the Attacks, for Cybercrir	Social Engineer ne, Attack Ver	ring, Cyber ctor Cloud
				UNI	T– III			
<i>Cybercrime M</i> Introduction, Pr Mobile and Wir for Mobile Dev Security Implica Security Policie	<i>obile and Wireless</i> oliferation of Mobreless Computing I ices, Authentication ations for Organiz s and Measures in	s <i>Devi</i> bile ar Era, S on Ser ations Mobi	<i>ices</i> nd Wir ecurity vice S , Orga ile Con	eless l y Chal lecurit nization nputin	Devices, Tre lenges Pose y, Attacks o onal Measun ng Era,Lapto	ends in Mobility d by Mobile De n Mobile/Cell res for Handling ps.	y, Credit Card I evices, Registry Phones.Mobile g Mobile,Organ	⁷ rauds in Settings Devices: izational
				UNI	T– IV			
<i>Tools and Met</i> Introduction, Pr Virus and Wo Injection, Buffe	<i>hods Used in Cyb</i> oxy Servers and Arms, Trojan Hors rms, Trojan Hors r Overflow, Attack	ercrin nony ses ar ss on	ne mizers nd Ba Wirele	s, Phisickdoo	hing, Passw rs, Stegano tworks,Phisl	ord Cracking, H graphy, DoS a ning.	Xey loggers and and DDoS Att	Spywares, acks, SQL
				UN	[T – V			
<i>Cyber Security</i> Organizational Organizations, for Organization	Timplications Int Security and Privons, Social Compu	roduc vacy I ting a	ction, mplica	Cost ations,	of Cybercr Social med iated challer	imes and IPR ia marketing: nges forOrganiz	issues, Web Security Risks zations.	threats for and Perils

Text Books:

- 1. Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives, Nina Godbole, SunitBelapure, Wiley.
- 2. Principles of Information Security, MichealE.Whitman and Herbert J.Mattord, Cengage Learning.

Reference Books:

1. Information Security, Mark Rhodes, Ousley, MGH.

2. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press

Web References:

1.https://www.tutorialspoint.com/fundamentals_of_science_and_technology/cyber_crime_and_cyber_security.htm

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No1which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions.i.e. there will be two questions from each unit and the student should answer any one question.

INTERNET OF THINGS (IOT)

V Semeste	r: B.Tech						Sch	eme: 2017
Course	Course	Hou	rs/Wee	k	Credits	Maxi	mum Marks	
Code	Category							
						Continuous		
OE305	Open Elective - 1	L	Т	P	С	Internal	End Exam	TOTAL
02000	- F	2	0			Assessment	(0)	100
Soccional	wan Duration: 2 I	Jrc	U	U	5 End Eve	40 Duration: 3 Hr	60	100
Course Ou	tcomes. At the end		o cours	e the	student wi	ill be able to	5	
CO1: Unde	rstand the basic kno	wledg	ve of In	ternet	of things a	and its design		
CO2: Unde	rstand the purpose of	of sens	sors and	l Actu	ators in Io	T		
CO3: Analy	yze Various IoT Pro	tocols						
CO4: Desig	gn IoT Projects Usin	ig Ard	uino					
CO5: Unde	rstand Raspberry-Pi	i Proce	essor an	nd Ras	spbian Ope	erating Systems		
				UN	I – TIV			
Introduction	on to IoT:							
Definition a	and Characteristics of	of IoT	, Physic	cal De	sign and L	ogical Design, IoT	Enabling Tech	nologies,
IoT Levels	and Deployment Te	emplat	es, IoT	Vs M	[2M			
				UN	IT – II			
Sensing an	d Actuation:			011				
Definition	of Sensor, Sensor fe	atures	. Resolu	ution.	Classes, D	Different types of se	nsors, Actuato	r.
Different ty	pes of Actuators, pu	ırpose	of Sen	sors a	nd Actuato	ors in IoT	,	,
		1						
XX7• 1 /F		4 10	•	UN.				
Wireless I	$V_{\rm c} = (802, 11)$ Direct	ata 11	ransmis Diverse	ssion	IOF IOI:	Zichoo amont Call	ular NEC Sari	-1
W1-Max, W	(1-F1(802.11), Blue)	100 m/	Biueloo Intor In	to grat	art, Zigbee	Ethornot CAN by	ular, NFC, Seri	al Sorial
ATA Dorol	011, KS-232, KS-483	, 12C	Inter-In	legra	lea Circuit,	, Ethernet, CAN du	s, USB, Firewa	an, Seriai
ATA, Tala	iei maiisiilissioli.							
				UN	IT – IV			
Building I	o T with Arduino :A	rduin	o IDE, I	Progra	amming of	Arduino, Interfacir	ng LED, switch	1,
potentiome	ter, Sensors, LCD, I	Blueto	oth, Wi	i-Fi, C	GPS, RFID	with Arduino		
				UN	JIT –V			
Raspherry	Pi:			•••				
Linux basi	ics. Linux File sy	vstem.	Navig	ating	the File	system, Text Ed	litors, Accessi	ing Files.
Permission	s, Processes, Linux	k Gra	phic us	ser In	terface, R	aspberry Pi Proce	essor, Raspber	ry Pi Vs
Arduino, O	perating system ben	efits.	Raspbe	rry Pi	Set up. Co	onfiguration.	· 1	5
,	1 8 9	,	I	5	1 /	0		
Text Book	S:							
1. Arsh	eepBahga , Vijay M	adiset	ti ,Inter	net of	Things: A	Hands-On Approa	ach Paperback,	2015
2. Raj	kumarBhuyya,Interr	net of	Things:	Princ	ciples and l	Paradigms,2016	• • • •	
3. Ade	el Javed, Building A	Arduir	io Proje	ects fo	or the Interi	net of Things, Apres	s,2016	
4. Wo	Ifram Donat, Learn	Raspb	erry-P1	with	ython, Apr	ress,2016		
Keterence	BOOKS:	long -	N-4	alra	ith A	a and Dearth - mark	Amaga 2016	
1. Char	ies Bell, Beginning S	sensor	netwo	TKS W	iin Arduin	o and Kaspberry-Pi	A press, 2016	
2. Andr	Tanivicewen, Hakin		inaliy,I	Jesigi	ning of Inte	ernet of Things, Joh	in wiley,2014	
3. Warr	en Gay, Masteringth	e Ras	pberry-	Pi,Ap	ress,2016			
Web Refer	ences:							

- 1. https://nptel.ac.in/courses/106105166/
- 2. https://onlinecourses.nptel.ac.in/noc17_cs22/course
- 3. https://nptel.ac.in/courses/108108098/4
- 4. https://onlinecourses.nptel.ac.in/noc19_ee28

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains hree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

NANO TECHNOLOGY (NNT)

V Semester: B	.Tech						Schen	ne: 2017
Course Code	Course	Hours	/Week		Credits	Maxi	mum Marks	
	Category							
OE306	Open Elective - 1	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
Sessional Ex	kam Duration: 2 H	rs				End Exa	am Duration:	3 Hrs
Course Outo	comes: At the end o	of the co	urse th	e stu	dent will b	be able to		
CO1: Acquire	esomeofthefundame	ntalprin	ciplesb	ehind	nanotechno	ologyandnanomate	rialsandtheir v	rital
role in 1	novel sensing proper	rties and	lapplica	tions.				
CO2: Unders	tand the fabrication,	charact	erizatio	n, and	d manipula	tion of nanomater	ials,Nanosenso	orsand
introdu	ction tosensors.				-			
CO3: Unders	tand about metal nar	nopartic	le based	d sens	ors and na	nowire basedsenso	ors.	
CO4: Unders	tand about sensors b	ased on	nanost	ructur	es of meta	loxides.		
			I	U NIT	– I			
Introduction to	Nanotechnology							

Introduction to Nanotechnology:

Definition of nanotechnology; main features of nanomaterials; types of nanostructures (0D, 1D, and 2D nanocomposites; mainchemical/physical/electrical/optical properties structures): and of nanomaterials. Methods for characterizing the nanomaterials: Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and spectroscopy- and spectrometry-based surface analysis techniques. Fabrication of sensors by bottom-up and top-down approaches; self-assembly of nanostructures; and examples for nanotechnology application

UNIT – II

Introduction to Sensors' Science and Technology:

Definition of sensors; main elements of sensors; similarities between living organisms and artificial sensors; working mechanism of physical sensation (seeing, hearing, and feeling) and chemical sensation (smelling and tasting); the parameters used for characterizing the performance of sensors: accuracy, precision, sensitivity, detection limit, dynamic range, selectivity, linearity, resolution, response time, hysteresis, and life cycle

UNIT – III

Metal nanoparticle-based Sensors:

Definition of nanoparticle; features of nanoparticles; and production of nanoparticles by physical approach (laser ablation) and chemical approaches (Brust method, seed-mediated growth, etc.).Quantum Dot Sensors. Definition of quantum dot; fabrication techniques of quantum dots; Macroscopic and microscopic photoluminescence measurements; applications of quantum dots as multimodal contrast agents in bioimaging; and application of quantum dots as biosensors.

UNIT – IV

Nanowire-based Sensors:

Definition of nanowires; features of nanowires; fabrication of individual nanowire by top-down approaches and bottom-up approaches; and fabrication of nanowire arrays (fluidic channel, blown bubble film, contact printing, spray coating, etc.).Carbon Nanotubes-based Sensors: Definition of carbon nanotube; features of carbon nanotubes; synthesis of carbon nanotubes; fabrication and working principles of sensors based on individual carbon nanotube; fabrication and working principles of sensors based on random array of carbon nanotubes.

UNIT - V

Sensors Based on Nanostructures of Metal Oxide: Synthesis of metal oxide structures by dry and wet methods; types of metal oxide gas sensors (0D, 1D, and 2D); defect chemistry of the metal oxide sensors; sensing mechanism of metal-oxide gas sensors; and porous metal-oxide structures for improved sensing applications.

Text Books :

1. Jiří Janata, Principles of Chemical Sensors, Springer, 2d Edition (1989). 2. Roger George Jackson, Novel Sensors and Sensing, CRC Press (2004).

Reference Books :

- 1. Florinel-Gabriel Banica, Chemical Sensors and Biosensors: Fundamentals and Applications, John Wiley and Sons (2012).
- 2. Ramsden Jeremy, Nanotechnology, an Introduction. Elsevier(2011).

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain subquestions. i.e. there will be two questions from each unit and the student should answer any one question.

REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS(RSGIS)

VSemester :B.T	ſech				Scheme : 2017						
Course Code	Category	Hou	ırs / W	Veek	Credits	Max	imum Ma	rks			
OE307	Open Elective - 1	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total			
		2	1	-	3	40	60	100			
Sessional Exam Duration: 2 Hrs End Exam Duration : 3 Hrs											
Course Outcom	nes: At the end of the	e cours	se stud	ents w	ill be able to)					
CO1: Understar	nd the concept of elec	ctroma	agnetic	radiat	tion and its i	nteraction with	earth's su	rface			
CO2: Understan	nd air borne and spac	e borr	ne plat	forms,	space imagi	ing satellites of	different				
Countrie	s.		1	,	1 0	C					
CO3: Understand the image processing techniques and applications of remote sensing.											
CO4: Understar	CO4: Understand the concept of GIS and organization of GIS data structures.										
CO5: Understar	nd primary and secon	dary 1	nethod	ls of c	apturing spa	tial and attribut	te data.				

UNIT - I

Introduction to Remote Sensing: Concept and Scope of Remote Sensing:Definition – Physics of Remote Sensing – Electro Magnetic Radiation (EMR), Process and Characteristics of Remote Sensing System – Energy Interaction with the atmosphere and Earth Surface Features – Vegetation, soils, water– Spectral Reflectance Curves, atmospheric windows, Advantages and limitations of remote sensing.

UNIT - II

Platforms and Sensors: Remote Sensing Systems: Platforms: Introduction – Types – Satellites and orbits, Passive and Active sensors– Spatial, spectral, radiometric and temporal resolution of satellites, Whiskbroomand Push-broom scanners, Multi-band concepts and False Color Composites - Some remote sensing satellites and their features.

UNIT - III

Image Processing Techniques and Remote Sensing Applications: Digital Image Processing: Image enhancement – Contrast stretch, Spatial filtering and edge enhancement; Classification – Supervised and unsupervised classification – Visual image interpretationtechniques.

Remote Sensing Applications - Applications in land use and land cover analysis - Mapping of forest and agriculture -Watershed management - Drought Assessment - Environmental modeling and other applications.

UNIT - IV

Geographic Information System: Basic Concepts: Definition - Components - Functions of GIS - Areas of GIS application - Advantages and Limitations of GIS - Information Organization and Data Structures - Raster and Vector data structures - Data file organization and formats - Data Base ManagementSystems.

UNIT - V

GIS Data Input & Editing: Method of Spatial and Attribute data capture– Primary and Secondarydigitization and scanning method - Techniques and procedure for digitizing, Topology– Errors of Digitization and rectification - Re-projection - Transformation and Generalization - Edge matching and Rubber sheeting - Proximity - Buffering and overlay.

Text Books :

- 1. M. Anji Reddy, Text Book of Remote Sensing and Geographic Information System, BS Publication.
- 2. Lo C.P. & Yeung A.K.W., (2004), Concepts and Techniques of GIS, Prentice-Hall of India, New Delhi.
- 3. Thomas Lillesand, Ralph W Kiefer and Jonathan Chipman –Remote Sensing and Image Interpretation^{II}, John Wiley & Sons, India

Reference Books :

1. B.Bhatta, Remote sensing and Geographic Information System, Oxford Publications.

2. Siddiqui, M.A.(2006), *Introduction to Geographical Information System*, ShardaPustakBhavan, Allahabad.

3. Curran, Paul J (1985), Principles of Remote Sensing, Longman, London.

4. Floyd F Sabins Jr., *Remote Sensing Principles and Interpretation*, Freeman and Co., San Franscisco.

Web References:

1. www.nptel.ac.in/courses

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No. 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam:

Question paper contains Six questions. Question 1 contains 5 short Answer questions each of 2 marks (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions i.e. there will be two questions from each unit and the student should answer any one question.

OPTIMIZATION TECHNIQUES (OT)

VI Sem	ester:	B.Tec	h					Sch	eme: 2017				
Course	Code	Category	Hours / Week		Credits	Maximu	ım Marks						
OE3	08	Open Elective - 1	L	Т	Р	С	Continuous InternalEnd ExamAssessmentExam4060						
			3	-	-	3	40	60	100				
Session	al Exa	m Duration: 2 Hrs					End E	xam Durat	ion: 3 Hrs				
Course	Outco	mes: At the end of t	he co	ourse	stude	ents will be	e able to						
CO 1:	Unde	rstand basics of oper	ratior	ns rese	earcł	n, linear pr	ogramming models						
CO 2:	Solve	transportation related	ed pr	oblen	ıs								
CO 3: Solve assignment problems and sequencing problems													
CO 4:	Solve	lve queuing and game theory related problems											
CO 5:	Solve	project managemer	gement problems										
					U	NIT – I							
Introdu	ction:	Definition, Significa	ance	of Op	erati	ons Resea	rch, Models in Operati	ions Researc	ch,				
Applica	tion Ar	eas of Operations R	esear	ch			· · ·						
Linear	Progra	mming: Model For	mula	tion, (Grap	hical solut	tion of L.P.P, Slack, St	urplus and A	rtificial				
variable	s, Simp	plex method, Big M	meth	od, D	eger	neracy in L	.P.P, Duality Concept	-					
					UI	II– TIV							
Transp	ortatio	n Problems: Introd	uctio	nBala	ncec	l and unba	lanced Transportation	problems, I	nitial				
basic fea	asible s	solution using N-W (corne	r rule	, lea	st cost met	thod and Vogel's apprentiation Droblem	oximation m	nethod,				
Optimal	Soluti	on (MODI method),	Deg	enera		$\frac{1111}{111}$							
A!			•	T1				A					
Assign: Balance	nent P d and	Toblems: Introduct Unbalanced Assign	10n, 1men	Ine . t Pro	ASS1 blen	gnment A 18 Travel	ligorithm (Hungarian ling Salesman Proble	Assignment	ssignment				
Problem	l and	Chouraneed Assign	mien	ι 110	oren	15, 114701	ing Salesinan 1100k	in us un m	ssignment				
Sequen	cing M	odels: Introduction,	Gen	eral a	ssun	nptions, pr	ocessing n jobs throug	h 2 machine	es,				
processi	ng_n'	jobs through m mac	hines	s, Pro	cessi	ing 2 jobs	through m machines						
					UN	NIT –IV							
Game ' (with S	Theory addle I	r: Definitions and T Point), Principle of	Гегті Don	inolog ninan	gy, 7 ce, S	Two Perso Solution fo	on Zero Sum Games, or Mixed Strategy Ga	Pure Strate	gy Games es without				
	omt) (o The	orv: Introduction	sinole	e cha	nnel	- noissor	arrivals - exponenti	al service t	imes with				
infinite	populat	tion, and Multi-chan	nel -	poiss	on a	rrivals - E	xponential service time	es withinfini	te				
populati	on.												
					UN	$\mathbf{VIT} - \mathbf{V}$							
Project path, for	Manag rward a	gement: Phases of p and backward pass, f	orojec loats	t mar and t	nage heir	ment, guid significan	elines for network cor ce, crashing for optime	struction, ci um duration.	ritical				

Text Books:

1. Hamdy, A. Taha, Operations Research-An Introduction, Prentice Hall of India Pvt. Ltd

2. S.D. Sharma, Operations Research, Kedarnath, Ramnath& Co., Meerut,

3. R. Paneer Selvam, Operations Research , PHI Learning Pvt. Ltd., New Delhi

Reference Books:

1. Hillier / Lieberman, Introduction to Operations Research , Tata McGraw Hill Edition

2. J.K. Sharma, Operations Research-Problems and Solutions, Macmillan India Ltd

3. Billy E Gillett, Introduction to Operations Research A Computer Oriented Algorithmic Approach, Tata McGraw Hill Edition

4. V.K. Kapoor, Operation research

Question Paper Pattern:

Sessional Exam

The question paper for Sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second Sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question

RENEWABLE ENERGY SYSTEMS (RES)

V Semeste	er:B.TechScheme: 20	17							
Course Code	Category	Hou	ırs/W	eek	Credits	Max	ximum Ma	rks	
OE309	Open Elective - 1	L 3	T	P	C	Continuous Internal Assessment	End Exam	TOTAL	
Sessional	Exam Duration: 2 H	<u> </u>	U	U	End Exam	Duration: 3 H	rs	100	
Dessional .					Life Lixen		15		
Course O	utcomes:At the end of	the co	urse th	ne stud	lent will be al	ole to			
CO1:Unde	erstand the basics term	s, defir	nitions	relate	ed to solar ene	ergy conversion	, solar radia	ation	
mea	suring instruments.								
CO2: Und	erstand different types	of Sol	ar Col	lector	s and their ap	plications.			
CO3: Und	erstand the fundament	al prino	ciples	of Wi	nd energy typ	bes and its chara	acteristics.	:	
CO4: Und	erstand the methods to	harnes	ss Elec		Energy from	Geothermal an	d Ocean en	ergies.	
cus: Und	ications	OI D10 (conver	sion,	types, combu	stion characteri	stics and its	,	
CO6: Und	erstand Direct Energy	Conve	rsion	princi	ple from Fuel	cells and MHI) generators		
	enstand Direct Energy	001110	i si on j				generators	<u>·</u>	
				UN	[T - I				
Principles	of Solar Radiation:	The rol	e and	poter	ntial of new a	nd renewable s	source, the	solar energy	
option, En	vironmental impact of	solar p	ower,	phys	ics of the sun	, the solar cons	tant, extrate	errestrial and	
terrestrial s	solar radiation, solar ra	diatior	n on ti	tled su	urface, instrur	nents for measu	uring solar r	adiation and	
sunshine, solar radiation data.									
Solan Eng	non Collection Elet pla	to and	00000	UNI ntrotir	I - II	alassification	fachantrat	ina	
collectors	orientation and therm	al analy	sis a	luan lvanci	ed collectors,	classification 0		ing	
Solar Ene	rgv Storage And Appl	ication	s Diff	erent	methods. Sen	sible. latent he	at and strati	fied storage.	
solar pone	ls. Solar Application	s- Sol	ar hea	ating/o	cooling techr	niques. Solar o	distillation	and drying,	
photovolta	ic energy conversion.			U	C	1			
				UNI	$\Pi = \Pi$				
Wind Ener	rgy Sources and potent	tials, ho	orizon	tal and	d vertical axis	windmills, per	formance		
characteris	tics, Betz criteria.							_	
Biomass P	rinciples of Bio-Conv	ersion,	Anaer	obic/a	aerobic digest	ion, types of Bi	io-gas diges	ters, gas	
yield, com	bustion characteristics	of b10-	gas, u	itilizat	tion for cooking	ng, I.C.Engine	operation ar	id economic	
aspects.				UNI	Γ - ΙV				
Geotherm	al Energy Resources 1	vnes o	f wells	s. met	hods of harne	ssing the energy	v potential	in India	
Geomeral		.)pes e		, 11100			j, potonina		
Ocean En	ergy OTEC, Principles	utiliza	tion, s	setting	g of OTEC pla	ints, thermodyn	amic cycles	. Tidal and	
wave energy	gy: Potential and conve	ersion t	echnie	ques, i	mini-hydel po	ower plants and	their econo	mics.	
				UNI	Τ-V				
Direct Ene	prov Conversion MHF) gener	ators	nrinci	ples dissocia	tion and ionizat	tion Hall ef	fect	
magnetic f	lux, MHD accelerator.	MHD	Engin		wer generation	n systems. Fuel	cells. princ	iple.	
Faradays la	aws, thermodynamic a	spects,	select	tion of	fuels and ope	erating condition	ons.	- F	
Text Book	S:	1 /			1	0			
1.G.D. Rai	, -Non-Conventional	Energy	Sour	cesl. 2	011				
2.Ramesh	& Kumar, -Renewable	e Energ	y Tec	hnolo	giesl, Narosa.	1997			

Reference Books :
1. Tiwari and Ghosal, -Renewable energy resourcesl, Narosa. 2005
2. Ashok V Desai, -Non-Conventional Energyl, Wiley Eastern. 1990
3.K Mittal,-Non-Conventional Energy Systems, Wheeler. 1997
4.Sukhatme, –Solar Energyl. TMH, 2008
Web Resources:
1.https://en.wikipedia.org/wiki/Solar_irradiance
2.http://sfera.sollab.eu/downloads/Schools/Eduardo_Zarza_Basic_concepts.pdf
3.https://en.wikipedia.org/wiki/Solar_energy
4.https://en.wikipedia.org/wiki/Solar_energy
5.https://solarprofessional.com/articles/design-installation/solar-energy-storage
6.https://www.energy.gov/science-innovation/energy-sources/renewable-energy/wind
7.https://www.eia.gov/energyexplained/?page=biomass_home
8.https://en.wikipedia.org/wiki/Geothermal_energy
9.https://www.renewableenergyworld.com/ocean-energy/tech.html
10 http://www.mh.donorgy.com/

10.http://www.mhdenergy.com/

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any one question

INTRODUCTION TO JAVA

V Semester: B	.Tech						Sch	eme: 2017	
CourseCode	Category	Hou	ırs/We	ek	Credits	Ma	ximum Marks		
						Continuous			
OF310	Onen Flective -	L	Т	Р	С	Internal	EndExam	TOTAL	
01510	1				-	Assessment			
~		2	1	-	3	40	60	100	
Sessional Ex	amDuration:2 H	rs				EndEx	xamDuration:3	3 Hrs	
	A (1 1	6.4		4 1		11 /			
Course Outo	tomes: At the end	of the	e cours	e stude	innut and a	able to			
CO2:Unders	tand fundamentals	$\frac{80100}{2000}$	ops cor	icepts,	input and o	utput			
CO2.Unders	tand the Inheritan	$\frac{10}{ce}$ and	d interf	2005					
CO4: Understand the string handling methods									
CO5:Understand the exception handling									
				UN	IT_I				
Object oriented	concepts: Fundam	nental	s. Over	view o	f Java, Data	types, variable	s. Operators, con	ntrol	
statements, Read	ling console input,	writi	ng con	sole ou	tput, arrays.	, , , , , , , , , , , , , , , , , , ,	s, ep e raters, e e		
,	0 1		U		1 / 2				
				U	II – TIV				
Introducing Cla	asses: Class fundar	nental	ls, decla	aring o	bjects, intro	ducing methods.	, Constructors, t	his	
keyword, finaliz	e								
				UN	III – TII				
Inheritance: Inh	eritance basics, usi	ing su	per, me	ethod of	overriding, at	ostract class, usi	ng final with inl	neritance,	
Interfaces: Defin	ing interface, imp	lemen	ting in	erface			C	,	
				UN	IT-IV				
String Handlin	g: String construct	ors. S	pecial	string	operations, c	haracter extract	ion, string comp	arison.	
searching strings	, modifying string	s. Stri	ngBuff	er class	s and its met	thods.	ion, sung comp	, , , , , , , , , , , , , , , , , , ,	
			U						
				UN	IT-V				
Exception Hand	dling: Fundamenta	lls, ex	ception	types.	try, catch, th	hrow, throws, fi	nally. Java built	-in	
exceptions, creat	ing your own exce	ption	subcla	sses.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J		
-		-							
TextBooks :									
1. Herbert So	childt [2008], [9th	Editi	on], Tł	e Con	nplete Refer	ence Java2, TA	TA McGraw-H	[ill.	
					- 				
2. E Balaguruswamy [2007], [3 rd Edition], Programming with Java, A Primer, TATA McGraw-Hil.									
ReferencehRo	nks ·								
1. Bruce Eck	e] [2008] [2nd Ea	lition] Thin	kino ir	Java Pears	son Education			
			_,						
2. H.M Diete	el and P.J Dietel [2	2008],	, [6th E	dition], Java How	to Program, Pe	earson Ed.		
WebReference	25:								
1. https://ww	w.tutorialspoint.c	om/ja	va/ind	ex.htm	1				

QuestionPaperPattern:

Sessional Exam:

The question paper for Sessional examination is for 30marks, covering half of the syllabus for first sessional and remaining half for second Sessional exam. QuestionNo1which carries 6marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8markseach.

EndExam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2marks. (Total10marks)covering one question from each unit. The remaining five questions shall be EITHER/OR typequestions carrying 10marks each. Each of these questions is from one unit and may contain subquestions.i.e. there will be two questions from each unit and the student should answer any one question.

OBJECT ORIENTED PROGRAMMING THROUGH JAVA (OOP)

VI Semester: B	.Tech						Scher	ne: 2017
CourseCode	Category	Hou	rs/We	ek	Credits	Ma	ximum Marks	1
OE311	Open Elective-2	L	Т	Р	С	Continuous Internal Assessment	EndExam	TOTAL
		3	0	0	3	40	60	100
Sessional Exa	amDuration:2 Hr	S				EndEx	xamDuration:	3 Hrs
CourseOutco	mes: At the end of	the c	ourse s	student	s will be ab	le to		
CO1:Underst	and the basic prog	ramm	ing coi	nstruct	s and object	oriented parad	igms.	
CO2:Compre	hend the java conc	epts p	oackag	es and	interfaces.			
CO3:Implem	ent programs on st	ring h	andlin	g meth	ods.			
CO4:Underst	and the fundament	als of	excep	tion ha	Indling mec	hanism.		
CO5:Implem	ent programs on m	ultith	readin	g conc	epts.			
_								
				UNI	Г— І			
Introduction to . Decision Making ladder,switch stat	Java: Overview of g-Branching & Lo gement, While, do-	java, java, jopin while	ig, Ben Java H g: simp , for sta	Buzzwo ble if s atemer	ords, Data ty tatement, if- ats, Arrays, o	Applications of ypes, Variables else statement, Classes, objects	, Operators. nested if-else, e and methods.	lse if
I/O: I/O Basics I	Reading Console in	nut v	writing	Conse	- II			
Inheritance: Bas class, final keywo Packages and In	ic concepts, metho ord. iterfaces: Package	s, Acc	erriding cess pro	, supe otectio	n, Importing	dynamic metho g packages, Inte	d dispatch, Abs erfaces.	tract
				UNIT	- III			
String Handling Character Extract	: String Constructorion, String Compa	ors, Sj risons	pecial S s. Sear	String ching S	Operations- Strings, Mo	String Literals, difying a string.	String Concate	nation,
				UNIT	- IV			
Exception Hand keywords.	ling: Fundamental	s, Typ	bes of I	Except	ions, Usage	of try, catch, th	nrow throws and	d finally
				UNIT	-V			
Multithreading: implementing Ru	Concepts of n nnable interface, i	nultith sAlive	readin e() and	g, Cr 1 join (eating thre	ads by exten Thread Prioriti	ding Thread es, Synchroniza	class and ation, Inter

thread communication.

TextBooks :

1. Herbert Schildt [2017], [10th Edition], Java -The Complete Reference, TATA McGraw-Hill. **ReferenceBooks :**

1. Bruce Eckel [2014], [2nd Edition], *Thinking in Java*, Pearson Education.

2.E.Balagurusamy, Programming with Java: A primer, 5th Edition, Tata McGraw-Hill, 2017.

3.H.M Dietel and P.J Dietel [2017], [11th Edition], Java How to Program, Pearson Ed.

WebReferences:

1.<u>https://nptel.ac.in/courses</u>

2. https://www.tutorialspoint.com/java/

3.<u>https://www.javatpoint.com</u>

QuestionPaperPattern:

Sessional Exam

The question paper for sessional examination is for 30marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No 1which carries 6marks contains three short answer questions of two marks each. The remaining three questions shallbe EITHER/OR type questions carrying 8 marks each.

EndExam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e there will be two questions from each unit and the student should answer any

ETHICAL HACKING (EH)

VI Semester: B.Tech							Sche	me: 2017	
CourseCode	Category	Hou	rs/We	eek	Credits Maximum Marks				
OE312	Open Elective - 2	L	Т	Р	С	Continuous Internal Assessment	EndExam	TOTAL	
		3	0	0	3	40	60	100	
Sessional Ex	amDuration:2 Hrs					End	ExamDuration	n:3 Hrs	
CourseOutco	mes: At the end ofth	necour	sestu	dents v	willbe abl	e to			
CO1: Understand the importance of security and ethical hacking.									
CO2: Understand about foot printing and types of attacks in social engineering.									
CO3:Unders	tand about sniffers a	nd Do	S atta	cks.					
CO4: Unders	stand the importance	of Se	ssion	Hijack	king types	and SQL Inject	ction.		
CO5: Understand about buffer overflow attacks and Wireless Hacking Techniques.									
.				UNIT	-1				
Introduction to	Ethical Hacking	1	T	61	1.		C (1 · 11	1.	
Introduction, Et	nical nacking termin	ology	, Iype		acking te	cnnologies, pha	ases of ethical h	acking	
Essential Termi	nologies-Threat, Att	ack, v	ulner	abiliti	es, Target	of Evaluation,	Exploit.		
			U	J NIT -	- II				
<i>Foot printing</i> Footprinting, Information Gathering Methodology ,Competitive Intelligence, DNS Enumeration, Whois and ARIN Lookups, Types of DNS Records, How Traceroute Is Used in Footprinting Contents, How E- Mail Tracking Works, Web Spiders Work. <i>Social Engineering</i> Social Engineering, Types Of Attacks, Insider Attacks, Identity Theft, Phishing Attacks, Online Scams,									
			U	NIT-	III				
Sniffers Understand the Protocols Susceptible to Sniffing, Active and Passive Sniffing, ARP Poisoning, Ethereal Capture and Display Filters, MAC Flooding, DNS Spoofing Techniques, Sniffing Countermeasures. Denial of Service Denial of Service, Types of DoS Attacks, How DDoS Attacks Work, How BOTs/BOTNETs Work, -Smurfl Attack, SYN Flooding, DoS/DDoS Countermeasures.									
			U	NIT-	· IV				
Session Hijacki Spoofing vs. Hi Hijacking, Desc SQL Injection SQL Injection, Countermeasure	<i>ing</i> jacking, Types of Se cribe How You Wou Steps to Conduct SQ	ssion ld Pre L Inje	Hijacl vent S ection,	king, S essior SQL	Sequence 1 Hijackin Server Vi	Prediction, Ste g. Junerabilities, S	ps in Performin SQL Injection	g Session	

Buffer Overflows

Different Types of Buffer Overflow, Methods of Detection, Overview of Stack-Based Buffer Overflows , Overview of Buffer Overflow Mutation Techniques.

Wireless Hacking

Overview of WEP, WPA Authentication Mechanisms, and Cracking Techniques, Wireless Sniffers and Locating SSIDs, MAC Spoofing, Rogue Access Points, Wireless Hacking Techniques, Methods Used to Secure Wireless Networks.

TextBooks :

1. Kimberly graves -CEHOfficial Certified Ethical Hacker Review Guide, Wiley

2. MichealGregg,-Certified ethical hacker (CEH) Cert guidel, Pearson education, 2014.

ReferenceBooks :

1. Network Security and Ethical Hacking, Rajat Khare, Luniver Press, 2006.

2. Patrick Engebretson,-The Basics of Hacking and Penetration Testing: Ethical Hacking and Penetration Testing Made Easyl,2ed, Syngress Media, 2012.

WebReferences:

1. https://www.tutorialspoint.com/ethical_hacking/ethical_hacking_pdf_version.htm

QuestionPaperPattern:

Sessional Exam:

The question paper for Sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second Sessional exam. Question No 1, which carries 6 marks, contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach.

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

PRINCIPLES OF PROGRAMMING LANGUAGES (PPL)

VI Semester: B	B.Tech						Schen	ne: 2017
Course Code	Category	Ho	ours/V	Veek	Credits	Ma	ximum Marks	
OE313	Open Elective - 2	L 2	T	P	C	Continuous Internal Assessment	End Exam	TOTAL
Soccional Ex	om Duration ? Ura	3	0	0	5	40	00 Exam Duration	100
Sessional Ex	am Duration:2 Hrs					Ellu .	Exam Duration	1:3 HIS
Course Outco	omes: At the end of t	the c	ourse	stude	nts will be	able to		
CO1: Unders	stand the importance	of P	rograi	mming	g Language	es.		
CO2: Descri	be the syntax and ser	nant	ics of	a prog	gramming]	language.		
CO3: Unders	stand programming c	onst	ructs	and da	ita types.			
CO4: Develo	p Programs in Lisp a	and J	prolog	g.				
CO5: Unders	stand and adopt a new	v pro	ogram	ming	language.			
				UNI	Γ – Ι			
Syntax and Sema Introduction, The Attribute Gram	antics antics antics ne general problem nars, Describing the Recursive Descent p	De ng E of e M parsi	Enviro Desc leanin ng, B	Lang nment UNIT cribing gs of ottom	uage cate s. <u>– II</u> Syntax, programs upparsing.	Formal metho -Dynamic Sen	ds of describin nantics, Lexica	ng syntax, l analysis
			ا	UNIT	– III			
<i>Names, Binding</i> Introduction, Na Compatibility, S Primitive data ty Record types, Ur	, Type checking, Sco ames, Variables, The cope, Scope and Li pes, Character string nion types, Pointer ar	he of feting type type	<i>and L</i> concep ne, Ro es, Us ference	Data T pt of eferen ser def ce type	by pes binding, cing Envir fined ordinates.	Type checkin, conments, Nam al types, Array	g, Strong Typ ed constants, E types, Associat	ing, Type Data types, ive arrays,
				UNIT	– IV			
<i>Functional Prog</i> Introduction, Ma Introduction to S	thematical functions, cheme, ML, Haskell	rs , Fur	ndame	entals	of function	al programmin	g languages, LI	SP, An
				UNIT	-V			
<i>Logic Programm</i> Introduction, A Overview of log prolog, Applicati	<i>ning Languages</i> brief introduction to ic programming, Th ions of logic program	Pre e or nmin	edicate igins .g.	e calcu of pro	ılus, Predi log, Basic	cate calculus a elements of p	nd Proving the rolog, The defi	orems, An ciencies of

Text Books :

1.Robert W. Sebesta, [Eighth Edition], -Concepts of Programming Languages|, Addison Wesley, 2007.

Reference Books :

1. Allen B Tucker, Robert E Noon,[2nd Edition],–Programming Languages, Principles& Paradigms|,TMH.

Web References:

1. https://cs.fit.edu/~ryan/cse4250/

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second sessional exam. Question No1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions.i.e. there will be two questions from each unit and the student should answer any onequestion.

ADVANCED INFORMATION SYSTEMS (AIS)

VI Semester: H	B.Tech						Sche	me: 2017		
CourseCode	Category	Ho	urs/V	Veek	Credits	Ma	Maximum Marks			
OE314	Open Elective - 2	L	Т	Р	С	Continuous Internal Assessment	EndExam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Ex	amDuration:2 Hrs					End	ExamDuration	1:3 Hrs		
CourseOutco CO1:Demons CO2:Interpre	omes: At the end of the strate the Object orient of the transformer of the transformer of the strate	cour ted c nerita	sestuc oncep ance a	lents v ots. nd Po	willbe able	e to				
CO3: Classif	y layer functionalities	of C	SI ref	erenc	e model a	nd TCP Protoc	ol suite			
CO4: Summa	arize the concepts of ir	ntern	etwor	king,	security a	nd IP addressir	ıg			
CO5:Demons	strate different types o	f pro	otocols	s and	web conte	nts used in wel	o design			
			1	UNIT	-I	<u> </u>				
Characteristics of Objects: Data Abstraction, Classification, Encapsulation and Message Passing. Access Specifiers in Class, UML Class Diagrams. UNIT–II Advanced Concepts in Object Oriented Technology: Relationships, Inheritance- Protected Access Specifier, Multiple and Multilevel Inheritance, Generalization and Specialization, Abstract classes, Polymorphism, Implementation of OOC through C++.										
			U	NIT-	· III					
<i>Introduction to</i> Protocol Suite,	<i>computer Networks:</i> Routing Devices, Typ	Intro es of	ductio Netw	on, Ne vorks.	twork Top	oology, OSI Re	eference Model,	ТСР		
			U	NIT-	· IV					
<i>Internetworking</i> Switched Netwo <i>Network Securit</i>	Protocols for Internerks, Virtual Private Nerks, Authentication, Aut	etwor etwor thori	rking, rk, W zatior	Interr orking 1, Enci	net Addres g of Intern ryption, S	ss and Domains et. ecurity on Web	s, Packets, Pack	et		
			τ	J NIT -	- V					
<i>Introduction to</i> Protocol (FTP), Applications, Pe	<i>Web Technology:</i> In Domain Name Server rformance of Web Ap	trodu (DN) plica	uction S), W tions.	, Hyr eb Ap	per Text	Transfer Proto , Types of We	ocol(HTTP), Fi b Content, Mult	le Transfer i-Tier Web		

TextBooks :

1. Campus Connect Foundation Programme – Object Oriented Concepts – System Development

2. Campus Connect Foundation Programme – Computer Hardware and System Software Concepts, Programming Fundamentals- Vol. – 1, INFOSYS.

3. Campus Connect Foundation Programme – Relational Database Management System, Client Server Concepts, Introduction to Web Technologies - Vol. – 2, INFOSYS

- 4. E.Balaguruswamy, *Object Oriented programming with* C++,2017
- 5. Data Communications & Networking, Forouzan, Tata McGrawHill, Fifth edition, 2017

Reference Books :

1. Herbert Schildt , *The Complete Reference C++*, McGraw Hill Education, Seventh Edition, 2017

2. M.P. Bhave and S.A. Patekar, *Object Oriented Programming with C++*, Pearson Education, 2008

3. Andrew S. Tenenbaum, Computer networks, Pearson education, Fifth edition, 2013

Web References:

1. https://www.tutorialspoint.com/cplusplus/

2. https://www.geeksforgeeks.org/computer-network-tutorials/

Question Paper Pattern:

Sessional Exam

The question paper for sessional examination is for 30marks, covering half of the syllabus for firstsessional and remaining half for second sessional exam. QuestionNo1which carries 6marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying8marks each.

EndExam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2marks. (Total10marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10markseach. Each of these questions is from one unit and may contain sub-questions. i.e.; there will be two questions from each unit and the student should answer any onequestion.

Note:

- 1. WiresharktoolcanbeusedtodemonstrateISO/OSI model inUNIT-III
- 2. Assignment Questions to be given from UNIT-II that maps POs like PO2,PO3.

SCIENTIFIC PROGRAMMING WITH PYTHON (SCIPYP)

VI Semester: H	3.Tech						Sche	me: 2017		
CourseCode	Category	Ho	urs/V	Veek	Credits	Ma	Maximum Marks			
OE315	Open Elective - 2	L	Т	Р	С	Continuous Internal Assessment	EndExam	TOTAL		
		3	0	0	3	40	<u>60</u>	100		
Sessional Ex	amDuration:2 Hrs				EndExamDuration:5 Hrs					
CourseOutco	mes: At the end of the	coui	sestu	dents	willbe abl	e to				
CO1:Unders	tand fundamentals of	prog	ramm	ing –v	variables, o	conditions, List	ts, Tuples &Dic	tionaries.		
CO2:Underst	CO2: Understand Arithmetic, Relational, Assignment, Logical, Bitwise, Membership, Identity Operators									
CO3:Impart	Functions, Scope of v	ariat	oles, N	Iodule	es, Packag	jes.				
CO4:Compr	ehend Concepts of File	e I/C), Exc	eption	Handling	, Classes and C	Objects.			
CO5:Develo	p general scientific pro	ogra	mmin	g thro	ugh Matp	lotlib, NumPy	and SciPy pack	ages.		
					-					
Terter a decation				UNIT	-1					
History of Python, Features, Advantages, Environment setup and Interaction using Command prompt, IDLE, Script mode, IPython Notebook. <i>Basic Syntax:</i> Keywords, Identifiers, Variables. <i>Data Types:</i> Strings, Numbers, Booleans, Date and Time, Lists, Tuples, Dictionaries <u>UNIT–II</u> <i>Operators:</i> Arithmetic Operators, Comparison (Relational) Operators, Assignment Operators, Logical Operators, Bitwise Operators, Membership Operators, Identity Operators. <i>Conditional Statements:</i> if, if-elif-else										
Control Stateme	<i>nts:</i> break, continue, p	bass								
	, , , , , , ,		U	NIT-	- III					
UNIT- III Functions: Defining Functions, Calling a Function, Function Arguments: Required arguments, Keyword arguments, Default Arguments, Variable-length arguments, Anonymous Functions, The Return Statement, Scope of the Variables in a Function - Global and LocalVariables. Modules: Defining module, namespacing, Importing modules and module attributes, from. Import statement, Module built-in functions, Introduction to Packages. UNIT- IV Error and Exceptions: Difference between an error and Exception, Detecting and Handling Exceptions, Raising Exceptions, Assertions, Built-in Exceptions, User Defined Exceptions Classes and Objects: Overview of OOP terminology, Creating Classes, Creating Instance Objects, Inheritance, Overriding Methods, Overloading Methods, Operators, Data hiding.										

UNIT-V

Simple plotting with pylab: Basic plotting, Labels, legends and customization, More advanced plotting Matplotlib: Matplotlib basics, Contour plots, heatmaps and 3D plots.

NumPy: Basic array methods, Reading and writing an array to a file, Statistical methods, Polynomial, Linear algebra, Matrices, Random sampling, Discrete Fourier transforms

SciPy: Physical constants and special functions, Integration and ordinary differential equations, Interpolation, Optimization, data-fitting and root-finding.

General scientific programming: Floating point arithmetic, Stability and conditioning, Programming techniques and software development.

TextBooks :

1. Learning To Program With Python- 2011 Richard L. Halterman

2. Learning Scientific Programming with Python, Christian Hill, Cambridge University Press (2016) **ReferenceBooks :**

1. Python Programming-An Introduction to Computer Science 2nd edition-John Zelle 2010

Python -The Ultimate Beginner's Guide!, AndrewJohansen 2.

3. Core Python Programming, Wesley J. Chun, Pearson.

WebReferences:

1. https://www.tutorialspoint.com/python3/

2. https://realpython.com/

QuestionPaperPattern:

Sessional Exam

The question paper for Sessional examination is for 30 marks, covering half of the syllabus for first Sessional and remaining half for second Sessional exam. Question No1which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

EndExam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2marks. (Total10marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10markseach. Each of these questions is from one unit and may contain sub-questions. i.e.; there will be two questions from each unit and the student should answer any onequestion.

Note:

- 1. Python IDLE, Ipython notebook tools can be used to develop programs in UNIT-1&UNIT-5.
- 2. Scope for develop type questions for assignmentfromUNIT-V

FUZZY LOGIC & NEURAL NETWORKS (FLNN)

VI Semester :B.Tech					Scheme : 2017					
Course	Course Category	Hour	s/We	eek	Credits	Maxi	mum Marks			
Code			1			~ .	1			
		-	m	D	C	Continuous		ТОТАТ		
OE316	Open Elective - 2	L	T	Р	C	Internal	End Exam	TOTAL		
	-	3	Δ	0	3	Assessment	60	100		
Sessional	Even Duration • 2 H	re	U	U	3	Fnd Eve	ov am Duration:	100 3 Hrs		
Course Outo	Course Outcomes: At the end of the course the student will be able to									
CO1: To Exp	CO1: To Expose the students to the concepts of Neural networks									
CO2: To prov	vide adequate knowle	dge abo	out S	uperv	vised Learn	ning feedback netw	vorks			
CO3: To provide adequate knowledge about Unsupervised Learning feedback networks										
CO4: To teac	h about the concept of	of fuzzii	ness	invol	ved in vari	ous systems and to	o provide adec	uate		
knowle	edge about fuzzy set t	heory				_	_			
CO5: To prov	vide adequate knowle	dge of a	appli	icatio	n in Neura	l Networks &fuzz	ylogic to real t	time		
systems.										
				UNI	T - I					
Introduction	to Neural Networks	and its	Bas	ic Co	ncepts	T				
Biological ne	urons and McCulloch	and Pi	itts n		s of neuror	n, Types of activati	ion functions,	Neural		
networks arch	advantages of neural	eparable	e and	i linea	arly non-se	parable systems al	nd their examples	bles,		
learning proc	ess error-correction	earning		ncent	s of superv	ised learning and	l unsupervised	lion, learning		
		carini	5, COI		$\frac{1}{\Gamma - \Pi}$	ised, icarining, and	i unsuper vised	i icarining		
Supervised L	earning Neural Netw	vorks:		0111						
Single layer	perception and mul	tilayer	perc	ceptro	n neural	networks, their a	rchitecture, E	rror back		
propagation	algorithm, generalize	ed delta	i rul	e, lea	arning fact	ors, step learning	, Momentum	learning,		
Concept of tr	aining, testing and cro	oss-vali	datio	on dat	ta sets for c	design and validati	on of theNetw	vorks		
				UNI	ΙΙΙ – Ί					
Unsupervised	l Learning Neural N	etwork	s:							
Competitive	Learning networks, k	ohonen	self	-orga	nizing netv	vorks, K-means an	nd LMS algori	thms,		
RBF neural n	etwork, its structure a	and Hyl	brid	traini	ng algorith	m for RBF neural	networks, Co	mparison		
of RBF and N	ALP networks Learni	ng, Heł	obiar	ı learı	ning, Hopf	ield networks.				
				UNI	Γ – IV					
Fuzzy logic										
Basic Fuzzy	logic theory, sets and	their pi	oper	ties,	Operations	on fuzzy set, Fuzz	zy relation and	1		
operations on	fuzzy relations and e	extensic	on pr	incipl	le, Fuzzy n	nembership function	ons and lingui	stic		
variables, Fuz	zzy rules and fuzzy re	asoning	g, Fu	ızzific	cation and	defuzzification and	d their method	ls, Fuzzy		
inference sys	tems									
				UNI	T - V					
Applications.	• • • • • • • • • • • • • • • • • • •			1	· c·	TT 1 1		· _		
Applications	oi neural Networ	ks: Pat	tern	class	sincation,	Handwritten char	acter recognit	lion, Face		
A nulications	of Fuzzy I ogic &		mpre Svet	5810ľ em• 1	i Fiizzv natte	ern recognition F	uzzy image n	rocessing		
Simple applie	cations of Fuzzy kno	wledge	-hase	ed co	ntrollers li	ke washing machi	ines traffic re	gulations		
and lift control	ol	.,10450	Jub					ouracions,		
								120		

Text Books :

- 1. Timothy J. Ross, Fuzzy Logic with Engineering Applications, John Wiley and sons, III Ed, 2010.
- 2. S. Haykin, -Neural Networks, A Comprehensive Foundationl, Pearson Education Inc., III Ed2008.
- 3. Jacek. M. Zurada, -Introduction to Artificial Neural Systems, Jaico Publishing House, 2006.
- 4. LaureneFausett, Fundamentals of Neural Networks-Architectures, algorithms and applications, Pearson Education Inc., 2004.
- 5. J.S.R. Jang, C.T. Sun, E. Mizutani,, -Neuro Fuzzy and Soft Computing A computationalApproach to Learning and Machine Intelligencel, Pearson Education Inc., 2002..
- 6. Laurence Fausett, —Fundamentals of Neural Networksl, PearsonEducation

7. Bart Kosko, —Neural networks and Fuzzy Systems^{II}, PearsonEducation

Reference Books :

- 1 S. Rajsekaran and G. A. VijaylakshmiPai, —Neural Networks, Fuzzy Logic, andGenetic Algorithms, PHI
- 2 N. Sivanandam, S. Sumathi, and S. N. Deepa, —Introduction to Neural NetworkUsing MATLABI, Tata McGraw-HillPublications
- 3 S.N.Sivanandam. M.PaulRaj, Introduction to Artificail Neural Networks, Vikas PublicationHouse Pvt.Ltd, NewDelhi.

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam:

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question

BUILDING INFORMATION MODELLING (BIM)

	DOILDING IN	IOM			ODLLLLI			
VI Semester :							Schem	e: 2017
Course Code	Category	Hou	urs / V	Veek	Credits	Maxin	num Mark	KS
OE317	Open Elective - 2	L	Т	Р	С	Continuous Internal Assessment	End Exam	Total
		1	2	-	3	40	60	100
Sessional Exam D	ouration: 2 Hrs					End Exar	n Duratior	n : 3 Hrs
Course Outcomes	: At the end of the cou	urse st	udents	will b	e able to			
CO1: Understand	the basics of BIM and	their a	applica	ations				
CO2: Understand	the usage of BIM tool	s and [Toolba	ır				
CO3:Use advance	d editing tools in maki	ing a 3	BD mo	del of a	any residen	tial/commercial	l building	
CO4: Prepare temp	plates, create basic wa	lls, cu	rtain v	valls ar	nd also edit	the walls like d	livide, crea	ting
openings, e	tc.							
CO5: Apply tools	like creating floors, ro	ofs, w	valls, e	tc. in r	naking 3D	models of any t	ype of stru	cture.
			UNI	Т - І				
<i>Introduction:</i> The Basics of BIM - What is Revit? - Understanding a BIM Workflow –Leveraging BIM processes - Visualizing – Analyzing - Strategizing - Focusing Your Investment in BIM - Staffing for BIM - Understanding Project Roles - Establishing a BIM Execution Plan - Accessing and Using the Application Menu - Using the Quick Access Toolbar - Getting toKnow the Ribbon - Defining Project Organization - Introducing Datum Objects(Relationships).								
			UNI	Г - II				
<i>The Basics of the Toolbox:</i> Selecting, Modifying, and Replacing Elements - Selecting Elements - Selection Options - Filtering Your Selection - Using Selection-based Filters - Selecting All Instances – Using the Properties Palette - Matching Properties – Using the Context Menu – Editing Elements Interactively - Moving Elements - Copying Elements – Rotating and Mirroring Elements - Arraying Elements - Scaling Elements – Aligning Elements - Trimming or Extending Lines and Walls - Splitting Lines and Walls.								
			UNIT	- III				
Exploring Advance	od Editing ToolerVaa	ning I	Flome	nte fre	m Movina	Using the Isi	in Geometr	w Tool
Using the Split Fa Similar Tool - Using	ace - Cut/Fill Schedule	Copy (Acce	ving an elerato	nd Pas ors) - D	ting from ouble-click	the Clipboard - to Edit - Mode	– Using th elling Site (e Create Context

UNIT - IV

*Extended Modelling Techniques:*Creating Walls and Curtain Walls - Using Extended Modelling Techniques for Basic Walls - Creating Basic Wall Types - Adding Wall Articulation - Modelling Techniques for Basic Walls - Creating Custom In-Place Walls - Creating Stacked Walls - Creating Simple Curtain Walls - Designing a Curtain Wall - Dividing the Surface - Dividing the Surface with Intersects - Applying Patterns - Editing the PatternSurface.

Configuring Templates and Standards: Introducing Project Templates - Customizing Project - Settings for Graphic Quality - Discovering Object Styles - Using Line Settings – Defining Materials - Defining Fill Patterns – Pre-configuring Colour Schemes - Increasing Efficient view Management - Organizing Views –Saving Work - Saving atIntervals.

UNIT - V

Modelling Floors, Ceilings, and Roofs: Understanding Floor Types - Modelling a Floor - Creating a Structural Floor - Sketching for Floors, Ceilings, and Roofs - Modelling Slab Edges - Creating a Custom Floor Edge - Modelling Floor Finishes - Modelling Thick Finishes - Creating Ceilings - Creating a Roof by Face - Creating a Sloped Glazing - Using Slope Arrows - Using Additional Roof Tools - Using Advanced Shape Editing with Floors and Roofs.

Text Books :

1. Karen Kensek, Douglas Noble, Building Information Modelling: BIM in Current and Future Practice.

2. Danelle Briscoe [2015], *Beyond BIM - Architecture Information Modelling*, Routledge Publication, ISBN:9781317668107.

Reference Books :

1. Chuck Eastman, Paul Teicholz, Rafael Sacks, Kathleen Liston; *BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors*, John Wiley & Sons, Inc.

2. Bimal Kumar, A Practical Guide to Adopting BIM in ConstructionProjects.

Web References:

1. https://www.youtube.com/watch?v=LACe3vtc8dY

2. https://www.youtube.com/watch?v=LQdHkuG4do4

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

EndExam:

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question

PRODUCT LIFE CYCLE MANAGEMENT (PLM)

VI Ser	nester:	B.Tech						Sch	eme :2017
Cours	e Code	Category	Hours	s / We	ek	Credits	Maxi	mum Marl	ks
OE	318	Open Elective - 2	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
			3	-	-	3	40	60	100
Sessiona	al Exam l	Duration : 2 Hrs					End Exa	am Duratio	on: 3 Hrs
Course	Course Outcomes : At the end of the course students will be able to								
CO1 :	CO1: Understand basic concepts of Java such as operators, classes, objects, inheritance, packages Enumeration and various keywords								
CO2 :	Understa process	and product lifecycle	manager	ment p	oroce	ss & diffei	rent steps in Pro	oduct devel	opment
CO3 :	Get know	wledge on Product da	ata manag	gemen	nt				
CO4 :	Understa	and the implementati	on of PL	M and	l its i	mpact on t	he organization	1	
CO5 :	Understa	and concept of PLM	architect	ure an	d inf	ormation a	uthoring tools		
				UNIT	$\Gamma - I$				
Introduc member Compili Variable	Introduction to Java (background, facts, editions), JVM, Program Structure (basics of class, object, member variables, methods, naming conventions, static, System), Installing Java, Setting PATH, Compiling & Running a minimal program. Primitive data types, cast, NaN, Two's complement, Variables (mass types). Operators Control Structures								
	~ •		١	UNIT	– II				
Arrays, and JDB	Construct C	ors, String class, Inh	eritance,	Packa	ges,	Access mo	odifiers, Relatio	onal Databa	ses, SQL
			τ	JNIT	– III				
PLM Introduction-Organization Business Models(MTS, MTO, CTO, ETO Etc), Basics of Enterprise Systems (PLM, ERP, MES), Background, Overview, Need, Benefits, and Concept of Product Life Cycle, Components / Elements of PLM, Emergence of PLM, Significance of PLM, Differences between PLM and PDM Integrated Product development process-Conceive-Specification, Concept design, Design- Detailed design, Validation and analysis (Simulation), Tool design ,Realize-Plan manufacturing, Manufacture, Build/Assemble, Test(quality check)									
							D 1-	-	
PLM C Manage Configu	omponen ment, Vis ration Ma	nts - Workflow Proc sualization, Bill of anagement, Manufact	esses, Do Material uring Pro	esign s (BC ocess l	Colla DM) Mana	aboration, Managem agement, V	Processes Mar ent, Engineeri ariant Manager	nagement, I ng Change ment, Class	Document Control,
UNIT – V

PLM Technologies - PLM Architecture, Various PLM tools, Data Modelling, Security management, CAD Integrations, Information authoring tools (e.g., MCAD, ECAD, Technical publishing), Core functions (e.g., data vaults), Data Flow to Other systems such as Supply chain and ERP systems **Text Books:**

1. Grieves, Michael, Product Lifecycle Management, McGraw-Hill

2. Antti Saaksvuori, AnselmiImmonen, Product Life Cycle Management - Springer

3. Kari Ulrich and Steven D. Eppinger, Product Design & Development, McGraw Hill

Reference Books:

1. Java - The Complete Reference (English) 9th Edition-herbert-schildt-Mcgraw Hill Education

2. Head First Java (English) 2 Edition- Kathy-Sierra-Publisher: O' Reilly

3. Burden, Rodger PDM: Product Data Management, Resource Publications

Question Paper Pattern:

Sessional Exam

The question paper for Sessional examination is for 30 marks, covering halfof the syllabus for first Sessional and remaining half for second Sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questionseach of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question

SIMULATION OF ENGINEERING SYSTEMS(SES)

VI Como atom D Tool						Cale and a C	0.17	
VI Semester: B. Lech	Catagoria	TT		1.	Caralita	Scheme : 2	.01/	
Course Code	Category	Hou	Irs/ W	еек	Credits	Maxim	um Mari	KS
		T	T	р	C	Continuous	End	Tetel
OE319	Open Elective - 2	L	1	P	C	Internal	Exam	Total
	-	0	0	2	2	Assessment	60	100
Soccional Exam Duratic	n.7 Urs	U	U	3	3	Fnd Exem	Ourotion	100 3Urc
Course Outcomes: At th	<u>m.2 ms</u>	udant		baak	la to	Liiu Lxaiii	Duration	. 51115
Coll: Understand the bas	ic features and progr	ammir	$\frac{1}{2}$ will					
CO2: Understand control	sic realures and progra	ammin and i	alottir	a in	LAD. MATI AR			
CO3: Understand develo	ping simulation mode	$\frac{1}{2}$	a sim	ulink	library	•		
CO4: Understand the gra	phical user interface	$\frac{1}{10} M\Delta$	$\frac{g}{TI} \Delta I$	R	norary.			
CO5: Understand variou	s tool boxes used in s	olving	engir	9. Deerir	o problem	19		
					is problem	15.		
MATIAD Eminoremon	4 Introduction to			Treato	11.04		Tister T	Ice of
MAILAB Environmen	Introduction to	Simu	ation-	Insta	ination o	I MAILAB-	History-C	Jse of
Introduction to MATLAI	R Software MATIA	R win	dow (Com	mand wind	low Workspac	e Comm	and
history-Current directory	Setting-Basic comm	ande_A	uow- v	ing v	ariables_C	nerations with	variable	anu s
Data types and Operator	Setting-Dasic commu	Δrr	ve an	d ver	tors_Colu	mn vectors-Ro	warrables	5. .c
Arithmetic Operators- Re	alational Operators-L	3- Alla ogical	Opers	u vec	Operator	Precedence- R	ODMAS	5.
Rules- Solving arithmetic	requations	Jeicai	Open	1015-	Operator	I Teccuciice- D	ODMAS	
Rules borving antimietic	equations.							
Basic Operations Trigon	ometric functions- Co	omplex	k num	bers-	Fractions	& Real number	ers- Com	plex
numbers								
		UNI	T-II					
MATLAB Programming	r i							
Working with script tool	ls- Writing Script file	e- Exe	cuting	g scri	pt files- T	he MATLAB	Editor- o	pening
and saving editor.								
Creating M files, Saving	g m-files- Errors and	l Warı	nings-	Тур	es of erro	rs- error hand	ling- MA	ATLAB
Debugger- Setting Brea	k Points- Examining	g Vari	ables-	Ste	pping thro	ough code- en	ding the	debug
session- Debugging from	command line.							
Loons and Conditional S	Statements: for loop-	nested	for lo	0 n - 1	while loon	_		
Branch Control Structur	<i>re:</i> if control statemer	nts. sw	itch st	tatem	ent-break	statement- cor	ntinue	
statement- error statemen	it- try catch structure-	Progr	am Te	ermir	nation — r	eturn		
		0-						
<i>Functions</i> Writing function	ions, Writing user def	ined f	unctio	ons- E	Built in Fu	nction-Function	n calling-	
Return Value- Types of H	Functions-Global Vari	iables.						
String Functions- Input/C	Output Functions.							
Plotting								
Plots: Plotting vector and	1 matrix data- Plot lab	beling,	curve	labe	ling and e	diting.		a .
2D Plots: Basic Plottin	ng Functions-Creatin	g a l	lot-P	lottin	g Multipl	e Data Sets	in One	Graph-
Specifying Line Styles	and Colors- Graph	hing]	magi	nary	and Con	plex Data-Fig	gure Wi	ndows-
Displaying Multiple Plot	s in One Figure-Conti	rolling	the A	xes-	Subplots			

3Dplots: Use of mesh grid function- Mesh plot-Surface plot

UNIT-III

Simulink

Introduction to Simulink- Simulink Environment & Interface- Study of Library-Object Oriented Design-Equation Oriented Design- - Fixed Step continuous solvers- Variable step continuous solver-Data Import/ Export- Creating and masking a Subsystem- Getting help for Simulink.

Simulation of Numerical Integration, Linear Algebra, Roots of Polynomials, Algebraic equations, Differential Equations-Transforms (Fourier, Laplace).

UNIT-IV

Graphical User Interface Design Introduction of Graphical User Interface- GUI Function Property-GUI Component Design- GUI Container- Writing the code of GUI Callback- Dialog Box- Menu Designing- Creating a database-Applications.

UNIT-V

Applications with MATLAB

Image Processing: Importing and Visualizing Images- Importing and displaying images- Converting between image types- Exporting images- Interactive Exploration of Images- Obtaining pixel intensity values- Extracting a region of interest- Computing pixel statistics-Measuring object sizes.

MATLAB Applications in Control Systems, Neural Networks- Machine Learning, Digital Signal Processing, Communication Systems and Fuzzy Logic Systems.

Text Books:

1. Raj Kumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma, -MATLAB and its Applications in Engineering^{II}, Dorling Kindersly India pvt. Ltd, Pearson, 5th Edition 2012.

2.Agam Kumar Tyagi, -MATLAB and Simulink for Engineersl, Oxford University Press, 2nd Edition, 2012.

3.Jaydeep Chakravarthy, — Introduction to MATLAB Programming, Tool Box and Simulink^I, Universities Press, 2014.

Reference Books:

1. MiszaKalechman, — Practical MATLAB Basics for engineers^{II}, CRC Press, Taylor & Francis group,1st Edition, 2012.

2.Rizwan Butt, -An Introduction to differential equations on MATLAB, Narosa Publishing house, 2016.

Web References:

1.<u>https://matlabacademy.mathworks.com/</u>

2. https://www.edx.org/course/matlab-octave-beginners-epflx-matlabeoctavebeginnersx

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions.i.e. there will be two questions from each unit and the student should answer any one question.

SCRIPTING LANGUAGES FOR VLSI (SLV)

VII Semeste	er: ECE						Se	cheme:2017		
Course Code	Course Category	Hours/Week			Credits	ts Maximum Marks				
ECOE1	OE-III	L	Т	Р	С	ContinuousInter nal Assessment	iter End Exam TO			
		3	0	0	3	40	60	100		
Sessional Ex	xam Duration:	2 Hrs		1]	End Exam Dura	ation: 3 Hrs		
Course Out	comes: At the	end of the	course	the stu	ident will be	e able to				
CO1: To un	derstand the	Fcl data f	types, o	perati	ons and mo	odularizations.				
CO2: Work	with file systen	ns socket	program	ming	and make tr	ansactions with input	and outputs			
CO3: Empl	oy Tcl langua	ge consti	ructs of	proce	dures, pacl	kages and modules	in simple progr	ams		
CO4: Introd	duction to Tk	Graphic	s for ci	eating	g widget d	esign	1 1 0			
CO5: Introd	duction to Tk	Graphic	s for se	electir	ng widget o	lesign				
					UNIT-1					
Tcl/Tk Feat	tures: Tcl Ove	rview, To	el As a	Glue 1	Language, 7	Tcl As a General-Put	rpose Interpreter	, Tcl As an		
Extensible I	nterpreter, Tcl	As an H	Embedda	able Ir	nterpreter, 7	Icl As a Rapid Dev	elopment Tool,	GUI-Based		
Substitutions	g, Shipping Pr s, Data Types, A	oducts, I Arithmeti	ntroduce c and Bo	ction 1 polean	Operations	Modularization.	, Command Eva	aluation and		
					UNIT-2					
File System,	Basic I/O and	d Sockets	s: Navig	ating t	he File Sys	tem, Properties of Fil	e System Items	, Removing		
Files, Input/C	Dutput in Tcl, S	ockets. S	trings a	nd Lis	sts: Converti	ng a String into a Li	st, Examining the	e List with a		
for Loop, U	sing the foread	ch Comm	hand, us	ing str	ring match	instead of string first	st, using lsearch,	the regexp		
Command, c	reating a Proce	dure, mak	ting a So	cript, I	DataStructu	res with Lists, Arra	ys and Dicts: U	sing the Tcl		
List, Using the	Dict, Using the A	ssociative	eArray, 'I	l'reesin	Tcl, TclandS	SQL, Performance.				
	UNIT-3									
Procedure '	Techniques: A	rguments	s to Pro	cedure	es, Renamii	ng or Deleting Com	mands, Getting	Information		
About Proce	dures, Substitu	ition and	Evaluat	ion of	Strings, W	orking with Global a	nd Local Scope	s, Making a		
Tcl Object. Namespaces	Namespaces, I and Packages.	Packages Basic Ob	and M ject-Ori	ented]	s: Namespa Programmir	ces and Scoping Rul ag inTcl	les, Packages, T	cl Modules,		
					UNIT-4					
L										

Introduction to Tk Graphics-I: Creating a Widget, Conventions, Common Options, Determining and Setting Options, The Basic Widgets, Introducing Widgets: label, button, and entry, Application Layout: Geometry Managers and Container Widgets

UNIT-5

Introduction to Tk Graphics-II: Selection Widgets: radiobutton, checkbutton, menu, and listbox, Scrollbar, thescale Widget, New Windows, Interacting with the Event Loop, Scheduling the Future, Bottom Line, Using the canvas Widget, Creating a canvas Widget, Creating Displayable canvas Items.

Text Books:

- 1. Clif Flynt. 2012. *Tcl/Tk, Third Edition: A Developer's Guide* (3rd ed.). Morgan Kaufmann Publishers Inc.,San Francisco, CA, USA.
- 2. Mark Lutz. 2013. *Learning Python* (5th ed.). O'Reilly Media, Inc.

Reference Books:

- 1. John K. Ousterhout and Ken Jones. 2008. *TCL and the TK Toolkit (Addison-Wesley ProfessionalComputing)* (2nded.). Addison-Wesley Publishing Company, USA.
- 2. Brent B. Welch. 2000. *Practical Programming in Tcl and Tk (3rd Ed.)*. Prentice Hall PTR, Upper SaddleRiver, NJ, USA.
- 3. Mark Lutz. 2010. Programming Python (4th ed.) O'Reilly Media, Inc..
- 4. David Beazley and Brian K. Jones. 2013. Python Cookbook. (3rd ed.) O'Reilly Media, Inc..

Web References:

https://nptel.ac.in/courses/117106113/33

https://www.tcl.tk/

https://learning-python.com/about-lp.html#lpscope

http://shop.oreilly.com/product/0636920028154.do

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 markseach

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks)covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

BIO-MEDICAL ELECTRONICS (BME)

VII Semester : Common for ECE&EEE				Scheme : 2017						
Course Code	Course Category	Hours/	Week		Credits	Maxi	mum Marks			
ECOE2	OE-III	L	Т	Р	С	Continuous Internal Assessment	End Exam TOT			
		3	0	0	3	40	60	100		
Sessional Exa	m Duration : 2 Hr	S				End Exam	Duration: 3 H	°S		
Course Outco	mes : At the end of	the cour	se the st	udent	will be able	eto				
CO1: Introduc	ction to various Con	ncepts of	Medica	l Instru	umentation.					
CO2: Toexpos	CO2: Toexposethestudentstotheconceptsof organisationofcellandknowledgeaboutBio-Electrodes									
CO3: To prov	ide adequate know	ledge abo	out mech	nanica	l function a	nd cardiac instrumen	tation			
CO4: To prov	ide adequate know	ledge abo	out Neur	o-Mas	scular Instru	imentation.				
CO5: To prov	ide adequate know	ledge abo	out Ther	apeuti	c equipmen	t.				
				UNI	T – I					
Components of N	Aedical Instrument	tation Sy	stem							
Bio amplifier. Sta encountered with	atic and dynamic ch measurements from	naracteris m human	tics of n beings.	nedica	l instrumen	ts. Bio signals and cl	haracteristics. Pr	roblems		
				UNI	Γ–II					
Organisation of	cell									
Nernst equation f nerve to neuromu	Nernst equation for membrane Resting Potential Generation and Propagation of Action Potential, Conduction through nerve to neuromuscular junction.									
Bio Electrodes										
Biopotential Elec	Biopotential Electrodes-External electrodes, Internal Electrodes. Biochemical Electrodes.									
UNIT – III										
Mechanical func	etion									
Electrical Conduc heart.	ction system of the	heart. Ca	rdiac cy	vcle. R	elation betw	veen electrical and m	nechanical activi	ties of the		

Cardiac Instrumentation

Blood pressure and Blood flow measurement. Specification of ECG machine. Einthoven triangle, Standard 12-lead configurations, Interpretation of ECG waveform with respect to electro mechanical activity of the heart.

UNIT – IV

Neuro-Muscular Instrumentation

Specification of EEG and EMG machines. Electrode placement for EEG and EMG recording. Interpretation of EEG and EMG.

UNIT – V

Therapeutic equipment

Pacemaker, Defibrillator, Shortwave diathermy. Haemodialysis machine. Respiratory Instrumentation: Mechanism of respiration, Spirometry, Pneumotachograph Ventilators.

Text Books :

- 1. Hand-bookofBiomedicalInstrumentation-byR.S.Khandpur, McGraw-Hill,2003.
- 2. Medical Instrumentation, Application and Design by John G. Webster, JohnWiley.

Reference Books :

- 1. PrinciplesofAppliedBiomedicalInstrumentation-byL.A. GeoddesandL.E. Baker,JohnWiley andSons.
- 2. Biomedical Equipment Technology Carr& Brown, Pearson.

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each.

End Exam:

Question paper contains Six questions; question 1 contains 5 short answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any onequestion

DISTRIBUTED EMBEDDED SYSTEMS (DES)

VII - Semester : ECE					Scheme : 2017					
Course Code	Course Category	Hours/	Week		Credits	Maximum Marks				
ECOE3	OE-III	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL		
		3	0	0	3	40	60	100		
Sessional Exa	m Duration : 2 H	rs	L		End Exam Duration: 3 Hrs					
Course Outco	mes: At the end of	f the cour	se the st	udent	will be able	to				
CO1: Understand	I the real time envi	ronment a	and appl	icatio	ns.					
CO2: Understand	System architectu	re and de	sign of I	Distril	outed Embed	dded Systems				
CO3: Understand	l inter task manage	ment and	schedul	ling.						
CO4: Understand	l the network conn	ection of	distribut	ted sys	stems					
CO5: Analyse the	e working of multi	ple embec	lded dev	vices i	n a distribut	ed network				
				<u>UNI</u>	<u>T – I</u>					
Real Time Envir requirements, ten	ronment: Real-tim nporal requirement	e comput s, global	er syste time, ex	m requ ample	uirements, c s of real tim	lassification of real t e systems.	ime systems, fu	nctional		
				UNI	Γ–II					
Distributed Syst dependability.	em Design: Need	of distrib	uted sys	tems,	System Arc	hitecture, compatibil	ity, scalability a	nd		
				UNIT	r – III					
System Scheduling: Inter component communication, task management, and dual role of time; inter task interactions, Scheduling problem - static & dynamic scheduling – system design – validation – time–triggered architecture.										
UNIT – IV										
Distributed Netw Ethernet.	works: Types of ne	etworks, c	comparis	sons, I	SO-OSI mo	del, TCP/IP connect	ions. CAN conc	epts,		
				UNI	T –V					
Case Studies: Bl embedded applica	uetooth controlled ations.	embedde	d operat	tions,	GSM based	embedded operation	ns, and event trig	ger based		

Text Books :

- 1. Hermann Kopetz, Real–Time systems Design Principles for distributed Embedded Applications, 2nd Edition, Springer 2011.
- 2. Glaf P.Feiffer, Andrew Ayre and Christian Keyold, Embedded Networking with CAN and CAN open, Copperhill Media Corporation, 2008.

Reference Books :

1. Andrew S. Tanenbaum Distributed Operating System, Pearson Education. Web References:

1. http://www.nptelvideos.in/2012/12/digital-systems-design.html

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 marks each

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

VLSI SIGNALPROCESSING (VSP)

VII Semester :E	CE						Scheme : 2	017
Course Code	Course Category	Hours/	Week		Credits	Maximum Marks		
ECOE4	OE-IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL
		3	0	0	3	40	60	100
Sessional Exam	Duration : 2 Hrs	I			I	End Exam	Duration: 3 Hr	`S
Course Outcome	es: At the end of the	ne course	the stud	lent w	ill be able to)		
CO1: Apply the p	principles of DFG i	n DSP ar	chitectu	res.				
CO2: Apply pipe	lining and parallel	processin	g on FI	R and	IIR systems	to achieve high spec	ed and	
low power.								
CO3: Solve Regis	ster minimization,	retiming,	folding	techni	iques for the	e given digital filter.		
CO4: Understand	the overview FIR	filter Sys	tolic arc	chitect	ure design.			
				TIN				
				UN				
scaled CMOS tec	Digital Processing hnologies, Represe	System: entation o	Introdu f DSP A	ction, Algorit	Typical DS hms.	P Algorithms, DSP A	Application dem	ands and
				UN	IT II			
Iteration Bound computing iteration	Introduction, Dat	a Flow G bound of	raph Re f multira	presen ate dat	tations, Loc a flow grapl	op Bound and Iterations.	on Bound, Algor	rithms for
				UN	IT III			
Pipelining and P and Parallel Proce	Carallel Processing essing for low pow	g: Introdu er	ction, P	ipelini	ng of FIR D	Digital Filters, Paralle	el Processing, Pi	pelining
				UN	IT IV			
Folding and Unf Critical path, Unf techniques, Regis	olding: Introduction olding and retimin ter minimization in	on, Defini g, Applic n folded a	itions an ations o architect	nd prop f unfo ure, Fe	perties, Retin Iding, Foldi olding of mu	ming Techniques, A ng techniques. Regis altirate systems.	nalgorithm for u ster minimization	nfolding, n

UNIT-V

Systolic Architecture Design: Introduction, System array design methodology, FIR systolic arrays, selection of sch**eduli**ng vector, Matrix-matrix multiplication and 2-D systolic array design, Systolic Design for space representations containing delays.

Text Books :

1. Keshab K. Parthi, *VLSI Digital Signal Processing- System Design and Implementation*, WileyInter Science. 1998.

2. Kung S. Y, H. J. While House, T. Kailath, *VLSI and Modern Signal processing*, Prentice Hall, 1985. **Reference Books :**

1. Jose E. France, Yannis Tsividis, *Design of Analog, Digital VLSI Circuits for Telecommunications* and Signal Processing, Prentice Hall,1994.

2. Medisetti V. K, VLSI Digital Signal Processing, IEEE Press (NY), USA, 1995.

Web References:

1. https://nptel.ac.in/courses/117106093/

2. https://nptel.ac.in/courses/117102060/

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1, which carries 6 marks, containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 marks each

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and maycontain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

COGNITIVE RADIO (CR)

							Scheme :	2017	
Course Code	Course Category	Hours/	Week		Credits	edits Maximum Marks			
ECOE5	OE-IV	L	Т	Р	С	Continuous Internal Assessment	tinuous ternal End Exam ? essment		
		3	0	0	3	40	60	100	
Sessional Exam D	Duration : 2 Hrs				End Exa	m Duration: 3 Hrs	\$		
Course Outcomes	s: At the end of th	ne course	the stud	ent wil	ll be able to				
CO1: Understan	nd the architectu	re of SD	R and r	nanag	gement of u	nlicensed spectru	m.		
CO2: Analyze tl	he Aware and Ada	aptive cog	nitive ra	adios.					
CO3: Know ab	out the spectrum	awarene	ess and	interf	erence avoi	dance.			
CO4: Understa	nd technical cha	llenges ir	n CR ar	nd vari	ious spectru	um sensing metho	ds.		
CO5: Analyze	the OFDM based	l Cogniti	ve radi	o and	MIMO-OF	DM channel estir	nation.		
				UNIT	$\mathbf{I} - \mathbf{I}$				
Basic SDR – Sof spectrum – Nois development	tware and Hardw e Aggregation-	vare Arch Compone	itecture nt deve	of an elopme	SDR – Sp ent – Wav	ectrum Manageme eform developmer	nt – Managing nt – Cognitive	unlicensed waveform	
				UNIT	' – II				
Cognitive Radio T	echnology:								
Introduction – Rad – Available Techn	lio flexibility and ologies – IEEE 80	capability)2 Cogniti	– Awa ve Radi	re – Ad lo relat	daptive – Co ted activities	omparison of Radio	capabilities and	Properties	
				UNIT	– III				
Spectrum Awaren	ess:								
Introduction, The I	Interference avoid	ance prob	olem, Co	ognitiv	e Radio Rol	e, Spectral footprin	t minimization,		
Creating Spectrum	Awareness-Spec	trum usag	e report	ting, Sj	pectrum sen	sing, Potential Inter	ference analysis	,	

UNIT – IV

Cognitive Radio technical challenges and spectrum sensing :

Design Challenges associated with CR -Hardware requirements-Hidden primary user problem-Detecting spread spectrum primary users-Sensing duration and frequency- Security.

Spectrum sensing overview – Classification - Matched filter – waveform based sensing – cyclo-stationary based sensing – Energy detector based sensing – Radio Identifier – Cooperative sensing- other sensing methods.

UNIT – V

OFDM based Cognitive Radio :

A Basic OFDM System Model, OFDM based cognitive radio, Cognitive OFDM Systems, Multi-band OFDM, MIMO-OFDM system model, MIMO channel estimation, MIMO-OFDM synchronization.

Text Books :

1.Bruce A. Fetti, -*Cognitive Radio technology*", 1stEdition, Elsevier.

1. H.Arslan - Cognitive Radio, SDR and Adaptive Wireless Systems, Springer, 2007.

Reference Books :

1.K.C.Chen, R.Prasad, -Cognitive Radio Networks, Wiley, 2009.

2.J. H. Reed, -Software Radio, Pearson, 2004.

3. Paul Burns, -*Software defined radio for 3G*, Artech House, 2003.

Web References :

1.https://nptel.ac.in/courses/108107107/3

2 https://www.youtube.com/watch?v=hzxgDyXbpt4

3.<u>https://www.youtube.com/watch?v=z-E5jIoUFbA</u>

Question Paper Pattern:

Sessional Exam: The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks contains three short answer questions of two marks each. The remaining three questions shall be EITHER/OR type questions carrying 8 marks each

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.

ROBOTICS AND AUTOMATION (RAA)

VII - Semester :	ECE						Scheme : 2	017			
Course Code	Course Category	Hours/	Week		Credits	Maxi	Maximum Marks				
ECOE6	OE – IV	L	Т	Р	С	Continuous Internal Assessment	End Exam	TOTAL			
		3	0	0	3	40	60	100			
Sessional Exam	Duration : 2 Hrs	1	1	1		End Exam	Duration: 3 H	°S			
Course Outcom	es: At the end of the	he course	the stud	lent w	ill be able to)					
CO1: Understand	l anatomy and laws	s of robot	ics								
CO2: Analyse the	e role of microcont	rollers in	robotic	applic	ations						
CO3: Program th	e sensor operations	s with mic	crocontr	ollers							
CO4: Program th	e motor and sensor	based ro	botic ap	plicati	ions						
CO5: Utilize the	programming lang	uages in 1	nultiple	robot	application	S					
				UNI	<u>T – I</u>						
Basic Concepts: of robots, degree	Definition and origonal sof freedom, Asim	gin of rob lov's laws	ootics, ar s of robo	natomy otics, a	y of robot, d applications	lifferent types of rob of robots.	otics, various ge	nerations			
				UNI	Γ–II						
Role of Microco DAC, Switches, 1	ntrollers: Levels of LEDs, time based i	of microconterfacing	ontroller g.	rs, basi	ic controller	MC51pin structure,	I/O ports, Time	rs ADC,			
				UNIT	ſ−III						
Sensors and Act	uators: Sensors vs	Actuator	rs, Basic	requi	rements of a	a sensors, Classificat	ion of sensors,				
Examples, Trigge	ered based interfact	ing, Eleva	ator, Ass	sembly	y programm	ing of sensor interfac	cing.				
				UNI	$\Gamma - IV$						
Case Studies - I: Hydraulics and Kinematics, robot programming languages, Block diagrams and programming using C and Assembly language of Line followers, Obstacle Detectors, Speed Controlled Motion in robots.											
				UNI	T –V						
Case Studies –II interface, robots	E: Arduino design of in manufacturing a	of robotic nd non- n	applica	tions, turing	voice comn applications	nand based robots, M s robot cell design	Iultiple robots, r	nachine			
								157			

Text Books :

- 1. Introduction to Robotics Analysis, Systems, Applications, Saeed B. Niku, Prentice Hall of India/Pearson Education, Asia, 2001.
- 2. Industrial Robots Technology Programming and applications, Mikell P. Groover, et.al McGraw Hill, 1980.

Reference Books :

- 1. Robotics for Engineers, YoranKoren, McGraw Hill. 1980
- 2. Introduction to Robotics Mechanics and Control, Craig, Second edition, Pearson Education, Asia, 2004.
- 3. Robotics Technology and Flexible Automation, Satya Ranjan Deb, TMH, New Delhi, 2001.

Web References:

1.http://nptel.ac.in/courses/117106086

2. http://www.nptelvideos.in/2012/12/robotics.html

Question Paper Pattern:

Sessional Exam:

The question paper for sessional examination is for 30 marks, covering half of the syllabus for first sessional and remaining half for second sessional exam. Question No 1 which carries 6 marks containsthree short answer questions of two marks each. The remaining three questions shall be EITHER/ORtype questions carrying 8 marks each

End Exam:

Question Paper Contains Six Questions. Question 1 contains 5 short Answer questions each of 2 marks. (Total 10 marks) covering one question from each unit. The remaining five questions shall be EITHER/OR type questions carrying 10 marks each. Each of these questions is from one unit and may contain sub-questions. i.e. there will be two questions from each unit and the student should answer any one question.